alli Top Security Aide: S. Korea-US Alliance Benefits Both Countries By world.kbs.co.kr Published On :: Tue, 12 Nov 2024 15:37:27 +0900 [Politics] : National security adviser Shin Won-sik said South Korea is no longer the sole beneficiary of the South Korea-U.S. alliance, pledging to defend the country’s core interests as a partner state that contributes to regional and global security and prosperity. In a keynote speech at the 2024 Global Dialogue ...[more...] Full Article Politics
alli Exhibit to Highlight Calligraphy by Korean Independence Fighter Ahn Jung-geun By world.kbs.co.kr Published On :: Wed, 23 Oct 2024 15:41:15 +0900 [Culture] : Calligraphy by the late Korean independence fighter Ahn Jung-geun will soon be on display for the South Korean public. According to the National Museum of Korean Contemporary History, a special exhibition on Ahn’s writings will open Thursday in cooperation with the Ahn Junggeun Memorial Association ...[more...] Full Article Culture
alli Scallions vs. Green Onions: What's the Difference? By recipes.howstuffworks.com Published On :: Tue, 16 Jul 2024 11:45:18 -0400 You've probably seen people and recipes use the terms "scallions" and "green onions" interchangeably — and for once, the conflation is correct. When it comes to distinguishing scallions vs. green onions, these terms describe the same vegetable. Full Article
alli Seed layer formation by deposition of micro-crystallites on a revolving substrate: modeling of the effective linear elastic, piezoelectric, and dielectric coefficients By journals.iucr.org Published On :: The rotating substrate method of crystallite deposition is modeled, allowing computation of effective material coefficients of the layers resulting from the averaging. A worked numerical example particularized to 6mm ZnO is provided. Full Article text
alli Crystal structures of three uranyl–acetate–bipyridine complexes crystallized from hydraulic fracking fluid By journals.iucr.org Published On :: 2024-01-01 Hydraulic fracking exposes shale plays to acidic hydraulic fracking fluid (HFF), releasing toxic uranium (U) along with the desired oil and gas. With no existing methods to ensure U remains sequestered in the shale, this study sought to add organic ligands to HFF to explore potential U retention in shale plays. To test this possibility, incubations were set up in which uranyl acetate and one organic bipyridine ligand (either 2,2'-, 2,3'-, 2,4'-, or 4,4'-bipyridine) were added to pristine HFF as the crystallization medium. After several months and complete evaporation of all volatiles, bulk yellow crystalline material was obtained from the incubations, three of which yielded crystals suitable for single-crystal analysis, resulting in two novel structures and a high-quality structure of a previously described compound. The UO2VI acetate complexes bis(acetato-κ2O,O')(2,2'-bipyridine-κ2N,N')dioxidouranium(VI), [U(C2H3O2)2O2(C10H8N2)2] or [2,2'-bipyridine]UVIO2(CH3CO2)2, (I), and bis(acetato-κ2O,O')(2,4'-bipyridine-κN1')dioxidouranium(VI), [U(C2H3O2)2O2(C10H8N2)2] or [2,4'-bipyridine]2UVIO2(CH3CO2)2, (III), contain eight-coordinate UVI in a pseudo-hexagonal bipyramidal coordination geometry and are molecular, packing via weak C—H...O/N interactions, whereas catena-poly[bis(2,3'-bipyridinium) [di-μ-acetato-μ3-hydroxido-μ-hydroxido-di-μ3-oxido-hexaoxidotriuranium(VI)]–2,3'-bipyridine–water (1/1/1)], (C10H9N2)2[U3(C2H3O2)2O8(OH)2]·C10H8N2·H2O or {[2,3'-bipyridinium]2[2,3'-bipyridine][(UVIO2)3(O)2(OH)2(CH3CO2)2·H2O]}n, (II), forms an ionic one-dimensional polymer with seven-coordinate pentagonal bipyramidal UVI centers and hydrogen-bonding interactions within each chain. The formation of these crystals could indicate the potential for bipyridine to bind with U in shale during fracking, which will be explored in a future study via ICP-MS (inductively coupled plasma mass spectrometry) analyses of U concentration in HFF/bipyridine/shale incubations. The variation seen here between the molecular structures may indicate variance in the ability of bipyridine isomers to form complexes with U, which could impact their ability to retain U within shale in the context of fracking. Full Article text
alli Expression, purification and crystallization of the photosensory module of phytochrome B (phyB) from Sorghum bicolor By journals.iucr.org Published On :: 2024-02-20 Sorghum, a short-day tropical plant, has been adapted for temperate grain production, in particular through the selection of variants at the MATURITY loci (Ma1–Ma6) that reduce photoperiod sensitivity. Ma3 encodes phytochrome B (phyB), a red/far-red photochromic biliprotein photoreceptor. The multi-domain gene product, comprising 1178 amino acids, autocatalytically binds the phytochromobilin chromophore to form the photoactive holophytochrome (Sb.phyB). This study describes the development of an efficient heterologous overproduction system which allows the production of large quantities of various holoprotein constructs, along with purification and crystallization procedures. Crystals of the Pr (red-light-absorbing) forms of NPGP, PGP and PG (residues 1–655, 114–655 and 114–458, respectively), each C-terminally tagged with His6, were successfully produced. While NPGP crystals did not diffract, those of PGP and PG diffracted to 6 and 2.1 Å resolution, respectively. Moving the tag to the N-terminus and replacing phytochromobilin with phycocyanobilin as the ligand produced PG crystals that diffracted to 1.8 Å resolution. These results demonstrate that the diffraction quality of challenging protein crystals can be improved by removing flexible regions, shifting fusion tags and altering small-molecule ligands. Full Article text
alli Improving the reliability of small- and wide-angle X-ray scattering measurements of anisotropic precipitates in metallic alloys using sample rotation By journals.iucr.org Published On :: Rotations of small- and wide-angle X-ray scattering samples during acquisition are shown to give a drastic improvement in the reliability of the characterization of anisotropic precipitates in metallic alloys. Full Article text
alli Non-invasive nanoscale imaging of protein micro- and nanocrystals for screening crystallization conditions By journals.iucr.org Published On :: The article presents a non-invasive nanoscale imaging technique that can be used in screening crystallization conditions for protein micro- and nanocrystals. Full Article text
alli Improving the reliability of small- and wide-angle X-ray scattering measurements of anisotropic precipitates in metallic alloys using sample rotation By journals.iucr.org Published On :: 2024-11-04 Nanometric precipitates in metallic alloys often have highly anisotropic shapes. Given the large grain size and non-random texture typical of these alloys, performing small- and wide-angle X-ray scattering (SAXS/WAXS) measurements on such samples for determining their characteristics (typically size and volume fraction) results in highly anisotropic and irreproducible data. Rotations of flat samples during SAXS/WAXS acquisitions are presented here as a solution to these anisotropy issues. Two aluminium alloys containing anisotropic precipitates are used as examples to validate the approach with a −45°/45° angular range. Clear improvements can be seen on the SAXS I(q) fitting and the consistency between the different SAXS/WAXS measurements. This methodology results in more reliable measurements of the precipitate's characteristics, and thus allows for time- and space-resolved measurements with higher accuracy. Full Article text
alli A second crystalline modification of 2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}hydrazinecarbothioamide By journals.iucr.org Published On :: 2023-11-30 A second crystalline modification of the title compound, C12H19N3S [common name: cis-jasmone thiosemicarbazone] was crystallized from tetrahydrofurane at room temperature. There is one crystallographic independent molecule in the asymmetric unit, showing disorder in the cis-jasmone chain [site-occupancy ratio = 0.590 (14):0.410 (14)]. The thiosemicarbazone entity is approximately planar, with the maximum deviation from the mean plane through the N/N/C/S/N atoms being 0.0463 (14) Å [r.m.s.d. = 0.0324 Å], while for the five-membered ring of the jasmone fragment, the maximum deviation from the mean plane through the carbon atoms amounts to 0.0465 (15) Å [r.m.s.d. = 0.0338 Å]. The molecule is not planar due to the dihedral angle between these two fragments, which is 8.93 (1)°, and due to the sp3-hybridized carbon atoms in the jasmone fragment chain. In the crystal, the molecules are connected by N—H⋯S and C—H⋯S interactions, with graph-set motifs R22(8) and R21(7), building mono-periodic hydrogen-bonded ribbons along [010]. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are H⋯H (67.8%), H⋯S/S⋯H (15.0%), H⋯C/C⋯H (8.5%) and H⋯N/N⋯H (5.6%) [only non-disordered atoms and those with the highest s.o.f. were considered]. This work reports the second crystalline modification of the cis-jasmone thiosemicarbazone structure, the first one being published recently [Orsoni et al. (2020). Int. J. Mol. Sci. 21, 8681–8697] with the crystals obtained in ethanol at 273 K. Full Article text
alli trans-Diaquatetrakis(tetrahydrofuran-κO)iron(II) μ-carbonyl-tetradecacarbonyltetrachlorido-μ-dimethylsilanediolato-tetragalliumtetrairon(7 Ga–Fe)(Fe–Fe) tetrahydro By journals.iucr.org Published On :: 2024-06-28 The title compound, [Fe(C4H8O)4(H2O)2][Fe4Ga4(C2H6O2Si)Cl4(CO)15]·4C4H8O, consists of an iron(II) cation octahedrally coordinated by two water molecules (trans) with four tetrahydrofurans (THF) at equatorial sites. Two additional THF molecules are hydrogen bonded to each of the water molecules. The dianion of the title compound is an organometallic butterfly complex with a dimethyl siloxane core and two iron-gallium fragments. The lengths of the iron to gallium metal–metal bonds range from 2.3875 (6) to 2.4912 (6) Å. Full Article text
alli Dicarbonyl-1κ2C-μ-chlorido-2:3κ2Cl:Cl-pentachlorido-2κ2Cl,3κ3Cl-[1(η6)-toluene]digallium(III)ruthenium(I)(Ru—Ga) By journals.iucr.org Published On :: 2024-07-09 The title compound, [RuGa2Cl6(C7H8)(CO)2] or [(CO)2(GaCl2)(η6-toluene)Ru]+[GaCl4]−, was isolated from the reaction of Ga2Cl4 with diphenylsilanediol in toluene, followed by the addition of Ru3(CO)12. The compound contains a ruthenium–gallium metal–metal bond with a length of 2.4575 (2) Å. Full Article text
alli Using cocrystals as a tool to study non-crystallizing molecules: crystal structure, Hirshfeld surface analysis and computational study of the 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine and acetic By journals.iucr.org Published On :: 2024-07-05 Using a 1:1 cocrystal of (E)-N-(3,4-difluorophenyl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π interactions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and computational studies, we reveal the molecular arrangement within this cocrystal, demonstrating the presence of hydrogen bonding between the acetic acid molecule and the pyridyl group, along with π–π interactions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π interactions without necessitating full halogenation of the aromatic ring. Full Article text
alli Crystal structures of two unexpected products of vicinal diamines left to crystallize in acetone By journals.iucr.org Published On :: 2024-08-23 Herein we report the crystal structures of two benzodiazepines obtained by reacting N,N'-(4,5-diamino-1,2-phenylene)bis(4-methylbenzenesulfonamide) (1) or 4,5-(4-methylbenzenesulfonamido)benzene-1,2-diaminium dichloride (1·2HCl) with acetone, giving 2,2,4-trimethyl-8,9-bis(4-methylbenzenesulfonamido)-2,3-dihydro-5H-1,5-benzodiazepine, C26H30N4O4S2 (2), and 2,2,4-trimethyl-8,9-bis(4-methylbenzenesulfonamido)-2,3-dihydro-5H-1,5-benzodiazepin-1-ium chloride 0.3-hydrate, C26H31N4O4S2+·Cl−·0.3H2O (3). Compounds 2 and 3 were first obtained in attempts to recrystallize 1 and 1·2HCl using acetone as solvent. This solvent reacted with the vicinal diamines present in the molecular structures, forming a 5H-1,5-benzodiazepine ring. In the crystal structure of 2, the seven-membered ring of benzodiazepine adopts a boat-like conformation, while upon protonation, observed in the crystal structure of 3, it adopts an envelope-like conformation. In both crystalline compounds, the tosylamide N atoms are not in resonance with the arene ring, mainly due to hydrogen bonds and steric hindrance caused by the large vicinal groups in the aromatic ring. At a supramolecular level, the crystal structure is maintained by a combination of hydrogen bonds and hydrophobic interactions. In 2, amine-to-tosyl N—H⋯O and amide-to-imine N—H⋯N hydrogen bonds can be observed. In contrast, in 3, the chloride counter-ion and water molecule result in most of the hydrogen bonds being of the amide-to-chloride and ammonium-to-chloride N—H⋯Cl types, while the amine interacts with the tosyl group, as seen in 2. In conclusion, we report the synthesis of 1, 1·2HCl and 2, as well as their chemical characterization. For 2, two synthetic methods are described, i.e. solvent-mediated crystallization and synthesis via a more efficient and cleaner route as a polycrystalline material. Salt 3 was only obtained as presented, with only a few crystals being formed. Full Article text
alli Efficient in situ screening of and data collection from microcrystals in crystallization plates By journals.iucr.org Published On :: 2024-03-15 A considerable bottleneck in serial crystallography at XFEL and synchrotron sources is the efficient production of large quantities of homogenous, well diffracting microcrystals. Efficient high-throughput screening of batch-grown microcrystals and the determination of ground-state structures from different conditions is thus of considerable value in the early stages of a project. Here, a highly sample-efficient methodology to measure serial crystallography data from microcrystals by raster scanning within standard in situ 96-well crystallization plates is described. Structures were determined from very small quantities of microcrystal suspension and the results were compared with those from other sample-delivery methods. The analysis of a two-dimensional batch crystallization screen using this method is also described as a useful guide for further optimization and the selection of appropriate conditions for scaling up microcrystallization. Full Article text
alli Surface-mutagenesis strategies to enable structural biology crystallization platforms By journals.iucr.org Published On :: 2024-08-29 A key prerequisite for the successful application of protein crystallography in drug discovery is to establish a robust crystallization system for a new drug-target protein fast enough to deliver crystal structures when the first inhibitors have been identified in the hit-finding campaign or, at the latest, in the subsequent hit-to-lead process. The first crucial step towards generating well folded proteins with a high likelihood of crystallizing is the identification of suitable truncation variants of the target protein. In some cases an optimal length variant alone is not sufficient to support crystallization and additional surface mutations need to be introduced to obtain suitable crystals. In this contribution, four case studies are presented in which rationally designed surface modifications were key to establishing crystallization conditions for the target proteins (the protein kinases Aurora-C, IRAK4 and BUB1, and the KRAS–SOS1 complex). The design process which led to well diffracting crystals is described and the crystal packing is analysed to understand retrospectively how the specific surface mutations promoted successful crystallization. The presented design approaches are routinely used in our team to support the establishment of robust crystallization systems which enable structure-guided inhibitor optimization for hit-to-lead and lead-optimization projects in pharmaceutical research. Full Article text
alli CHiMP: deep-learning tools trained on protein crystallization micrographs to enable automation of experiments By journals.iucr.org Published On :: 2024-10-01 A group of three deep-learning tools, referred to collectively as CHiMP (Crystal Hits in My Plate), were created for analysis of micrographs of protein crystallization experiments at the Diamond Light Source (DLS) synchrotron, UK. The first tool, a classification network, assigns images into categories relating to experimental outcomes. The other two tools are networks that perform both object detection and instance segmentation, resulting in masks of individual crystals in the first case and masks of crystallization droplets in addition to crystals in the second case, allowing the positions and sizes of these entities to be recorded. The creation of these tools used transfer learning, where weights from a pre-trained deep-learning network were used as a starting point and repurposed by further training on a relatively small set of data. Two of the tools are now integrated at the VMXi macromolecular crystallography beamline at DLS, where they have the potential to absolve the need for any user input, both for monitoring crystallization experiments and for triggering in situ data collections. The third is being integrated into the XChem fragment-based drug-discovery screening platform, also at DLS, to allow the automatic targeting of acoustic compound dispensing into crystallization droplets. Full Article text
alli The role of alkyl chain length in the melt and solution crystallization of paliperidone aliphatic prodrugs By journals.iucr.org Published On :: 2024-01-01 Fatty acid-derivative prodrugs have been utilized extensively to improve the physicochemical, biopharmaceutical and pharmacokinetic properties of active pharmaceutical ingredients. However, to our knowledge, the crystallization behavior of prodrugs modified with different fatty acids has not been explored. In the present work, a series of paliperidone aliphatic prodrugs with alkyl chain lengths ranging from C4 to C16 was investigated with respect to crystal structure, crystal morphology and crystallization kinetics. The paliperidone derivatives exhibited isostructural crystal packing, despite the different alkyl chain lengths, and crystallized with the dominant (100) face in both melt and solution. The rate of crystallization for paliperidone derivatives in the melt increases with alkyl chain length owing to greater molecular mobility. In contrast, the longer chains prolong the nucleation induction time and reduce the crystal growth kinetics in solution. The results show a correlation between difficulty of nucleation in solution and the interfacial energy. This work provides insight into the crystallization behavior of paliperidone aliphatic prodrugs and reveals that the role of alkyl chain length in the crystallization behavior has a strong dependence on the crystallization method. Full Article text
alli STEM SerialED: achieving high-resolution data for ab initio structure determination of beam-sensitive nanocrystalline materials By journals.iucr.org Published On :: 2024-01-01 Serial electron diffraction (SerialED), which applies a snapshot data acquisition strategy for each crystal, was introduced to tackle the problem of radiation damage in the structure determination of beam-sensitive materials by three-dimensional electron diffraction (3DED). The snapshot data acquisition in SerialED can be realized using both transmission and scanning transmission electron microscopes (TEM/STEM). However, the current SerialED workflow based on STEM setups requires special external devices and software, which limits broader adoption. Here, we present a simplified experimental implementation of STEM-based SerialED on Thermo Fisher Scientific STEMs using common proprietary software interfaced through Python scripts to automate data collection. Specifically, we utilize TEM Imaging and Analysis (TIA) scripting and TEM scripting to access the STEM functionalities of the microscope, and DigitalMicrograph scripting to control the camera for snapshot data acquisition. Data analysis adapts the existing workflow using the software CrystFEL, which was developed for serial X-ray crystallography. Our workflow for STEM SerialED can be used on any Gatan or Thermo Fisher Scientific camera. We apply this workflow to collect high-resolution STEM SerialED data from two aluminosilicate zeolites, zeolite Y and ZSM-25. We demonstrate, for the first time, ab initio structure determination through direct methods using STEM SerialED data. Zeolite Y is relatively stable under the electron beam, and STEM SerialED data extend to 0.60 Å. We show that the structural model obtained using STEM SerialED data merged from 358 crystals is nearly identical to that using continuous rotation electron diffraction data from one crystal. This demonstrates that accurate structures can be obtained from STEM SerialED. Zeolite ZSM-25 is very beam-sensitive and has a complex structure. We show that STEM SerialED greatly improves the data resolution of ZSM-25, compared with serial rotation electron diffraction (SerialRED), from 1.50 to 0.90 Å. This allows, for the first time, the use of standard phasing methods, such as direct methods, for the ab initio structure determination of ZSM-25. Full Article text
alli Orientational analysis of atomic pair correlations in nanocrystalline indium oxide thin films By journals.iucr.org Published On :: 2024-01-01 The application of grazing-incidence total X-ray scattering (GITXS) for pair distribution function (PDF) analysis using >50 keV X-rays from synchrotron light sources has created new opportunities for structural characterization of supported thin films with high resolution. Compared with grazing-incidence wide-angle X-ray scattering, which is only useful for highly ordered materials, GITXS/PDFs expand such analysis to largely disordered or nanostructured materials by examining the atomic pair correlations dependent on the direction relative to the surface of the supporting substrate. A characterization of nanocrystalline In2O3-derived thin films is presented here with in-plane-isotropic and out-of-plane-anisotropic orientational ordering of the atomic structure, each synthesized using different techniques. The atomic orientations of such films are known to vary based on the synthetic conditions. Here, an azimuthal orientational analysis of these films using GITXS with a single incident angle is shown to resolve the markedly different orientations of the atomic structures with respect to the planar support and the different degrees of long-range order, and hence, the terminal surface chemistries. It is anticipated that orientational analysis of GITXS/PDF data will offer opportunities to extend structural analyses of thin films by providing a means to qualitatively determine the major atomic orientation within nanocrystalline and, eventually, non-crystalline films. Full Article text
alli Time-series analysis of rhenium(I) organometallic covalent binding to a model protein for drug development By journals.iucr.org Published On :: 2024-04-19 Metal-based complexes with their unique chemical properties, including multiple oxidation states, radio-nuclear capabilities and various coordination geometries yield value as potential pharmaceuticals. Understanding the interactions between metals and biological systems will prove key for site-specific coordination of new metal-based lead compounds. This study merges the concepts of target coordination with fragment-based drug methodologies, supported by varying the anomalous scattering of rhenium along with infrared spectroscopy, and has identified rhenium metal sites bound covalently with two amino acid types within the model protein. A time-based series of lysozyme-rhenium-imidazole (HEWL-Re-Imi) crystals was analysed systematically over a span of 38 weeks. The main rhenium covalent coordination is observed at His15, Asp101 and Asp119. Weak (i.e. noncovalent) interactions are observed at other aspartic, asparagine, proline, tyrosine and tryptophan side chains. Detailed bond distance comparisons, including precision estimates, are reported, utilizing the diffraction precision index supplemented with small-molecule data from the Cambridge Structural Database. Key findings include changes in the protein structure induced at the rhenium metal binding site, not observed in similar metal-free structures. The binding sites are typically found along the solvent-channel-accessible protein surface. The three primary covalent metal binding sites are consistent throughout the time series, whereas binding to neighbouring amino acid residues changes through the time series. Co-crystallization was used, consistently yielding crystals four days after setup. After crystal formation, soaking of the compound into the crystal over 38 weeks is continued and explains these structural adjustments. It is the covalent bond stability at the three sites, their proximity to the solvent channel and the movement of residues to accommodate the metal that are important, and may prove useful for future radiopharmaceutical development including target modification. Full Article text
alli Statistical optimization of guest uptake in crystalline sponges: grading structural outcomes By journals.iucr.org Published On :: 2024-06-12 Investigation of the analyte soaking conditions on the crystalline sponge {[(ZnI2)3(tpt)2·x(solvent)]n} method using a statistical design of experiments model has provided fundamental insights into the influence of experimental variables. This approach focuses on a single analyte tested via 60 experiments (20 unique conditions) to identify the main effects for success and overall guest structure quality. This is employed as a basis for the development of a novel molecular structure grading system that enables the quantification of guest exchange quality. Full Article text
alli Bridging the microscopic divide: a comprehensive overview of micro-crystallization and in vivo crystallography By journals.iucr.org Published On :: 2024-06-27 A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale. Full Article text
alli Texture tomography, a versatile framework to study crystalline texture in 3D By journals.iucr.org Published On :: 2024-07-24 Crystallographic texture is a key organization feature of many technical and biological materials. In these materials, especially hierarchically structured ones, the preferential alignment of the nano constituents heavily influences the macroscopic behavior of the material. To study local crystallographic texture with both high spatial and angular resolution, we developed Texture Tomography (TexTOM). This approach allows the user to model the diffraction data of polycrystalline materials using the full reciprocal space of the crystal ensemble and describe the texture in each voxel via an orientation distribution function, hence it provides 3D reconstructions of the local texture by measuring the probabilities of all crystal orientations. The TexTOM approach addresses limitations associated with existing models: it correlates the intensities from several Bragg reflections, thus reducing ambiguities resulting from symmetry. Further, it yields quantitative probability distributions of local real space crystal orientations without further assumptions about the sample structure. Finally, its efficient mathematical formulation enables reconstructions faster than the time scale of the experiment. This manuscript presents the mathematical model, the inversion strategy and its current experimental implementation. We show characterizations of simulated data as well as experimental data obtained from a synthetic, inorganic model sample: the silica–witherite biomorph. TexTOM provides a versatile framework to reconstruct 3D quantitative texture information for polycrystalline samples; it opens the door for unprecedented insights into the nanostructural makeup of natural and technical materials. Full Article text
alli High-throughput nanoscale crystallization of dihydropyridine active pharmaceutical ingredients By journals.iucr.org Published On :: 2023-12-21 Single-crystal X-ray diffraction analysis of small molecule active pharmaceutical ingredients is a key technique in the confirmation of molecular connectivity, including absolute stereochemistry, as well as the solid-state form. However, accessing single crystals suitable for X-ray diffraction analysis of an active pharmaceutical ingredient can be experimentally laborious, especially considering the potential for multiple solid-state forms (solvates, hydrates and polymorphs). In recent years, methods for the exploration of experimental crystallization space of small molecules have undergone a `step-change', resulting in new high-throughput techniques becoming available. Here, the application of high-throughput encapsulated nanodroplet crystallization to a series of six dihydropyridines, calcium channel blockers used in the treatment of hypertension related diseases, is described. This approach allowed 288 individual crystallization experiments to be performed in parallel on each molecule, resulting in rapid access to crystals and subsequent crystal structures for all six dihydropyridines, as well as revealing a new solvate polymorph of nifedipine (1,4-dioxane solvate) and the first known solvate of nimodipine (DMSO solvate). This work further demonstrates the power of modern high-throughput crystallization methods in the exploration of the solid-state landscape of active pharmaceutical ingredients to facilitate crystal form discovery and structural analysis by single-crystal X-ray diffraction. Full Article text
alli Cadmium phosphates Cd2(PO4)OH and Cd5(PO4)2(OH)4 crystallizing in mineral structures By journals.iucr.org Published On :: 2024-01-26 Single crystals of two basic cadmium phosphates, dicadmium orthophosphate hydroxide, Cd2(PO4)OH, and pentacadmium bis(orthophosphate) tetrakis(hydroxide), Cd5(PO4)2(OH)4, were obtained under hydrothermal conditions. Cd2(PO4)OH adopts the triplite [(Mn,Fe)2(PO4)F] structure type. Its asymmetric unit comprises two Cd, one P and five O sites, all situated at the general Wyckoff position 8 f of space group I2/a; two of the O atoms are positionally disordered over two sites, and the H atom could not be localized. Disregarding the disorder, distorted [CdO6] polyhedra form a tri-periodic network by edge-sharing with neighbouring [CdO6] units and by vertex-sharing with [PO4] units. The site associated with the OH group is coordinated by four Cd atoms in a distorted tetrahedral manner forming 1∞[(OH)Cd4/2] chains parallel to [001]. The oxygen environment around the OH site suggests multiple acceptor atoms for possible O—H⋯O hydrogen-bonding interactions and is the putative reason for the disorder. Cd5(PO4)2(OH)4 adopts the arsenoclasite [Mn5(AsO4)2(OH)4] structure type. Its asymmetric unit comprises five Cd, two P, and twelve O sites all located at the general Wyckoff position 4 a of space group P212121; the H atoms could not be localized. The crystal structure of Cd5(PO4)2(OH)4 can be subdivided into two main sub-units. One consists of three edge-sharing [CdO6] octahedra, and the other of two edge- and vertex-sharing [CdO6] octahedra. Each sub-unit forms corrugated ribbons extending parallel to [100]. The two types of ribbons are linked into the tri-periodic arrangement through vertex-sharing and through common [PO4] tetrahedra. Quantitative structure comparisons are made with isotypic M5(XO4)2(OH)4 crystal structures (M = Cd, Mn, Co; X = P, As, V). Full Article text
alli Structural characterization of a new samarium–sodium heterometallic coordination polymer By journals.iucr.org Published On :: 2024-02-06 Lanthanide-containing materials are of interest in the field of crystal engineering because of their unique properties and distinct structure types. In this context, a new samarium–sodium heterometallic coordination polymer, poly[tetrakis(μ2-2-formyl-6-methoxyphenolato)samarium(III)sodium(I)], {[SmNa(C8H7O3)4]·solvent}n (Sm-1), was synthesized and crystallized via slow evaporation from a mixture of ethanol and acetonitrile. The compound features alternating SmIII and NaI ions, which are linked by ortho-vanillin (o-vanillin) ligands to form a mono-periodic chain-like coordination polymer. The chains propagate along the [001] direction. Residual electron density of disordered solvent molecules in the void space could not be reasonably modeled, thus the SQUEEZE function was applied. The structural, vibrational, and optical properties are reported. Full Article text
alli Pyrazine-bridged polymetallic copper–iridium clusters By journals.iucr.org Published On :: 2024-07-27 Single crystals of the molecular compound, {Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH3OH or [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH [where IMes is 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene], with a unique heterometallic cluster have been prepared and the structure revealed using single-crystal X-ray diffraction. The molecule is centrosymmetric with two {Cu10Ir3} cores bridged by a pyrazine ligand. The polymetallic cluster contains three stabilizing N-heterocyclic carbenes, four Cl ligands, and a non-bridging pyrazine ligand. Notably, the Cu—Ir core is arranged in an unusual shape containing 13 vertices, 22 faces, and 32 sides. The atoms within the tridecametallic cluster are arranged in four planes, with 2, 4, 4, 3 metals in each plane. Ir atoms are present in alternate planes with an Ir atom featuring in the peripheral bimetallic plane, and two Ir atoms featuring on opposite sides of the non-adjacent tetrametallic plane. The crystal contains two disordered methanol solvent molecules with an additional region of non-modelled electron density corrected for using the SQUEEZE routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unmodelled methanol solvent molecule(s). Full Article text
alli Laue microdiffraction on polycrystalline samples above 1500 K achieved with the QMAX-µLaue furnace By journals.iucr.org Published On :: 2024-03-31 X-ray Laue microdiffraction aims to characterize microstructural and mechanical fields in polycrystalline specimens at the sub-micrometre scale with a strain resolution of ∼10−4. Here, a new and unique Laue microdiffraction setup and alignment procedure is presented, allowing measurements at temperatures as high as 1500 K, with the objective to extend the technique for the study of crystalline phase transitions and associated strain-field evolution that occur at high temperatures. A method is provided to measure the real temperature encountered by the specimen, which can be critical for precise phase-transition studies, as well as a strategy to calibrate the setup geometry to account for the sample and furnace dilation using a standard α-alumina single crystal. A first application to phase transitions in a polycrystalline specimen of pure zirconia is provided as an illustrative example. Full Article text
alli Design and fabrication of 3D-printed in situ crystallization plates for probing microcrystals in an external electric field By journals.iucr.org Published On :: 2024-04-15 X-ray crystallography is an established tool to probe the structure of macromolecules with atomic resolution. Compared with alternative techniques such as single-particle cryo-electron microscopy and micro-electron diffraction, X-ray crystallography is uniquely suited to room-temperature studies and for obtaining a detailed picture of macromolecules subjected to an external electric field (EEF). The impact of an EEF on proteins has been extensively explored through single-crystal X-ray crystallography, which works well with larger high-quality protein crystals. This article introduces a novel design for a 3D-printed in situ crystallization plate that serves a dual purpose: fostering crystal growth and allowing the concurrent examination of the effects of an EEF on crystals of varying sizes. The plate's compatibility with established X-ray crystallography techniques is evaluated. Full Article text
alli Implications of size dispersion on X-ray scattering of crystalline nanoparticles: CeO2 as a case study By journals.iucr.org Published On :: 2024-05-31 Controlling the shape and size dispersivity and crystallinity of nanoparticles (NPs) has been a challenge in identifying these parameters' role in the physical and chemical properties of NPs. The need for reliable quantitative tools for analyzing the dispersivity and crystallinity of NPs is a considerable problem in optimizing scalable synthesis routes capable of controlling NP properties. The most common tools are electron microscopy (EM) and X-ray scattering techniques. However, each technique has different susceptibility to these parameters, implying that more than one technique is necessary to characterize NP systems with maximum reliability. Wide-angle X-ray scattering (WAXS) is mandatory to access information on crystallinity. In contrast, EM or small-angle X-ray scattering (SAXS) is required to access information on whole NP sizes. EM provides average values on relatively small ensembles in contrast to the bulk values accessed by X-ray techniques. Besides the fact that the SAXS and WAXS techniques have different susceptibilities to size distributions, SAXS is easily affected by NP–NP interaction distances. Because of all the variables involved, there have yet to be proposed methodologies for cross-analyzing data from two techniques that can provide reliable quantitative results of dispersivity and crystallinity. In this work, a SAXS/WAXS-based methodology is proposed for simultaneously quantifying size distribution and degree of crystallinity of NPs. The most reliable easy-to-access size result for each technique is demonstrated by computer simulation. Strategies on how to compare these results and how to identify NP–NP interaction effects underneath the SAXS intensity curve are presented. Experimental results are shown for cubic-like CeO2 NPs. WAXS size results from two analytical procedures are compared, line-profile fitting of individual diffraction peaks in opposition to whole pattern fitting. The impact of shape dispersivity is also evaluated. Extension of the proposed methodology for cross-analyzing EM and WAXS data is possible. Full Article text
alli Operando pair distribution function analysis of nanocrystalline functional materials: the case of TiO2-bronze nanocrystals in Li-ion battery electrodes By journals.iucr.org Published On :: 2024-07-29 Structural modelling of operando pair distribution function (PDF) data of complex functional materials can be highly challenging. To aid the understanding of complex operando PDF data, this article demonstrates a toolbox for PDF analysis. The tools include denoising using principal component analysis together with the structureMining, similarityMapping and nmfMapping apps available through the online service `PDF in the cloud' (PDFitc, https://pdfitc.org/). The toolbox is used for both ex situ and operando PDF data for 3 nm TiO2-bronze nanocrystals, which function as the active electrode material in a Li-ion battery. The tools enable structural modelling of the ex situ and operando PDF data, revealing two pristine TiO2 phases (bronze and anatase) and two lithiated LixTiO2 phases (lithiated versions of bronze and anatase), and the phase evolution during galvanostatic cycling is characterized. Full Article text
alli Flow-Xl: a new facility for the analysis of crystallization in flow systems By journals.iucr.org Published On :: 2024-08-19 Characterization of crystallization processes in situ is of great importance to furthering knowledge of how nucleation and growth processes direct the assembly of organic and inorganic materials in solution and, critically, understanding the influence that these processes have on the final physico-chemical properties of the resulting solid form. With careful specification and design, as demonstrated here, it is now possible to bring combined X-ray diffraction and Raman spectroscopy, coupled to a range of fully integrated segmented and continuous flow platforms, to the laboratory environment for in situ data acquisition for timescales of the order of seconds. The facility used here (Flow-Xl) houses a diffractometer with a micro-focus Cu Kα rotating anode X-ray source and a 2D hybrid photon-counting detector, together with a Raman spectrometer with 532 and 785 nm lasers. An overview of the diffractometer and spectrometer setup is given, and current sample environments for flow crystallization are described. Commissioning experiments highlight the sensitivity of the two instruments for time-resolved in situ data collection of samples in flow. Finally, an example case study to monitor the batch crystallization of sodium sulfate from aqueous solution, by tracking both the solute and solution phase species as a function of time, highlights the applicability of such measurements in determining the kinetics associated with crystallization processes. This work illustrates that the Flow-Xl facility provides high-resolution time-resolved in situ structural phase information through diffraction data together with molecular-scale solution data through spectroscopy, which allows crystallization mechanisms and their associated kinetics to be analysed in a laboratory setting. Full Article text
alli Practical courses on advanced methods in macromolecular crystallization: 20 years of history and future perspectives By journals.iucr.org Published On :: 2024-08-30 The first Federation of European Biochemical Societies Advanced Course on macromolecular crystallization was launched in the Czech Republic in October 2004. Over the past two decades, the course has developed into a distinguished event, attracting students, early career postdoctoral researchers and lecturers. The course topics include protein purification, characterization and crystallization, covering the latest advances in the field of structural biology. The many hands-on practical exercises enable a close interaction between students and teachers and offer the opportunity for students to crystallize their own proteins. The course has a broad and lasting impact on the scientific community as participants return to their home laboratories and act as nuclei by communicating and implementing their newly acquired knowledge and skills. Full Article text
alli Determination of the average crystallite size and the crystallite size distribution: the envelope function approach EnvACS By journals.iucr.org Published On :: 2024-09-17 A procedure is presented to exactly obtain the apparent average crystallite size (ACS) of powder samples using standard in-house powder diffraction experiments without any restriction originating from the Scherrer equation. Additionally, the crystallite size distribution within the sample can be evaluated. To achieve this, powder diffractograms are background corrected and long-range radial distribution functions G(r) up to 300 nm are calculated from the diffraction data. The envelope function fenv of G(r) is approximated by a procedure determining the absolute maxima of G(r) in a certain interval (r range). Fitting of an ACS distribution envelope function to this approximation gives the ACS and its distribution. The method is tested on diffractograms of LaB6 standard reference materials measured with different wavelengths to demonstrate the validity of the approach and to clarify the influence of the wavelength used. The latter results in a general description of the maximum observable average crystallite size, which depends on the instrument and wavelength used. The crystallite site distribution is compared with particle size distributions based on transmission electron microscopy investigations, providing an approximation of the average number of crystallites per particle. Full Article text
alli In situ counter-diffusion crystallization and long-term crystal preservation in microfluidic fixed targets for serial crystallography By journals.iucr.org Published On :: 2024-09-25 Compared with batch and vapor diffusion methods, counter diffusion can generate larger and higher-quality protein crystals yielding improved diffraction data and higher-resolution structures. Typically, counter-diffusion experiments are conducted in elongated chambers, such as glass capillaries, and the crystals are either directly measured in the capillary or extracted and mounted at the X-ray beamline. Despite the advantages of counter-diffusion protein crystallization, there are few fixed-target devices that utilize counter diffusion for crystallization. In this article, different designs of user-friendly counter-diffusion chambers are presented which can be used to grow large protein crystals in a 2D polymer microfluidic fixed-target chip. Methods for rapid chip fabrication using commercially available thin-film materials such as Mylar, propylene and Kapton are also detailed. Rules of thumb are provided to tune the nucleation and crystal growth to meet users' needs while minimizing sample consumption. These designs provide a reliable approach to forming large crystals and maintaining their hydration for weeks and even months. This allows ample time to grow, select and preserve the best crystal batches before X-ray beam time. Importantly, the fixed-target microfluidic chip has a low background scatter and can be directly used at beamlines without any crystal handling, enabling crystal quality to be preserved. The approach is demonstrated with serial diffraction of photoactive yellow protein, yielding 1.32 Å resolution at room temperature. Fabrication of this standard microfluidic chip with commercially available thin films greatly simplifies fabrication and provides enhanced stability under vacuum. These advances will further broaden microfluidic fixed-target utilization by crystallographers. Full Article text
alli Catawba County Home Health empowers older adults to lower risk of falling through a new service called Smart Moves By Published On :: Tue, 28 May 2013 10:40:00 EST Catawba County Home Health is empowering older adults to lower their risk of falling through a new service called Smart Moves. Full Article News Release FYI Please Choose
alli National Academy of Medicine Joins Several Organizations in Calling for Action to Implement Crisis Standards of Care During COVID-19 Surge By Published On :: Fri, 18 Dec 2020 05:00:00 GMT The National Academy of Medicine (NAM) today joined eight other national organizations to call for governors, health departments, hospitals, and other health care sector partners to take immediate action to save lives and fairly allocate limited resources by implementing crisis standards of care (CSC) during the current COVID-19 surge. Full Article
alli Alliant Energy executes multiple power supply deals with data centers By cio.economictimes.indiatimes.com Published On :: Sat, 03 Aug 2024 03:37:18 +0530 The company recorded a pre-tax non-cash charge of $60 million in the second quarter due to the settlement agreement. Full Article
alli Bacteria supply their allies with munitions By esciencenews.com Published On :: Thu, 08 Sep 2016 19:56:17 +0000 Many bacteria possess molecular spear guns, which they fire at enemies and rivals, thus putting them out of action. The tips of these nano-spear guns, known as Type VI secretion system (T6SS), are loaded with toxic molecules that lead to death of their adversaries. However, sometimes close related bacteria come under fire. read more Full Article Biology & Nature
alli Tech Data, Allied Telesis to revolutionize tech solutions for CIOs By cio.economictimes.indiatimes.com Published On :: Sat, 23 Sep 2023 04:25:25 +0530 These solutions provide granular network control, resulting in minimized downtime and streamlined operations. Allied Telesis offers seamlessly integration with more than 30 recognized cybersecurity vendors to provide True Zero Trust Network Security, ensuring a comprehensive approach to cybersecurity remediation. Full Article
alli Nestlé Rallies Nut Butter Bombs adds distribution, releases new flavor By www.snackandbakery.com Published On :: Thu, 08 Sep 2022 13:40:00 -0400 Trio of chocolate treats now available at Harris Teeter, Giant Eagle, QuickChek, and Amazon. Full Article
alli Catallia Corn Tortillas By www.snackandbakery.com Published On :: Mon, 13 Jul 2015 13:00:00 -0400 Catallia Mexican Foods now offers a complete line of corn tortillas for foodservice operators. Full Article
alli Niagara Fiber acquires Allied Blending By www.snackandbakery.com Published On :: Wed, 04 Jun 2014 10:00:00 -0400 Niagara Fiber LLC, a global supplier of insoluble fiber products, acquires Allied Blending and Ingredients Inc., a provider of fiber- and starch-based proprietary products and mixes. Full Article
alli Meet PHCC — National Association’s new President Dan Callies By www.pmmag.com Published On :: Tue, 08 Oct 2024 00:00:00 -0400 Plumbing & Mechanical Chief Editor Nicole Krawcke chatted with Dan Callies about taking over the national president gig, what he hopes to accomplish during his term, and the many opportunities for PHCC members over the next year. Full Article
alli Tips for installing and servicing CPVC pipes By www.pmmag.com Published On :: Mon, 24 Jul 2023 00:00:00 -0400 When installed properly and protected from incompatible chemicals, CPVC can deliver years of reliable service in even the most aggressive water conditions. Get tips on installing and servicing CPVC pipes. Full Article
alli RPA, Hydronics Industry Alliance partner with Egg Geothermal to offer webinar series By www.pmmag.com Published On :: Thu, 27 May 2021 12:00:00 -0400 Each module is $140 for RPA and IAPMO members, and $170 for non-members. Full Article
alli Hugo Aguilar: What's on the horizon for the Radiant Professionals Alliance By www.pmmag.com Published On :: Mon, 01 May 2023 00:00:00 -0400 Ever since the RPA was formed, members have taken advantage of the great benefits the alliance has to offer, such as codes and standards advocacy, a job center network, obtaining and creating valuable education, the annual Radiant Flooring Guide, newsletter subscription, discounts for IAPMO products and services, access to webinars and more. RPA members are professionals from all facets of the radiant profession, including manufacturers, installers, engineers, architects, students, apprentices and inspectors. Full Article
alli Contractor gains multiple benefits installing radiant in his own home By www.pmmag.com Published On :: Tue, 28 Nov 2023 01:00:00 -0500 When Jason Gaspard, owner and project manager at Select Mechanical Services, was looking to finish the basement of his Maple Grove, Minnesota-based home, he knew he wanted radiant heating in the space. Full Article
alli Plumbing industry rallies to help following recent hurricane disasters By www.pmmag.com Published On :: Wed, 16 Oct 2024 00:00:00 -0400 The East Coast has suffered severe damage from Hurricanes Helene and Milton, leading to extensive destruction, fatalities, and power outages. These hurricanes highlight the impact of climate change on storm severity, driven by warmer Atlantic waters. This situation underscores the urgent need for the PHCP-PVF industry to adapt to the challenges of increasingly intense storms. Full Article