analysis Synthesis, crystal structure and Hirshfeld surface analysis of 4-{(1E)-1-[(carbamothioylamino)imino]ethyl}phenyl propanoate By journals.iucr.org Published On :: 2024-04-18 The title compound, C12H15N3O2S, adopts an E configuration with respect to the C=N bond. The propionate group adopts an antiperiplanar (ap) conformation. There are short intramolecular N—H⋯N and C—H⋯O contacts, forming S(5) and S(6) ring motifs, respectively. In the crystal, molecules are connected into ribbons extending parallel to [010] by pairs of N—H⋯S interactions, forming rings with R22(8) graph-set motifs, and by pairs of C—H⋯S interactions, where rings with the graph-set motif R21(7) are observed. The O atom of the carbonyl group is disordered over two positions, with a refined occupancy ratio of 0.27 (2):0.73 (2). The studied crystal consisted of two domains. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of (Z)-4-({[2-(benzo[b]thiophen-3-yl)cyclopent-1-en-1-yl]methyl}(phenyl)amino)-4-oxobut-2-enoic acid By journals.iucr.org Published On :: 2024-04-26 In the title compound, C24H21NO3S, the cyclopentene ring adopts an envelope conformation. In the crystal, molecules are linked by C—H⋯π interactions, forming ribbons along the a axis. Intermolecular C—H⋯O hydrogen bonds connect these ribbons to each other, forming layers parallel to the (0overline{1}1) plane. The molecular packing is strengthened by van der Waals interactions between the layers. The intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 46.0%, C⋯H/H⋯C 21.1%, O⋯H/H⋯O 20.6% and S⋯H/H⋯S 9.0%. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of 2-[(4-hydroxyphenyl)amino]-5,5-diphenyl-1H-imidazol-4(5H)-one By journals.iucr.org Published On :: 2024-04-26 In the title molecule, C21H17N3O2, the five-membered ring is slightly ruffled and dihedral angles between the pendant six-membered rings and the central, five-membered ring vary between 50.78 (4) and 86.78 (10)°. The exocyclic nitrogen lone pair is involved in conjugated π bonding to the five-membered ring. In the crystal, a layered structure is generated by O—H⋯N and N—H⋯O hydrogen bonds plus C—H⋯π(ring) and weak π-stacking interactions. Full Article text
analysis Crystal structure characterization, Hirshfeld surface analysis, and DFT calculation studies of 1-(6-amino-5-nitronaphthalen-2-yl)ethanone By journals.iucr.org Published On :: 2024-05-03 The title compound, C12H10N2O3, was obtained by the deacetylation reaction of 1-(6-amino-5-nitronaphthalen-2-yl)ethanone in a concentrated sulfuric acid methanol solution. The molecule comprises a naphthalene ring system bearing an acetyl group (C-3), an amino group (C-7), and a nitro group (C-8). In the crystal, the molecules are assembled into a two-dimensional network by N⋯H/H⋯N and O⋯H/H⋯O hydrogen-bonding interactions. n–π and π–π stacking interactions are the dominant interactions in the three-dimensional crystal packing. Hirshfeld surface analysis indicates that the most important contributions are from O⋯H/H⋯O (34.9%), H⋯H (33.7%), and C⋯H/H⋯C (11.0%) contacts. The energies of the frontier molecular orbitals were computed using density functional theory (DFT) calculations at the B3LYP-D3BJ/def2-TZVP level of theory and the LUMO–HOMO energy gap of the molecule is 3.765 eV. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of (Z)-4-oxo-4-{phenyl[(thiophen-2-yl)methyl]amino}but-2-enoic acid By journals.iucr.org Published On :: 2024-05-10 In the title compound, C15H13NO3S, the molecular conformation is stable with the intramolecular O—H⋯O hydrogen bond forming a S(7) ring motif. In the crystal, molecules are connected by C—H⋯O hydrogen bonds, forming C(8) chains running along the a-axis direction. Cohesion of the packing is provided by weak van der Waals interactions between the chains. A Hirshfeld surface analysis was undertaken to investigate and quantify the intermolecular interactions. The thiophene ring is disordered in a 0.9466 (17):0.0534 (17) ratio over two positions rotated by 180°. Full Article text
analysis Crystal structure, Hirshfeld surface analysis, calculations of intermolecular interaction energies and energy frameworks and the DFT-optimized molecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)methyl]-3-(prop-1-en-2-yl)-1H-b By journals.iucr.org Published On :: 2024-05-14 The benzimidazole entity of the title molecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual molecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) interactions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) interactions. Hydrogen bonding and van der Waals interactions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of (3Z)-4-[(4-amino-1,2,5-oxadiazol-3-yl)amino]-3-bromo-1,1,1-trifluorobut-3-en-2-one By journals.iucr.org Published On :: 2024-05-10 In the title compound, C6H4BrF3N4O2, the oxadiazole ring is essentially planar with a maximum deviation of 0.003 (2) Å. In the crystal, molecular pairs are connected by N—H⋯N hydrogen bonds, forming dimers with an R22(8) motif. The dimers are linked into layers parallel to the (10overline{4}) plane by N—H⋯O hydrogen bonds. In addition, C—O⋯π and C—Br⋯π interactions connect the molecules, forming a three-dimensional network. The F atoms of the trifluoromethyl group are disordered over two sites in a 0.515 (6): 0.485 (6) ratio. The intermolecular interactions in the crystal structure were investigated and quantified using Hirshfeld surface analysis. Full Article text
analysis Structural characterization and comparative analysis of polymorphic forms of psilocin (4-hydroxy-N,N-dimethyltryptamine) By journals.iucr.org Published On :: 2024-05-14 The title compound, C12H16N2O, is a hydroxy-substituted monoamine alkaloid, and the primary metabolite of the naturally occurring psychedelic compound psilocybin. Crystalline forms of psilocin are known, but their characterization by single-crystal structure analysis is limited. Herein, two anhydrous polymorphic forms (I and II) of psilocin are described. The crystal structure of polymorphic Form I, in space group P21/c, was first reported in 1974. Along with the redetermination to modern standards and unambiguous location of the acidic H atom and variable-temperature single-crystal unit-cell determinations for Form I, the Form II polymorph of the title compound, which crystallizes in the monoclinic space group P21/n, is described for the first time. The psilocin molecules are present in both forms in their phenol–amine tautomeric forms (not resolved in the 1974 report). The molecules in Forms I and II, however, feature different conformations of their N,N-dimethyl ethylene substituent, with the N—C—C—C link in Form I being trans and in Form II being gauche, allowing the latter to bend back to the hydroxyl group of the same molecule, leading to the formation of a strong intramolecular O—H⋯N hydrogen bond between the hydroxyl moiety and ethylamino-nitrogen group. In the extended structure of Form II, the molecules form one-dimensional strands through N—H⋯O hydrogen bonds from the indole group to the oxygen atom of the hydroxyl moiety of an adjacent molecule. Form II exhibits whole-molecule disorder due to a pseudo-mirror operation, with an occupancy ratio of 0.689 (5):0.311 (5) for the two components. In contrast, Form I does not feature intramolecular hydrogen bonds but forms a layered structure through intermolecular N—H⋯O and O—H⋯N hydrogen bonds. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of 3,3'-[ethane-1,2-diylbis(oxy)]bis(5,5-dimethylcyclohex-2-en-1-one) including an unknown solvate By journals.iucr.org Published On :: 2024-05-17 The title molecule, C18H26O4, consists of two symmetrical halves related by the inversion centre at the mid-point of the central –C—C– bond. The hexene ring adopts an envelope conformation. In the crystal, the molecules are connected into dimers by C—H⋯O hydrogen bonds with R22(8) ring motifs, forming zigzag ribbons along the b-axis direction. According to a Hirshfeld surface analysis, H⋯H (68.2%) and O⋯H/H⋯O (25.9%) interactions are the most significant contributors to the crystal packing. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of 1-[3-(2-oxo-3-phenyl-1,2-dihydroquinoxalin-1-yl)propyl]-3-phenyl-1,2-dihydroquinoxalin-2-one By journals.iucr.org Published On :: 2024-05-17 In the title compound, C31H24N4O2, the dihydroquinoxaline units are both essentially planar with the dihedral angle between their mean planes being 64.82 (4)°. The attached phenyl rings differ significantly in their rotational orientations with respect to the dihydroquinoxaline planes. In the crystal, one set of C—H⋯O hydrogen bonds form chains along the b-axis direction, which are connected in pairs by a second set of C—H⋯O hydrogen bonds. Two sets of π-stacking interactions and C—H⋯π(ring) interactions join the double chains into the final three-dimensional structure. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of dimethyl 2-oxo-4-(pyridin-2-yl)-6-(thiophen-2-yl)cyclohex-3-ene-1,3-dicarboxylate By journals.iucr.org Published On :: 2024-05-24 In the title compound, C19H17NO5S, the cyclohexene ring adopts nearly an envelope conformation. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions connect the molecules by forming layers parallel to the (010) plane. According to the Hirshfeld surface analysis, H⋯H (36.9%), O⋯H/H⋯O (31.0%), C⋯H/H⋯C (18.9%) and S⋯H/H⋯S (7.9%) interactions are the most significant contributors to the crystal packing. Full Article text
analysis The crystal structures and Hirshfeld surface analysis of three new bromo-substituted 3-methyl-1-(phenylsulfonyl)-1H-indole derivatives By journals.iucr.org Published On :: 2024-05-31 Three new 1H-indole derivatives, namely, 2-(bromomethyl)-3-methyl-1-(phenylsulfonyl)-1H-indole, C16H14BrNO2S, (I), 2-[(E)-2-(2-bromo-5-methoxyphenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole, C24H20BrNO3S, (II), and 2-[(E)-2-(2-bromophenyl)ethenyl]-3-methyl-1-(phenylsulfonyl)-1H-indole, C23H18BrNO2S, (III), exhibit nearly orthogonal orientations of their indole ring systems and sulfonyl-bound phenyl rings. Such conformations are favourable for intermolecular bonding involving sets of slipped π–π interactions between the indole systems and mutual C—H⋯π hydrogen bonds, with the generation of two-dimensional monoperiodic patterns. The latter are found in all three structures, in the form of supramolecular columns with every pair of successive molecules related by inversion. The crystal packing of the compounds is additionally stabilized by weaker slipped π–π interactions between the outer phenyl rings (in II and III) and by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds. The structural significance of the different kinds of interactions agree with the results of a Hirshfeld surface analysis and the calculated interaction energies. In particular, the largest interaction energies (up to −60.8 kJ mol−1) are associated with pairing of antiparallel indole systems, while the energetics of weak hydrogen bonds and phenyl π–π interactions are comparable and account for 13–34 kJ mol−1. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of 6,6'-dimethyl-2,2'-bipyridine-1,1'-diium tetrachloridocobaltate(II) By journals.iucr.org Published On :: 2024-06-11 In the title molecular salt, (C12H14N2)[CoCl4], the dihedral angle between the pyridine rings of the cation is 52.46 (9)° and the N—C—C—N torsion angle is −128.78 (14)°, indicating that the ring nitrogen atoms are in anti-clinal conformation. The Cl—Co—Cl bond angles in the anion span the range 105.46 (3)–117.91 (2)°. In the extended structure, the cations and anions are linked by cation-to-anion N—H⋯Cl and C—H⋯Cl interactions, facilitating the formation of R44(18) and R44(20) ring motifs. Furthermore, the crystal structure features weak anion-to-cation Cl⋯π interactions [Cl⋯π = 3.4891 (12) and 3.5465 (12) Å]. Hirshfeld two-dimensional fingerprint plots revealed that the most significant interactions are Cl⋯H/H⋯Cl (45.5%), H⋯H (29.0%), Cl⋯C/C⋯Cl (7.8%), Cl⋯N/N⋯Cl (3.5%), Cl⋯Cl (1.4) and Co⋯H (1%) contacts. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of 2-bromoethylammonium bromide – a possible side product upon synthesis of hybrid perovskites By journals.iucr.org Published On :: 2024-06-18 This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br−. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H interactions, which constitute 62.6% of the overall close atom contacts. Full Article text
analysis Synthesis, spectroscopic analysis and crystal structure of (N-{2-[(2-aminoethyl)amino]ethyl}-4'-methyl-[1,1'-biphenyl]-4-sulfonamidato)tricarbonylrhenium(I) By journals.iucr.org Published On :: 2024-06-18 The title compound, [Re(C17H22N3O2S)(CO)3] is a net neutral fac-Re(I)(CO)3 complex of the 4-methylbiphenyl sulfonamide derivatized diethylenetriamine ligand. The NNN-donor monoanionic ligand coordinates with the Re core in tridentate fashion, establishing an inner coordination sphere resulting in a net neutral complex. The complex possesses pseudo-octahedral geometry where one face of the octahedron is occupied by three carbonyl ligands and the other faces are occupied by one sp2 nitrogen atom of the sulfonamide group and two sp3 nitrogen atoms of the dien backbone. The Re—Nsp2 bond distance, 2.173 (4) Å, is shorter than the Re—Nsp3 bond distances, 2.217 (5) and 2.228 (6) Å, and is similar to the range reported for typical Re—Nsp2 bond lengths (2.14 to 2.18 Å). Full Article text
analysis Crystal structure and Hirshfeld surface analysis of dimethyl(phenyl)phosphine sulfide By journals.iucr.org Published On :: 2024-06-18 The title compound, C8H11PS, which melts below room temperature, was crystallized at low temperature. The P—S bond length is 1.9623 (5) Å and the major contributors to the Hirshfeld surface are H⋯H (58.1%), S⋯H/H⋯S (13.4%) and C⋯H/H⋯C contacts (11.7%). Full Article text
analysis Crystal structure and Hirshfeld surface analysis of a halogen bond between 2-(allylthio)pyridine and 1,2,4,5-tetrafluoro-3,6-diiodobenzene By journals.iucr.org Published On :: 2024-06-21 The crystal structure of the title 2:1 molecular complex between 2-(allylthio)pyridine and 1,2,4,5-tetrafluoro-3,6-diiodobenzene, C6F4I2·2C8H9NS, at 100 K has been determined in the monoclinic space group P21/c. The most noteworthy characteristic of the complex is the halogen bond between iodine and the pyridine ring with a short N⋯I contact [2.8628 (12) Å]. The Hirshfeld surface analysis shows that the hydrogen⋯hydrogen contacts dominate the crystal packing with a contribution of 32.1%. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(4-fluorophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one By journals.iucr.org Published On :: 2024-06-25 In the title compound, C19H18BrFN2O, the pyrrolidine ring adopts an envelope conformation. In the crystal, molecules are linked by intermolecular N—H⋯O, C—H⋯O, C—H⋯F and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions connect molecules into ribbons along the b-axis direction, consolidating the molecular packing. The intermolecular interactions in the crystal structure were quantified and analysed using Hirshfeld surface analysis. Full Article text
analysis Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-4-yl pentanoate By journals.iucr.org Published On :: 2024-06-21 In the title compound, C14H14O4, the dihedral angle between the coumarin ring system (r.m.s deviation = 0.016 Å) and the pentanoate ring is 36.26 (8)°. A short intramolecular C—H⋯O contact of 2.40 Å is observed. Hirshfeld surface analysis reveals that 46.1% of the intermolecular interactions are from H⋯H contacts, 28.6% are from H⋯O/O⋯H contacts and 14.7% are from H⋯C/C⋯H. Full Article text
analysis Synthesis, structural studies and Hirshfeld surface analysis of 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridin-1-ium hexakis(nitrato-κ2O,O')thorate(IV) By journals.iucr.org Published On :: 2024-07-05 Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4L2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2− anions display an icosahedral coordination geometry and are connected by LH+ cations through C—H⋯O hydrogen bonds. The LH+ cations interact via N—H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important interactions are O⋯H/H⋯O hydrogen-bonding interactions, which represent a 55.2% contribution. Full Article text
analysis Crystal structure determination and Hirshfeld surface analysis of N-acetyl-N-3-methoxyphenyl and N-(2,5-dimethoxyphenyl)-N-phenylsulfonyl derivatives of N-[1-(phenylsulfonyl)-1H-indol-2-yl]methanamine By journals.iucr.org Published On :: 2024-07-09 Two new [1-(phenylsulfonyl)-1H-indol-2-yl]methanamine derivatives, namely, N-(3-methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide, C24H22N2O4S, (I), and N-(2,5-dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide, C29H26N2O6S2, (II), reveal a nearly orthogonal orientation of their indole ring systems and sulfonyl-bound phenyl rings. The sulfonyl moieties adopt the anti-periplanar conformation. For both compounds, the crystal packing is dominated by C—H⋯O bonding [C⋯O = 3.312 (4)–3.788 (8) Å], with the structure of II exhibiting a larger number, but weaker bonds of this type. Slipped π–π interactions of antiparallel indole systems are specific for I, whereas the structure of II delivers two kinds of C—H⋯π interactions at both axial sides of the indole moiety. These findings agree with the results of Hirshfeld surface analysis. The primary contributions to the surface areas are associated with the contacts involving H atoms. Although II manifests a larger fraction of the O⋯H/H⋯O contacts (25.8 versus 22.4%), most of them are relatively distal and agree with the corresponding van der Waals separations. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitrophenoxy)acetate By journals.iucr.org Published On :: 2024-07-31 The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitrophenoxyacetic acid propargyl ether and para-bromophenylazide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The molecules, with a near-perpendicular orientation of the bromophenyl-triazole and nitrophenoxyacetate fragments, are connected into a three-dimensional network by intermolecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π interactions. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-dihydroquinoxalin-2(1H)-one By journals.iucr.org Published On :: 2024-08-09 In the title molecule, C25H29N5O, the dihydroquinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the molecule adopts a hairpin conformation. In the crystal, the polar portions of the molecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) interactions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of dichlorido[2-(3-cyclopentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) dimethylformamide monosolvate By journals.iucr.org Published On :: 2024-08-16 This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclopentyl-1,2,4-triazol-5-yl)pyridine] and one molecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, molecules are linked by intermolecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H interactions is somewhat smaller, amounting to 12.4% and 5%, respectively. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hydroxy-N'-(propan-2-ylidene)benzohydrazide] By journals.iucr.org Published On :: 2024-08-20 The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [trichloridocopper(II)]-μ-chlorido-{bis[2-hydroxy-N'-(propan-2-ylidene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hydroxy-N'-(propan-2-ylidene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one molecule of water, which forms interactions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitrogen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetrahedral geometry. The arrangement around the first copper ion exhibits a distorted geometry intermediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via intermolecular interactions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding interactions parallel to the ac plane, and through slipped π–π stacking interactions parallel to the ab plane, resulting in a three-dimensional network. The intermolecular interactions in the crystal structure were quantified and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol molecules in the void space could not be reasonably modelled, thus a solvent mask was applied. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one By journals.iucr.org Published On :: 2024-08-30 This study presents the synthesis, characterization and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one, C19H18Br2N2O. In the title compound, the pyrrolidine ring adopts a distorted envelope configuration. In the crystal, molecules are linked by intermolecular N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, pairs of molecules along the c axis are connected by C—H⋯π interactions. According to a Hirshfeld surface study, H⋯H (36.9%), Br⋯H/H⋯Br (28.2%) and C⋯H/H⋯C (24.3%) interactions are the most significant contributors to the crystal packing. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of a new copper(II) complex based on diethyl 2,2'-(4H-1,2,4-triazole-3,5-diyl)diacetate By journals.iucr.org Published On :: 2024-08-30 The title compound, bis[μ-2,2'-(4H-1,2,4-triazole-3,5-diyl)diacetato]bis[diaquacopper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octahedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitrogen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxylate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water molecules. Two additional solvent water molecules are linked to the title molecule by O—H⋯N and O⋯H—O hydrogen bonds. The crystal structure is built up from the parallel packing of discrete supramolecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) interactions. The crystal studied was twinned by a twofold rotation around [100]. Full Article text
analysis Crystal structure, Hirshfeld surface analysis, DFT and the molecular docking studies of 3-(2-chloroacetyl)-2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one By journals.iucr.org Published On :: 2024-08-30 In the title compound, C33H29ClN2O2, the two piperidine rings of the diazabicyclo moiety adopt distorted-chair conformations. Intermolecular C—H⋯π interactions are mainly responsible for the crystal packing. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis, revealing that H⋯H interactions contribute most to the crystal packing (52.3%). The molecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined molecular structure in the solid state. Full Article text
analysis Crystal structure, Hirshfeld surface analysis, DFT optimized molecular structure and the molecular docking studies of 1-[2-(cyanosulfanyl)acetyl]-3-methyl-2,6-bis(4-methylphenyl)piperidin-4-one By journals.iucr.org Published On :: 2024-09-12 The two molecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and intermolecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis. The molecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined molecular structure in the solid state. Full Article text
analysis Synthesis, crystal structure, and Hirshfeld surface analysis of 1,3-dihydro-2H-benzimidazol-2-iminium 3-carboxy-4-hydroxybenzenesulfonate By journals.iucr.org Published On :: 2024-09-06 The asymmetric unit of the title salt, C7H8N3+·C7H5O6S−, comprises two 1,3-dihydro-2H-benzimidazol-2-iminium cations and two 2-hydroxy-5-sulfobenzoate anions (Z' = 2). In the crystal, the molecules interact through N—H⋯O, O—H⋯O hydrogen bonds and C—O⋯π contacts. The hydrogen-bonding interactions lead to the formation of layers parallel to (overline{1}01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of 4'-cyano-[1,1'-biphenyl]-4-yl 3-(benzyloxy)benzoate By journals.iucr.org Published On :: 2024-09-12 In the title compound, C27H19O3N, the dihedral angle between the aromatic rings of the biphenyl unit is 38.14 (2)° and the C—O—C—C torsion angle in the benzyloxy benzene fragment is 179.1 (2)°. In the crystal, the molecules are linked by weak C—H⋯O interactions forming S(9) chains propagating along [010]. The most important contributions to the Hirshfeld surface arise from H⋯H (32.4%) and C⋯H/H⋯C (37.0%) contacts. Full Article text
analysis Crystal structure, Hirshfeld surface analysis, and calculations of intermolecular interaction energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)methyl]-3-(1-methylethenyl)-benzimidazol-2-one By journals.iucr.org Published On :: 2024-09-30 The benzimidazole moiety in the title molecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the molecules into a network structure. There are no π–π interactions present but two weak C—H⋯π(ring) interactions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) interactions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of (E)-N-(2-styrylphenyl)benzenesulfonamide By journals.iucr.org Published On :: 2024-09-20 The crystal structure of the title compound C20H17NO2S features hydrogen-bonding and C—H⋯π interactions. Hirshfeld surface analysis revealed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O interactions make a major contribution to the crystal packing. Docking studies were carried out to determine the binding affinity and interaction profile of the title compound with EGFR kinase, a member of the ErbB family of receptor tyrosine kinases, which is crucial for processes such as cell proliferation and differentiation. The title compound shows a strong binding affinity with EGFR kinase, with the most favourable conformation having a binding energy of −8.27 kcal mol−1 and a predicted IC50 of 870.34 nM, indicating its potential as a promising candidate for targeted lung cancer therapy. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methylbenzimidazole-κN3)aquabis(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate By journals.iucr.org Published On :: 2024-10-22 The molecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of interest for its antimicrobial properties. The asymmetric unit comprises two independent complex molecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of intermolecular interactions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts. Full Article text
analysis Synthesis, non-spherical structure refinement and Hirshfeld surface analysis of racemic 2,2'-diisobutoxy-1,1'-binaphthalene By journals.iucr.org Published On :: 2024-09-24 In the racemic title compound, C28H30O2, the naphthyl ring systems subtend a dihedral angle of 68.59 (1)° and the molecular conformation is consolidated by a pair of intramolecular C—H⋯π contacts. The crystal packing features a weak C—H⋯π contact and van der Waals forces. A Hirshfeld surface analysis of the crystal structure reveals that the most significant contributions are from H⋯H (73.2%) and C⋯H/H⋯C (21.2%) contacts. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of trichlorido(1,10-phenanthroline-κ2N,N')phenyltin(IV) By journals.iucr.org Published On :: 2024-09-24 The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyltin trichloride in methanol, exhibits intramolecular hydrogen-bonding interactions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by intermolecular C—H⋯Cl hydrogen bonds, as well as Y—X⋯π and π-stacking interactions involving three different aromatic rings with centroid–centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) interactions make smaller contributions. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of {2-[bis(pyridin-2-ylmethyl)amino]ethane-1-thiolato}chloridocadmium(II) By journals.iucr.org Published On :: 2024-09-30 The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis(pyridin-2-ylmethyl)amino]ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supramolecular interactions in 1 include parallel offset face-to-face interactions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyridyl–pyridyl interactions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) interactions are dominant in the solid state. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methylsulfate monohydrate By journals.iucr.org Published On :: 2024-09-24 The molecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S−·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitrogen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methylsulfate anion) and intermolecular N—H⋯N interactions involving the sulfonamide and isoxazole nitrogen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π–π interactions between the phenyl rings of adjacent molecules. A Hirshfeld surface analysis was used to verify the contributions of the different intermolecular interactions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) interactions. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of (nitrato-κ2O,O')(1,4,7,10-tetraazacyclododecane-κ4N)nickel(II) nitrate By journals.iucr.org Published On :: 2024-10-11 The crystal structure of the title compound, [Ni(C8H20N4)(NO3)]NO3, at room temperature, has monoclinic (P21/n) symmetry. The structure displays intermolecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site. The 1,4,7,10-tetraazacyclododecane (cyclen) backbone has the [4,8] configuration, with three nitrogen-bound H atoms directed above the plane of the nitrogen atoms towards the offset nickel atom with the fourth nitrogen-bound hydrogen directed below from the plane of the nitrogen atoms. The nitrate anion O atoms are seen to hydrogen bond to the H atoms bound to the N atoms of the ligand. Full Article text
analysis The crystal structures determination and Hirshfeld surface analysis of N-(4-bromo-3-methoxyphenyl)- and N-{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}- derivatives of N-{[3-bromo-1-(phenylsulfonyl)-1H-indol- By journals.iucr.org Published On :: 2024-10-04 Two new phenylsulfonylindole derivatives, namely, N-{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}-N-(4-bromo-3-methoxyphenyl)benzenesulfonamide, C28H22Br2N2O5S2, (I), and N,N-bis{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide, C36H27Br2N3O6S3, (II), reveal the impact of intramolecular π–π interactions of the indole moieties as a factor not only governing the conformation of N,N-bis(1H-indol-2-yl)methyl)amines, but also significantly influencing the crystal patterns. For I, the crystal packing is dominated by C—H⋯π and π–π bonding, with a particular significance of mutual indole–indole interactions. In the case of II, the molecules adopt short intramolecular π–π interactions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.267 (2) Å] accompanied by a set of forced Br⋯O contacts. This provides suppression of similar interactions between the molecules, while the importance of weak C—H⋯O hydrogen bonding to the packing naturally increases. Short contacts of the latter type [C⋯O = 3.389 (6) Å] assemble pairs of molecules into centrosymmetric dimers with a cyclic R22(13) ring motif. These findings are consistent with the results of a Hirshfeld surface analysis and together they suggest a tool for modulating the supramolecular behavior of phenylsulfonylated indoles. Full Article text
analysis Crystal structure, Hirshfeld surface analysis, and DFT and molecular docking studies of 6-cyanonaphthalen-2-yl 4-(benzyloxy)benzoate By journals.iucr.org Published On :: 2024-10-22 In the title compound, C25H17NO3, the torsion angle associated with the phenyl benzoate group is −173.7 (2)° and that for the benzyloxy group is −174.8 (2)° establishing an anti-type conformation. The dihedral angles between the ten-membered cyanonaphthalene ring and the aromatic ring of the phenyl benzoate and the benzyloxy fragments are 40.70 (10) and 87.51 (11)°, respectively, whereas the dihedral angle between the aromatic phenyl benzoate and the benzyloxy fragments is 72.30 (13)°. In the crystal, the molecules are linked by weak C—H⋯O interactions forming S(4) chains propagating parallel to [010]. The packing is consolidated by three C—H⋯π interactions and two π–π stacking interactions between the aromatic rings of naphthalene and phenyl benzoate with centroid-to-centroid distances of 3.9698 (15) and 3.8568 (15) Å, respectively. Intermolecular interactions were quantified using Hirshfeld surface analysis. The molecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level, revealing that the energy gap between HOMO and LUMO is 3.17 eV. Molecular docking studies were carried out for the title compound as a ligand and SARS-Covid-2(PDB ID:7QF0) protein as a receptor giving a binding affinity of −9.5 kcal mol−1. Full Article text
analysis Synthesis, crystal structure and Hirshfeld surface analysis of 2-{4-[(2-chlorophenyl)methyl]-3-methyl-6-oxopyridazin-1-yl}-N-phenylacetamide By journals.iucr.org Published On :: 2024-10-31 In the title molecule, C20H18ClN3O2, the 2-chlorophenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenylacetamide moiety is nearly planar due to a weak, intramolecular C—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds and π-stacking interactions between pyridazine and phenyl rings form helical chains of molecules in the b-axis direction, which are linked by C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O interactions to dominate the intermolecular contacts in the crystal. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of the salt 2-iodoethylammonium iodide – a possible side product upon synthesis of hybrid perovskites By journals.iucr.org Published On :: 2024-10-31 The title organic–inorganic hybrid salt, C2H7IN+·I−, is isotypic with its bromine analog, C2H7BrN+·Br− [Semenikhin et al. (2024). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodoethylammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supramolecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I interactions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001]. Full Article text
analysis Crystal structure and Hirshfeld surface analysis of bis(benzoylacetonato)(ethanol)dioxidouranium(VI) By journals.iucr.org Published On :: 2024-11-05 A new uranium metal–organic complex salt, [U(C10H9O2)2O2(C2H6O)], with benzoyl acetone, namely, bis(benzoylacetonato)(ethanol)dioxidouranium(VI), was synthesized. The compound has monoclinic P21/n symmetry. The geometry of the seven-coordinate U atom is pentagonal bipyramidal, with the uranyl oxygen atoms in apical positions. In the complex, the ligands bind to the metal through oxygen atoms. Additional weak O—H⋯O contacts between the cations and anions consolidate the three-dimensional arrangement of the structure. On the Hirshfeld surface, the largest contributions come from the short contacts such as van der Waals forces, including H⋯H, O⋯H and C⋯H. Interactions including C⋯C and O⋯C contacts were also observed; however, their contribution to the overall cohesion of the crystal structure is minor. A packing analysis was performed to check the strength of the crystal packing. Full Article text
analysis Texture measurements on quartz single crystals to validate coordinate systems for neutron time-of-flight texture analysis By journals.iucr.org Published On :: 2023-11-24 In crystallographic texture analysis, ensuring that sample directions are preserved from experiment to the resulting orientation distribution is crucial to obtain physical meaning from diffraction data. This work details a procedure to ensure instrument and sample coordinates are consistent when analyzing diffraction data with a Rietveld refinement using the texture analysis software MAUD. A quartz crystal is measured on the HIPPO diffractometer at Los Alamos National Laboratory for this purpose. The methods described here can be applied to any diffraction instrument measuring orientation distributions in polycrystalline materials. Full Article text
analysis Van Vleck analysis of angularly distorted octahedra using VanVleckCalculator By journals.iucr.org Published On :: 2024-02-01 Van Vleck modes describe all possible displacements of octahedrally coordinated ligands about a core atom. They are a useful analytical tool for analysing the distortion of octahedra, particularly for first-order Jahn–Teller distortions, but determination of the Van Vleck modes of an octahedron is complicated by the presence of angular distortion of the octahedron. This problem is most commonly resolved by calculating the bond distortion modes (Q2, Q3) along the bond axes of the octahedron, disregarding the angular distortion and losing information on the octahedral shear modes (Q4, Q5 and Q6) in the process. In this paper, the validity of assuming bond lengths to be orthogonal in order to calculate the Van Vleck modes is discussed, and a method is described for calculating Van Vleck modes without disregarding the angular distortion. A Python package for doing this, VanVleckCalculator, is introduced and some examples of its use are given. Finally, it is shown that octahedral shear and angular distortion are often, but not always, correlated, and a parameter η is proposed as the shear fraction. It is demonstrated that η can be used to predict whether the values will be correlated when varying a tuning parameter such as temperature or pressure. Full Article text
analysis Using XAS to monitor radiation damage in real time and post-analysis, and investigation of systematic errors of fluorescence XAS for Cu-bound amyloid-β By journals.iucr.org Published On :: 2024-02-01 X-ray absorption spectroscopy (XAS) is a promising technique for determining structural information from sensitive biological samples, but high-accuracy X-ray absorption fine structure (XAFS) requires corrections of systematic errors in experimental data. Low-temperature XAS and room-temperature X-ray absorption spectro-electrochemical (XAS-EC) measurements of N-truncated amyloid-β samples were collected and corrected for systematic effects such as dead time, detector efficiencies, monochromator glitches, self-absorption, radiation damage and noise at higher wavenumber (k). A new protocol was developed using extended X-ray absorption fine structure (EXAFS) data analysis for monitoring radiation damage in real time and post-analysis. The reliability of the structural determinations and consistency were validated using the XAS measurement experimental uncertainty. The correction of detector pixel efficiencies improved the fitting χ2 by 12%. An improvement of about 2.5% of the structural fitting was obtained after dead-time corrections. Normalization allowed the elimination of 90% of the monochromator glitches. The remaining glitches were manually removed. The dispersion of spectra due to self-absorption was corrected. Standard errors of experimental measurements were propagated from pointwise variance of the spectra after systematic corrections. Calculated uncertainties were used in structural refinements for obtaining precise and reliable values of structural parameters including atomic bond lengths and thermal parameters. This has permitted hypothesis testing. Full Article text
analysis BioXTAS RAW 2: new developments for a free open-source program for small-angle scattering data reduction and analysis By journals.iucr.org Published On :: 2024-02-01 BioXTAS RAW is a free open-source program for reduction, analysis and modelling of biological small-angle scattering data. Here, the new developments in RAW version 2 are described. These include improved data reduction using pyFAI; updated automated Guinier fitting and Dmax finding algorithms; automated series (e.g. size-exclusion chromatography coupled small-angle X-ray scattering or SEC-SAXS) buffer- and sample-region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using regularized alternating least squares (REGALS); creation of electron-density reconstructions using electron density via solution scattering (DENSS); a comparison window showing residuals, ratios and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. Furthermore, there is now a RAW API, which can be used without the graphical user interface (GUI), providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program. Full Article text
analysis Millisecond X-ray reflectometry and neural network analysis: unveiling fast processes in spin coating By journals.iucr.org Published On :: 2024-03-15 X-ray reflectometry (XRR) is a powerful tool for probing the structural characteristics of nanoscale films and layered structures, which is an important field of nanotechnology and is often used in semiconductor and optics manufacturing. This study introduces a novel approach for conducting quantitative high-resolution millisecond monochromatic XRR measurements. This is an order of magnitude faster than in previously published work. Quick XRR (qXRR) enables real time and in situ monitoring of nanoscale processes such as thin film formation during spin coating. A record qXRR acquisition time of 1.4 ms is demonstrated for a static gold thin film on a silicon sample. As a second example of this novel approach, dynamic in situ measurements are performed during PMMA spin coating onto silicon wafers and fast fitting of XRR curves using machine learning is demonstrated. This investigation primarily focuses on the evolution of film structure and surface morphology, resolving for the first time with qXRR the initial film thinning via mass transport and also shedding light on later thinning via solvent evaporation. This innovative millisecond qXRR technique is of significance for in situ studies of thin film deposition. It addresses the challenge of following intrinsically fast processes, such as thin film growth of high deposition rate or spin coating. Beyond thin film growth processes, millisecond XRR has implications for resolving fast structural changes such as photostriction or diffusion processes. Full Article text
analysis DLSIA: Deep Learning for Scientific Image Analysis By journals.iucr.org Published On :: 2024-03-21 DLSIA (Deep Learning for Scientific Image Analysis) is a Python-based machine learning library that empowers scientists and researchers across diverse scientific domains with a range of customizable convolutional neural network (CNN) architectures for a wide variety of tasks in image analysis to be used in downstream data processing. DLSIA features easy-to-use architectures, such as autoencoders, tunable U-Nets and parameter-lean mixed-scale dense networks (MSDNets). Additionally, this article introduces sparse mixed-scale networks (SMSNets), generated using random graphs, sparse connections and dilated convolutions connecting different length scales. For verification, several DLSIA-instantiated networks and training scripts are employed in multiple applications, including inpainting for X-ray scattering data using U-Nets and MSDNets, segmenting 3D fibers in X-ray tomographic reconstructions of concrete using an ensemble of SMSNets, and leveraging autoencoder latent spaces for data compression and clustering. As experimental data continue to grow in scale and complexity, DLSIA provides accessible CNN construction and abstracts CNN complexities, allowing scientists to tailor their machine learning approaches, accelerate discoveries, foster interdisciplinary collaboration and advance research in scientific image analysis. Full Article text