ato Crystal structure of (15,20-bis(2,3,4,5,6-pentafluorophenyl)-5,10-{(4-methylpyridine-3,5-diyl)bis[(sulfanediylmethylene)[1,1'-biphenyl]-4',2-diyl]}porphyrinato)nickel(II) dichloro By scripts.iucr.org Published On :: 2019-09-27 The title compound, [Ni(C64H33F10N5S2)]·xCH2Cl2, consists of discrete NiII porphyrin complexes, in which the five-coordinate NiII cations are in a distorted square-pyramidal coordination geometry. The four porphyrin nitrogen atoms are located in the basal plane of the pyramid, whereas the pyridine N atom is in the apical position. The porphyrin plane is strongly distorted and the NiII cation is located above this plane by 0.241 (3) Å and shifted in the direction of the coordinating pyridine nitrogen atom. The pyridine ring is not perpendicular to the N4 plane of the porphyrin moiety, as observed for related compounds. In the crystal, the complexes are linked via weak C—H⋯F hydrogen bonds into zigzag chains propagating in the [001] direction. Within this arrangement cavities are formed, in which highly disordered dichloromethane solvate molecules are located. No reasonable structural model could be found to describe this disorder and therefore the contribution of the solvent to the electron density was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. Full Article text
ato (N,N-Diisopropyldithiocarbamato)triphenyltin(IV): crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2019-09-12 The crystal and molecular structures of the title triorganotin dithiocarbamate, [Sn(C6H5)3(C7H14NS2)], are described. The molecular geometry about the metal atom is highly distorted being based on a C3S tetrahedron as the dithiocarbamate ligand is asymmetrically chelating to the tin centre. The close approach of the second thione-S atom [Sn⋯S = 2.9264 (4) Å] is largely responsible for the distortion. The molecular packing is almost devoid of directional interactions with only weak phenyl-C—H⋯C(phenyl) interactions, leading to centrosymmetric dimeric aggregates, being noted. An analysis of the calculated Hirshfeld surface points to the significance of H⋯H contacts, which contribute 66.6% of all contacts to the surface, with C⋯H/H⋯C [26.8%] and S⋯H/H⋯H [6.6%] contacts making up the balance. Full Article text
ato The crystal structure of ((cyclohexylamino){(Z)-2-[(E)-5-methoxy-3-nitro-2-oxidobenzylidene-κO]hydrazin-1-ylidene-κN2}methanethiolato-κS)(dimethyl sulfoxide-κS)platinum(II): a supramolecular two-dimens By scripts.iucr.org Published On :: 2019-09-12 The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thiosemicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, molecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π interactions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclohexylhydrazine-1-carbothioamide ligands are compared to that of the title compound. Full Article text
ato Crystal structure of tetrakis(tetrahydrofuran-κO)bis(trifluoromethanesulfonato-κO)iron(II) By scripts.iucr.org Published On :: 2019-09-27 The title compound, [Fe(CF3SO3)2(C4H8O)4], is octahedral with two trifluoromethanesulfonate ligands in trans positions and four tetrahydrofurane molecules in the equatorial plane. By the conformation of the ligands the complex is chiral in the crystal packing. The compound crystallizes in the Sohncke space group P212121 and is enantiomerically pure. The packing of the molecules is determined by weak C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component inversion twin. Full Article text
ato Bis[2-(4,5-diphenyl-1H-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2019-10-22 The crystal and molecular structures of the title CuII complex, isolated as a dihydrate, [Cu(C21H14N3O3)2]·2H2O, reveals a highly distorted coordination geometry intermediate between square-planar and tetrahedral defined by an N2O2 donor set derived from two mono-anionic bidentate ligands. Furthermore, each six-membered chelate ring adopts an envelope conformation with the Cu atom being the flap. In the crystal, imidazolyl-amine-N—H⋯O(water), water-O—H⋯O(coordinated, nitro and water), phenyl-C—H⋯O(nitro) and π(imidazolyl)–π(nitrobenzene) [inter-centroid distances = 3.7452 (14) and 3.6647 (13) Å] contacts link the components into a supramolecular layer lying parallel to (101). The connections between layers forming a three-dimensional architecture are of the types nitrobenzene-C—H⋯O(nitro) and phenyl-C—H⋯π(phenyl). The distorted coordination geometry for the CuII atom is highlighted in an analysis of the Hirshfeld surface calculated for the metal centre alone. The significance of the intermolecular contacts is also revealed in a study of the calculated Hirshfeld surfaces; the dominant contacts in the crystal are H⋯H (41.0%), O⋯H/H⋯O (27.1%) and C⋯H/H⋯C (19.6%). Full Article text
ato Crystal structure, synthesis and thermal properties of bis(acetonitrile-κN)bis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)nickel(II) By scripts.iucr.org Published On :: 2019-10-22 In the crystal structure of the title compound, [Ni(NCS)2(CH3CN)2(C12H9NO)2] or Ni(NCS)2(4-benzoylpyridine)2(acetonitrile)2, the NiII ions are octahedrally coordinated by the N atoms of two thiocyanate anions, two 4-benzoylpyridine ligands and two acetonitrile molecules into discrete complexes that are located on centres of inversion. In the crystal, the discrete complexes are linked by centrosymmetric pairs of weak C—H⋯S hydrogen bonds into chains. Thermogravimetric measurements prove that, upon heating, the title complex loses the two acetonitrile ligands and transforms into a new crystalline modification of the chain compound [Ni(NCS)2(4-benzoylpyridine)2], which is different from that of the corresponding CoII, NiII and CdII coordination polymers reported in the literature. IR spectroscopic investigations indicate the presence of bridging thiocyanate anions but the powder pattern cannot be indexed and, therefore, this structure is unknown. Full Article text
ato The first structural characterization of the protonated azacyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane] bis(per& By scripts.iucr.org Published On :: 2019-10-22 The asymmetric unit of the title compound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane-κ4N1,N5,N8,N12] bis(perchlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated perchlorate anion and two perchlorate ions as counter-anions. The metal ion is coordinated in a tetragonally distorted octahedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the perchlorate anion and the carbonyl O atom of the protonated carboxylic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxylate and average 2.62 (7) Å for disordered perchlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carboxylic acid group of the cation to a neighbouring complex unit results in the formation of infinite chains running along the b-axis direction, which are crosslinked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the perchlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts. Full Article text
ato Crystal structure of pyridinium tetraisothiocyanatodipyridinechromium(III) pyridine monosolvate By scripts.iucr.org Published On :: 2019-11-15 In the crystal structure of the title compound, (C5H6N)[Cr(NCS)4(C5H5N)2]·C5H5N, the CrIII ions are octahedrally coordinated by four N-bonding thiocyanate anions and two pyridine ligands into discrete negatively charged complexes, with the CrIII ion, as well as the two pyridine ligands, located on crystallographic mirror planes. The mean planes of the two pyridine ligands are rotated with respect to each other by 90°. Charge balance is achieved by one protonated pyridine molecule that is hydrogen bonded to one additional pyridine solvent molecule, with both located on crystallographic mirror planes and again rotated by exactly 90°. The pyridinium H atom was refined as disordered between both pyridine N atoms in a 70:30 ratio, leading to a linear N—H⋯N hydrogen bond. In the crystal, discrete complexes are linked by weak C—H⋯S hydrogen bonds into chains that are connected by additional C—H⋯S hydrogen bonding via the pyridinium cations and solvent molecules into layers and finally into a three-dimensional network. Full Article text
ato Crystal structure and Hirshfeld surface analysis of poly[tris(μ4-benzene-1,4-dicarboxylato)tetrakis(dimethylformamide)trinickel(II)]: a two-dimensional coordination network By scripts.iucr.org Published On :: 2019-11-08 The crystal structure of the title compound, [Ni3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-dicarboxylate and DMF = dimethylformamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides interactions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF molecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C interactions between DMF molecules, as shown by Hirshfeld surface analysis. Full Article text
ato (μ-Di-tert-butylsilanediolato)bis[bis(η5-cyclopentadienyl)methylzirconium] By scripts.iucr.org Published On :: 2019-11-08 The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methylene complex resulted in decomposition. The crystal structure of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclopentadienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy. Full Article text
ato Crystal structure of tris[bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-κO)europium methanol monosolvate By scripts.iucr.org Published On :: 2019-11-19 The mononuclear title complex, [Eu(C24H34O4P)3(CH4O)5]·CH4O, (1), has been obtained as a minor product in the reaction between EuCl3(H2O)6 and lithium bis(2,6-diisopropylphenyl) phosphate in a 1:3 molar ratio in a methanol medium. Its structure exhibits monoclinic (P21/c) symmetry at 120 K and is isostructural with the La, Ce and Nd analogs reported previously [Minyaev et al. (2018a). Acta Cryst. C74, 590–598]. In (1), all three bis(2,6-diisopropylphenyl) phosphate ligands display the terminal κ1O-coordination mode. All of the hydroxy H atoms are involved in O—H⋯O hydrogen bonding, exhibiting four intramolecular and two intermolecular hydrogen bonds. Photophysical studies have demonstrated luminescence of (1) with a low quantum yield. Full Article text
ato Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)manganese(II)]-μ4-pentathiodiantimonato] tetrahydrate] showing a 1D MnSbS network By scripts.iucr.org Published On :: 2020-01-01 The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water molecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by intermolecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed. Full Article text
ato Crystal structure, Hirshfeld surface analysis and computational study of bis(2-{[(2,6-dichlorobenzylidene)hydrazinylidene]methyl}phenolato)cobalt(II) and of the copper(II) analogue By scripts.iucr.org Published On :: 2020-01-01 The title homoleptic Schiff base complexes, [M(C14H9Cl2N2O)2], for M = CoII, (I), and CuII, (II), present distinct coordination geometries despite the Schiff base dianion coordinating via the phenolato-O and imine-N atoms in each case. For (I), the coordination geometry is based on a trigonal bipyramid whereas for (II), a square-planar geometry is found (Cu site symmetry overline{1}). In the crystal of (I), discernible supramolecular layers in the ac plane are sustained by chlorobenzene-C—H⋯O(coordinated), chlorobenzene-C—H⋯π(fused-benzene ring) as well as π(fused-benzene, chlorobenzene)–π(chlorobenzene) interactions [inter-centroid separations = 3.6460 (17) and 3.6580 (16) Å, respectively]. The layers inter-digitate along the b-axis direction and are linked by dichlorobenzene-C—H⋯π(fused-benzene ring) and π–π interactions between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.6916 (16) and 3.7968 (19) Å, respectively] . Flat, supramolecular layers are also found in the crystal of (II), being stabilized by π–π interactions formed between fused-benzene rings and between chlorobenzene rings [inter-centroid separations = 3.8889 (15) and 3.8889 (15) Å, respectively]; these stack parallel to [10overline{1}] without directional interactions between them. The analysis of the respective calculated Hirshfeld surfaces indicate diminished roles for H⋯H contacts [26.2% (I) and 30.5% (II)] owing to significant contributions by Cl⋯H/H⋯Cl contacts [25.8% (I) and 24.9% (II)]. Minor contributions by Cl⋯Cl [2.2%] and Cu⋯Cl [1.9%] contacts are indicated in the crystals of (I) and (II), respectively. The interaction energies largely arise from dispersion terms; the aforementioned Cu⋯Cl contact in (II) gives rise to the most stabilizing interaction in the crystal of (II). Full Article text
ato Crystal structure of di-μ-trihydro(pentafluorophenyl)borato-tetrakis(tetrahydrofuran)disodium By scripts.iucr.org Published On :: 2020-01-07 The title compound, [Na(μ-C6F5BH3)(C4H8O)2]2, represents a dimeric structure of sodium and organoborohydride, located about a centre of inversion. The Na⋯B distances of 2.7845 (19) and 2.7494 (18) Å were apparently longer than the Li⋯B distances (2.403–2.537 Å) of the lithium organotrihydroborates in the previous reports. Moreover, an interaction between the sodium atom and one fluorine atom on the 2-position of the benzene ring is observed [Na—F = 2.6373 (12) Å]. In the crystal, the dimeric molecules are stacked along the b-axis via a π–π interaction between the benzene rings. Full Article text
ato (N,N-Diallyldithiocarbamato-κ2S,S')triphenyltin(IV) and bis(N,N-diallyldithiocarbamato-κ2S,S')diphenyltin(IV): crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-10 The crystal and molecular structures of the title organotin dithiocarbamate compounds, [Sn(C6H5)3(C7H10NS2)] (I) and [Sn(C6H5)2(C7H10NS2)2] (II), present very distinct tin atom coordination geometries. In (I), the dithiocarbamate ligand is asymmetrically coordinating with the resulting C3S2 donor set defining a coordination geometry intermediate between square-pyramidal and trigonal–bipyramidal. In (II), two independent molecules comprise the asymmetric unit, which differ in the conformations of the allyl substituents and in the relative orientations of the tin-bound phenyl rings. The dithiocarbamate ligands in (II) coordinate in an asymmetric mode but the Sn—S bonds are more symmetric than observed in (I). The resulting C2S4 donor set approximates an octahedral coordination geometry with a cis-disposition of the ipso-carbon atoms and with the more tightly bound sulfur atoms approximately trans. The only directional intermolecular contacts in the crystals of (I) and (II) are of the type phenyl-C—H⋯π(phenyl) and vinylidene-C—H⋯π(phenyl), respectively, with each leading to a supramolecular chain propagating along the a-axis direction. The calculated Hirshfeld surfaces emphasize the importance of H⋯H contacts in the crystal of (I), i.e. contributing 62.2% to the overall surface. The only other two significant contacts also involve hydrogen, i.e. C⋯H/H⋯C (28.4%) and S⋯H/H⋯S (8.6%). Similar observations pertain to the individual molecules of (II), which are clearly distinguishable in their surface contacts, with H⋯H being clearly dominant (59.9 and 64.9%, respectively) along with C⋯H/H⋯C (24.3 and 20.1%) and S⋯H/H⋯S (14.4 and 13.6%) contacts. The calculations of energies of interaction suggest dispersive forces make a significant contribution to the stabilization of the crystals. The exception is for the C—H⋯π contacts in (II) where, in addition to the dispersive contribution, significant contributions are made by the electrostatic forces. Full Article text
ato Crystal structure of the mixed methanol and ethanol solvate of bis{3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazidato}zinc(II) By scripts.iucr.org Published On :: 2020-02-06 The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex molecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π–π interactions between the planar ligand moieties, which are further connected by C⋯O and C⋯C interactions. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) interactions. Full Article text
ato Tetraaqua[3-oxo-1,3-bis(pyridinium-2-yl)propan-1-olato]nickel(II) tribromide dihydrate By scripts.iucr.org Published On :: 2020-01-31 The crystal structure of the title compound, [Ni(C13H11N2O2)(H2O)4]Br3·2H2O, contains an octahedral NiII atom coordinated to the enol form of 1,3-dipyridylpropane-1,3-dione (dppo) and four water molecules. Both pyridyl rings on the ligand are protonated, forming pyridinium rings and creating an overall ligand charge of +1. The protonated nitrogen-containing rings are involved in hydrogen-bonding interactions with neighoring bromide anions. There are many additional hydrogen-bonding interactions involving coordinated water molecules on the NiII atom, bromide anions and hydration water molecules. Full Article text
ato Crystal structures and Hirshfeld surface analysis of trans-bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline-κ2N,N'}manganese(II) and trans-bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyri By scripts.iucr.org Published On :: 2020-01-31 Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex molecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thiocyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octahedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS− anions in a trans axial arrangement. The trimethylbenzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and π–π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify these intermolecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)]. Full Article text
ato Poly[[tetradecakis(μ-propionato)heptabarium] propionic acid monosolvate tetrahydrate] By scripts.iucr.org Published On :: 2020-01-31 The title compound, {[Ba7(C3H5O2)14]·0.946C3H6O2·4H2O}n, is represented by a metal–organic framework structure that is held together by Ba—O—Ba bonds, as well as by O—H⋯O hydrogen bonds of moderate strength. The structure comprises of four independent Ba2+ cations (one of which is situated on a twofold rotation axis), seven independent propionate and two independent water molecules. The bond-valence sums of all the cations indicate a slight overbonding. There is also an occupationally, as well as a positionally disordered propionic acid molecule present in the structure. Its occupation is slightly lower than the full occupation while the disordered molecules occupy two positions related by a rotation about a twofold rotation axis. In addition, the methyl group in the symmetry-independent propionic acid molecule is also disordered, and occupies two positions. Each propionic acid molecule coordinates to just one cation from a pair of symmetry-equivalent Ba2+ sites and is simultaneously bonded by an O—H⋯Opropionate hydrogen bond. This means that on a microscopic scale, the coordination number of the corresponding Ba2+ site is either 9 or 10. The methyl as well as hydroxy hydrogen atoms of the disordered propionic acid molecule were not determined. Full Article text
ato Crystal structure of {4-[10,15,20-tris(4-methoxyphenyl)porphyrin-5-yl]benzyl 2-diazoacetato}zinc(II) By scripts.iucr.org Published On :: 2020-01-31 In the title compound, [Zn(C50H36N6O5)], the ZnII cation is chelated by four pyrrole N atoms of the porphyrinate anion and coordinated by a symmetry-generated keto O atom of the diazoester group in a distorted square-pyramidal geometry. The mean Zn—N(pyrrole) bond length is 2.058 Å and the Zn—O(diazoester) bond length is 2.179 (4) Å. The zinc cation is displaced by 0.2202 (13) Å from the N4C20 mean plane of the porphyrinate anion toward the O atom; the involvement of this atom leads to a [100] polymeric chain in the crystal. Full Article text
ato Crystal structure, synthesis and thermal properties of bis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)bis(methanol-κN)iron(II) By scripts.iucr.org Published On :: 2020-01-31 In the crystal structure of the title compound, [Fe(NCS)2(C12H9NO)2(CH4O)2], the FeII cations are octahedrally coordinated by two N atoms of 4-benzoylpyridine ligands, two N atoms of two terminal isothiocyanate anions and two methanol molecules into discrete complexes that are located on centres of inversion. These complexes are linked via intermolecular O—H⋯O hydrogen bonds between the methanol O—H H atoms and the carbonyl O atoms of the 4-benzoylpyridine ligands, forming layers parallel to (101). Powder X-ray diffraction proved that a pure sample was obtained but that this compound is unstable and transforms into an unknown crystalline phase within several weeks. However, the solvent molecules can be removed by heating in a thermobalance, which for the aged sample as well as the title compound leads to the formation of a compound with the composition Fe(NCS)2(4-benzoylpyridine)2, which exhibits a powder pattern that is similar to that of Mn(NCS)2(4-benzoylpyridine)2. Full Article text
ato Crystal structure of poly[(μ3-4-amino-1,2,5-oxadiazole-3-hydroxamato)thallium(I)] By scripts.iucr.org Published On :: 2020-02-11 The title compound represents the thallium(I) salt of a substituted 1,2,5-oxadiazole, [Tl(C3H3N4O3)]n, with amino- and hydroxamate groups in the 4- and 3- positions of the oxadiazole ring, respectively. In the crystal, the deprotonated hydroxamate group represents an intermediate between the keto/enol tautomers and forms a five-membered chelate ring with the thallium(I) cation. The coordination sphere of the cation is augmented to a distorted disphenoid by two monodentately binding O atoms from two adjacent anions, leading to the formation of zigzag chains extending parallel to the b axis. The cohesion within the chains is supported by π–π stacking [centroid–centroid distance = 3.746 (3) Å] and intermolecular N—H⋯N hydrogen bonds. Full Article text
ato Crystal structure, characterization and Hirshfeld analysis of bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate By scripts.iucr.org Published On :: 2020-02-18 In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetracoordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π interactions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO molecules interact weakly with the complex molecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent molecule is disordered over two positions with occupancies of 0.70 and 0.30. Full Article text
ato Synthesis, crystal structure, and thermal properties of poly[aqua(μ5-2,5-dicarboxybenzene-1,4-dicarboxylato)strontium] By scripts.iucr.org Published On :: 2020-02-14 A coordination polymer formulated as [Sr(H2BTEC)(H2O)]n (H4BTEC = benzene-1,2,4,5-tetracarboxylic acid, C10H6O8), was synthesized hydrothermally and characterized by single-crystal and powder X-ray diffraction, scanning electron microscopy and thermal analysis. Its crystal structure is made up of a zigzag inorganic chain formed by edge-sharing of [SrO8] polyhedra running along [001]. Adjacent chains are connected to each other via the carboxylate groups of the ligand, resulting in a double-layered network extending parallel to (100). O—H⋯O hydrogen bonds of medium-to-weak strength between the layers consolidate the three-dimensional structure. One of the carboxylic OH functions was found to be disordered over two sets of sites with half-occupancy. Full Article text
ato Synthesis, crystal structure and Hirshfeld and thermal analysis of bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate-κ2N2,O]bis(thiocyanato)nickel(II) By scripts.iucr.org Published On :: 2020-04-07 The title centrosymmetric NiII complex, [Ni(NCS)2(C15H22N2O2)2], crystallizes with one half molecule in the asymmetric unit of the monoclinic unit cell. The complex adopts an octahedral coordination geometry with two mutually trans benzyl-2-(heptan-4-ylidene)hydrazine-1-carboxylate ligands in the equatorial plane with the axial positions occupied by N-bound thiocyanato ligands. The overall conformation of the molecule is also affected by two, inversion-related, intramolecular C—H⋯O hydrogen bonds. The crystal structure features N—H⋯S, C—H⋯S and C—H⋯N hydrogen bonds together with C—H⋯π contacts that stack the complexes along the b-axis direction. The packing was further explored by Hirshfeld surface analysis. The thermal properties of the complex were also investigated by simultaneous TGA–DTA analyses. Full Article text
ato Equatorial aberration of powder diffraction data collected with an Si strip X-ray detector by a continuous-scan integration method By scripts.iucr.org Published On :: 2020-05-05 Exact and approximate mathematical formulas of equatorial aberration for powder diffraction data collected with an Si strip X-ray detector in continuous-scan integration mode are presented. An approximate formula is applied to treat the experimental data measured with a commercial powder diffractometer. Full Article text
ato Energetics of interactions in the solid state of 2-hydroxy-8-X-quinoline derivatives (X = Cl, Br, I, S-Ph): comparison of Hirshfeld atom, X-ray wavefunction and multipole refinements By scripts.iucr.org Published On :: 2019-07-15 In this work, two methods of high-resolution X-ray data refinement: multipole refinement (MM) and Hirshfeld atom refinement (HAR) – together with X-ray wavefunction refinement (XWR) – are applied to investigate the refinement of positions and anisotropic thermal motion of hydrogen atoms, experiment-based reconstruction of electron density, refinement of anharmonic thermal vibrations, as well as the effects of excluding the weakest reflections in the refinement. The study is based on X-ray data sets of varying quality collected for the crystals of four quinoline derivatives with Cl, Br, I atoms and the -S-Ph group as substituents. Energetic investigations are performed, comprising the calculation of the energy of intermolecular interactions, cohesive and geometrical relaxation energy. The results obtained for experimentally derived structures are verified against the values calculated for structures optimized using dispersion-corrected periodic density functional theory. For the high-quality data sets (the Cl and -S-Ph compounds), both MM and XWR could be successfully used to refine the atomic displacement parameters and the positions of hydrogen atoms; however, the bond lengths obtained with XWR were more precise and closer to the theoretical values. In the application to the more challenging data sets (the Br and I compounds), only XWR enabled free refinement of hydrogen atom geometrical parameters, nevertheless, the results clearly showed poor data quality. For both refinement methods, the energy values (intermolecular interactions, cohesive and relaxation) calculated for the experimental structures were in similar agreement with the values associated with the optimized structures – the most significant divergences were observed when experimental geometries were biased by poor data quality. XWR was found to be more robust in avoiding incorrect distortions of the reconstructed electron density as a result of data quality issues. Based on the problem of anharmonic thermal motion refinement, this study reveals that for the most correct interpretation of the obtained results, it is necessary to use the complete data set, including the weak reflections in order to draw conclusions. Full Article text
ato Cryo-EM structure of Neurospora crassa respiratory complex IV By scripts.iucr.org Published On :: 2019-06-26 In fungi, the mitochondrial respiratory chain complexes (complexes I–IV) are responsible for oxidative phosphorylation, as in higher eukaryotes. Cryo-EM was used to identify a 200 kDa membrane protein from Neurospora crassa in lipid nanodiscs as cytochrome c oxidase (complex IV) and its structure was determined at 5.5 Å resolution. The map closely resembles the cryo-EM structure of complex IV from Saccharomyces cerevisiae. Its ten subunits are conserved in S. cerevisiae and Bos taurus, but other transmembrane subunits are missing. The different structure of the Cox5a subunit is typical for fungal complex IV and may affect the interaction with complex III in a respiratory supercomplex. Additional density was found between the matrix domains of the Cox4 and Cox5a subunits that appears to be specific to N. crassa. Full Article text
ato Namdinator – automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps By scripts.iucr.org Published On :: 2019-06-27 Model building into experimental maps is a key element of structural biology, but can be both time consuming and error prone for low-resolution maps. Here we present Namdinator, an easy-to-use tool that enables the user to run a molecular dynamics flexible fitting simulation followed by real-space refinement in an automated manner through a pipeline system. Namdinator will modify an atomic model to fit within cryo-EM or crystallography density maps, and can be used advantageously for both the initial fitting of models, and for a geometrical optimization step to correct outliers, clashes and other model problems. We have benchmarked Namdinator against 39 deposited cryo-EM models and maps, and observe model improvements in 34 of these cases (87%). Clashes between atoms were reduced, and the model-to-map fit and overall model geometry were improved, in several cases substantially. We show that Namdinator is able to model large-scale conformational changes compared to the starting model. Namdinator is a fast and easy tool for structural model builders at all skill levels. Namdinator is available as a web service (https://namdinator.au.dk), or it can be run locally as a command-line tool. Full Article text
ato A comparative anatomy of protein crystals: lessons from the automatic processing of 56 000 samples By scripts.iucr.org Published On :: 2019-07-10 The fully automatic processing of crystals of macromolecules has presented a unique opportunity to gather information on the samples that is not usually recorded. This has proved invaluable in improving sample-location, characterization and data-collection algorithms. After operating for four years, MASSIF-1 has now processed over 56 000 samples, gathering information at each stage, from the volume of the crystal to the unit-cell dimensions, the space group, the quality of the data collected and the reasoning behind the decisions made in data collection. This provides an unprecedented opportunity to analyse these data together, providing a detailed landscape of macromolecular crystals, intimate details of their contents and, importantly, how the two are related. The data show that mosaic spread is unrelated to the size or shape of crystals and demonstrate experimentally that diffraction intensities scale in proportion to crystal volume and molecular weight. It is also shown that crystal volume scales inversely with molecular weight. The results set the scene for the development of X-ray crystallography in a changing environment for structural biology. Full Article text
ato 1 kHz fixed-target serial crystallography using a multilayer monochromator and an integrating pixel detector By scripts.iucr.org Published On :: 2019-08-17 Reliable sample delivery and efficient use of limited beam time have remained bottlenecks for serial crystallography (SX). Using a high-intensity polychromatic X-ray beam in combination with a newly developed charge-integrating JUNGFRAU detector, we have applied the method of fixed-target SX to collect data at a rate of 1 kHz at a synchrotron-radiation facility. According to our data analysis for the given experimental conditions, only about 3 000 diffraction patterns are required for a high-quality diffraction dataset. With indexing rates of up to 25%, recording of such a dataset takes less than 30 s. Full Article text
ato Atomic structures determined from digitally defined nanocrystalline regions By scripts.iucr.org Published On :: 2020-04-10 Nanocrystallography has transformed our ability to interrogate the atomic structures of proteins, peptides, organic molecules and materials. By probing atomic level details in ordered sub-10 nm regions of nanocrystals, scanning nanobeam electron diffraction extends the reach of nanocrystallography and in principle obviates the need for diffraction from large portions of one or more crystals. Scanning nanobeam electron diffraction is now applied to determine atomic structures from digitally defined regions of beam-sensitive peptide nanocrystals. Using a direct electron detector, thousands of sparse diffraction patterns over multiple orientations of a given crystal are recorded. Each pattern is assigned to a specific location on a single nanocrystal with axial, lateral and angular coordinates. This approach yields a collection of patterns that represent a tilt series across an angular wedge of reciprocal space: a scanning nanobeam diffraction tomogram. Using this diffraction tomogram, intensities can be digitally extracted from any desired region of a scan in real or diffraction space, exclusive of all other scanned points. Intensities from multiple regions of a crystal or from multiple crystals can be merged to increase data completeness and mitigate missing wedges. It is demonstrated that merged intensities from digitally defined regions of two crystals of a segment from the OsPYL/RCAR5 protein produce fragment-based ab initio solutions that can be refined to atomic resolution, analogous to structures determined by selected-area electron diffraction. In allowing atomic structures to now be determined from digitally outlined regions of a nanocrystal, scanning nanobeam diffraction tomography breaks new ground in nanocrystallography. Full Article text
ato Structures of the transcriptional regulator BgaR, a lactose sensor By scripts.iucr.org Published On :: 2019-06-26 The structure of BgaR, a transcriptional regulator of the lactose operon in Clostridium perfringens, has been solved by SAD phasing using a mercury derivative. BgaR is an exquisite sensor of lactose, with a binding affinity in the low-micromolar range. This sensor and regulator has been captured bound to lactose and to lactulose as well as in a nominal apo form, and was compared with AraC, another saccharide-binding transcriptional regulator. It is shown that the saccharides bind in the N-terminal region of a jelly-roll fold, but that part of the saccharide is exposed to bulk solvent. This differs from the classical AraC saccharide-binding site, which is mostly sequestered from the bulk solvent. The structures of BgaR bound to lactose and to lactulose highlight how specific and nonspecific interactions lead to a higher binding affinity of BgaR for lactose compared with lactulose. Moreover, solving multiple structures of BgaR in different space groups, both bound to saccharides and unbound, verified that the dimer interface along a C-terminal helix is similar to the dimer interface observed in AraC. Full Article text
ato Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis By scripts.iucr.org Published On :: 2019-10-01 Full Article text
ato Measurement of the horizontal beam emittance of undulator radiation by tandem-double-slit optical system By scripts.iucr.org Published On :: 2020-04-15 A tandem-double-slit optical system was constructed to evaluate the practical beam emittance of undulator radiation. The optical system was a combination of an upstream slit (S1) and downstream slit (S2) aligned on the optical axis with an appropriate separation. The intensity distribution after the double slits, I(x1, x2), was measured by scanning S1 and S2 in the horizontal direction. Coordinates having 1/sqrt e intensity were extracted from I(x1, x2), whose contour provided the standard deviation ellipse in the x1–x2 space. I(x1, x2) was converted to the corresponding distribution in the phase space, I(x1, x1'). The horizontal beam emittance was evaluated to be 3.1 nm rad, which was larger than the value of 2.4 nm rad estimated by using ray-tracing. It was found that the increase was mainly due to an increase in beam divergence rather than size. Full Article text
ato High-efficiency ultra-precision comparator for d-spacing mapping measurement of silicon By scripts.iucr.org Published On :: 2020-03-13 This article describes a high-efficiency experimental configuration for a self-referenced lattice comparator with a `brush beam' of synchrotron radiation from a bending magnet and two linear position-sensitive photon-counting-type X-ray detectors. The efficiency is more than ten times greater compared with the `pencil-beam' configuration and a pair of zero-dimensional detectors. A solution for correcting the systematic deviation of d-spacing measurements caused by the horizontal non-uniformity of the brush beam is provided. Also, the use of photon-counting-type one-dimensional detectors not only improves the spatial resolution of the measurements remarkably but can also adjust the sample's attitude angles easily. Full Article text
ato 3D grain reconstruction from laboratory diffraction contrast tomography By scripts.iucr.org Published On :: 2019-05-31 A method for reconstructing the three-dimensional grain structure from data collected with a recently introduced laboratory-based X-ray diffraction contrast tomography system is presented. Diffraction contrast patterns are recorded in Laue-focusing geometry. The diffraction geometry exposes shape information within recorded diffraction spots. In order to yield the three-dimensional crystallographic microstructure, diffraction spots are extracted and fed into a reconstruction scheme. The scheme successively traverses and refines solution space until a reasonable reconstruction is reached. This unique reconstruction approach produces results efficiently and fast for well suited samples. Full Article text
ato ACMS: a database of alternate conformations found in the atoms of main and side chains of protein structures By journals.iucr.org Published On :: An online knowledge base on the alternate conformations adopted by main-chain and side-chain atoms in protein structures solved by X-ray crystallography is described. Full Article text
ato Equatorial aberration of powder diffraction data collected with an Si strip X-ray detector by a continuous-scan integration method By journals.iucr.org Published On :: Exact and approximate formulas for equatorial aberration of a continuous-scan Si strip detector are compared. Full Article text
ato TAAM: a reliable and user friendly tool for hydrogen-atom location using routine X-ray diffraction data By scripts.iucr.org Published On :: 2020-04-10 Hydrogen is present in almost all of the molecules in living things. It is very reactive and forms bonds with most of the elements, terminating their valences and enhancing their chemistry. X-ray diffraction is the most common method for structure determination. It depends on scattering of X-rays from electron density, which means the single electron of hydrogen is difficult to detect. Generally, neutron diffraction data are used to determine the accurate position of hydrogen atoms. However, the requirement for good quality single crystals, costly maintenance and the limited number of neutron diffraction facilities means that these kind of results are rarely available. Here it is shown that the use of Transferable Aspherical Atom Model (TAAM) instead of Independent Atom Model (IAM) in routine structure refinement with X-ray data is another possible solution which largely improves the precision and accuracy of X—H bond lengths and makes them comparable to averaged neutron bond lengths. TAAM, built from a pseudoatom databank, was used to determine the X—H bond lengths on 75 data sets for organic molecule crystals. TAAM parametrizations available in the modified University of Buffalo Databank (UBDB) of pseudoatoms applied through the DiSCaMB software library were used. The averaged bond lengths determined by TAAM refinements with X-ray diffraction data of atomic resolution (dmin ≤ 0.83 Å) showed very good agreement with neutron data, mostly within one single sample standard deviation, much like Hirshfeld atom refinement (HAR). Atomic displacements for both hydrogen and non-hydrogen atoms obtained from the refinements systematically differed from IAM results. Overall TAAM gave better fits to experimental data of standard resolution compared to IAM. The research was accompanied with development of software aimed at providing user-friendly tools to use aspherical atom models in refinement of organic molecules at speeds comparable to routine refinements based on spherical atom model. Full Article text
ato TAAM: a reliable and user friendly tool for hydrogen-atom location using routine X-ray diffraction data By journals.iucr.org Published On :: Transferable Aspherical Atom Model (TAAM) instead of Independent Atom Model (IAM) applied through DiSCaMB software library in the structure refinement against X-ray diffraction data largely improves the X—H bond lengths and make them comparable to the averaged neutron bond lengths. Full Article text
ato catena-Poly[[[aquacopper(II)]-μ-(biphenyl-2,2'-dicarboxylato)-μ-[N,N'-bis(pyridin-4-yl)urea]] 1.25-hydrate] By scripts.iucr.org Published On :: 2020-05-05 In the title compound, {[Cu(C14H8O4)(C11H10N4O)(H2O)]·1.25H2O}n, the CuII cations are coordinated in a square-pyramidal fashion by trans carboxylate O-atom donors from two diphenate (dip) ligands, trans pyridyl N-atom donors from two bis(4-pyridyl)urea (bpu) ligands, and a ligated water molecule in the apical position. [Cu(H2O)(dip)(bpu)]n coordination polymer layer motifs are oriented parallel to (overline{1}02). These layer motifs display a standard (4,4) rectangular grid topology and stack in an AAA pattern along the a-axis direction to form the full three-dimensional crystal structure of the title compound, mediated by N—H...O and O—H...O hydrogen bonding patterns involving the water molecules of crystallization. Full Article text
ato Appalachian Trail survey aims hidden cameras at large predators By insider.si.edu Published On :: Wed, 20 May 2009 16:56:18 +0000 Describing his project of counting bears, bobcats and other predatory mammals along the Appalachian Trail, National Zoological Park wildlife ecologist William McShea looks to American literature for a comparison. The post Appalachian Trail survey aims hidden cameras at large predators appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity conservation conservation biology Smithsonian's National Zoo
ato Scientists Determine Geese Involved in Hudson River Plane Crash Were Migratory By insider.si.edu Published On :: Fri, 10 Jul 2009 15:06:43 +0000 Scientists at the Smithsonian Institution examined the feather remains from the Jan. 15, 2009, US Airways Flight 1549 bird strike to determine not only the species, but also that the Canada geese involved were from a migratory, rather than resident, population. This knowledge is essential for wildlife professionals to develop policies and techniques that will reduce the risk of future collisions. The team’s findings were published in the journal “Frontiers in Ecology and the Environment” in June. The post Scientists Determine Geese Involved in Hudson River Plane Crash Were Migratory appeared first on Smithsonian Insider. Full Article Research News Science & Nature bird strikes birds conservation biology Feather Identification Lab Migratory Bird Center migratory birds Museum Conservation Institute National Museum of Natural History Smithsonian's National Zoo
ato Astrophysical Observatory scientists are monitoring the mysterious movements of glaciers By insider.si.edu Published On :: Mon, 20 Jul 2009 08:00:56 +0000 In southeastern Greenland, two rivers of ice named Helheim and Kangerdlugssuaq flow in spurts and starts toward the coast. They are much like any other […] The post Astrophysical Observatory scientists are monitoring the mysterious movements of glaciers appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astrophysics geology Smithsonian Astrophysical Observatory
ato The Smithsonian’s National Air and Space Museum opens new Public Observatory on the Mall in Washington, D.C. By insider.si.edu Published On :: Wed, 30 Sep 2009 17:27:39 +0000 The Smithsonian’s National Air and Space Museum has opened a new Public Observatory that contains a 16-inch, 3,000-pound Boller and Chivens telescope, on loan from the Smithsonian Astrophysical Observatory. Through this powerful telescope, museum visitors can now observe the sun (with a special filter), the moon and the brighter stars and planets, such as Venus, Jupiter and Saturn, during daylight hours. Funding for the project was provided by the National Science Foundation. The post The Smithsonian’s National Air and Space Museum opens new Public Observatory on the Mall in Washington, D.C. appeared first on Smithsonian Insider. Full Article Space astronomy National Air and Space Museum
ato Laboratory tests reveal precise way to measure vertical lift in bumblebees and other small insects and birds By insider.si.edu Published On :: Thu, 28 Jan 2010 20:01:27 +0000 Birds do it. Bees do it. And in a laboratory in northern California, scientists using bumblebees recently figured out the best way to measure it--vertical lift! The post Laboratory tests reveal precise way to measure vertical lift in bumblebees and other small insects and birds appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature animal flight bees birds insects Tropical Research Institute
ato Chandra X-ray Observatory finds youngest nearby black hole By insider.si.edu Published On :: Mon, 15 Nov 2010 17:56:23 +0000 Astronomers using NASA's Chandra X-ray Observatory have found evidence of the youngest black hole known to exist in our cosmic neighborhood. The 30-year-old object is a remnant of SN 1979C, a supernova in the galaxy M100 approximately 50 million light years from Earth. The post Chandra X-ray Observatory finds youngest nearby black hole appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics black holes Chandra X-Ray Observatory Smithsonian Astrophysical Observatory supernova
ato Leafsnap, a new mobile app that identifies plants by leaf shape, is launched by Smithsonian and collaborators By insider.si.edu Published On :: Mon, 02 May 2011 17:24:52 +0000 In addition to the species name, Leafsnap provides high-resolution photographs and information about the tree's flowers, fruit, seeds and bark—giving the user a comprehensive understanding of the specie The post Leafsnap, a new mobile app that identifies plants by leaf shape, is launched by Smithsonian and collaborators appeared first on Smithsonian Insider. Full Article Research News Science & Nature technology
ato Chandra X-Ray Observatory finds massive black holes common in early universe By insider.si.edu Published On :: Wed, 15 Jun 2011 18:36:16 +0000 Using the deepest X-ray image ever taken, astronomers found the first direct evidence that massive black holes were common in the early universe. This discovery from NASA's Chandra X-ray Observatory shows that very young black holes grew more aggressively than previously thought, in tandem with the growth of their host galaxies. The post Chandra X-Ray Observatory finds massive black holes common in early universe appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space black holes Chandra X-Ray Observatory