sin

Rosé and Bruno Mars' 'APT.' Reaches No. 2 on UK Official Singles Chart

[Culture] :
BLACKPINK member Rosé's latest collab with American pop star Bruno Mars, "APT.," has reached number two on the United Kingdom's Official Singles Chart, the highest ranking on the chart by a female K-pop artist. After debuting at number four on October 25, "APT." jumped two spots to number two in the ...

[more...]




sin

Pink Mold: The Uninvited Guest in Your Sink

Water just loves to stick around and leave stains behind. Most people have seen mold, but what do you do if your stain is pink?




sin

Stray Kids to release new single featuring Charlie Puth

Stray Kids is set to release a new digital single featuring global pop star Charlie Puth.The new single “Lose My Breath” will drop on May 10. Charlie Puth is a familiar name in the K-pop industry and...

[more...]




sin

Astro's Jinjin drops new single in remembrance of Moonbin

Jinjin of Astro has dropped a single in remembrance of bandmate Moonbin who passed away one year ago.The digital single “Fly”, which features Moonbin’s voice, was co-written by the two members of...

[more...]




sin

Sunmi to release new single next month

Sunmi is set to drop a new single in June. The new single has been written by the singer herself, and she recently finished shooting the music video in Croatia.The upcoming single comes around eight months after...

[more...]




sin

Jennie to Relase New Single


Jennie, a member of K-pop girl group Blackpink, will be releasing a new single this week. Titled, “Mantra,” the new release will drop Oct. 11. The highly anticipated comeback comes...

[more...]




sin

What Is the Singularity? And Should You Be Worried?

The technological singularity happens when computers develop their own intelligence. Learn about the technological singularity.




sin

Gov’t, Businesses Discuss Response to Donald Trump’s Reelection

[Economy] :
Representatives of the government and the business community met to discuss former President Donald Trump’s reelection and how it might affect trade.  At a meeting presided over by Minister of Trade, Industry and Energy Ahn Duk-geun on Thursday, participants exchanged views on the likely impact of the ...

[more...]




sin

KOSPI Slips below 2,500 Threshold for First Time since Black Monday in August

[Economy] :
South Korea’s benchmark Korea Composite Stock Price Index(KOSPI) slipped below the two-thousand-500 threshold on Tuesday for the first time since August’s “Black Monday.” The KOSPI dipped 49-point-09 points, or one-point-94 percent, on Tuesday to close at two-thousand-482-point-57. In the ...

[more...]




sin

Sino-US Decoupling Forecast to Intensify, Preference for US Interests to Expand under Trump Gov't

[Economy] :
Sino-U.S. decoupling is forecast to intensify and preference for U.S. interests to expand under the incoming Donald Trump administration. This outlook was put forth Wednesday at a seminar hosted by the Korea International Trade Association(KITA). Kyung Hee University Professor Seo Jung-kun pointed to a ...

[more...]




sin

Variable stoichiometry and salt-cocrystal intermediate in the multicomponents of flucytosine: structural elucidation and its impact on stability

Five multicomponent solid forms of an antifungal drug flucytosine are reported with a hygroscopic stability study. A detailed CSD search on the cocrystal/salts of flucytosine is evaluated and correlated the structures based on bond angles and bond distances.




sin

Crystal structure predictions for molecules with soft degrees of freedom using intermonomer force fields derived from first principles




sin

Automated selection of nanoparticle models for small-angle X-ray scattering data analysis using machine learning

Small-angle X-ray scattering (SAXS) is widely used to analyze the shape and size of nanoparticles in solution. A multitude of models, describing the SAXS intensity resulting from nanoparticles of various shapes, have been developed by the scientific community and are used for data analysis. Choosing the optimal model is a crucial step in data analysis, which can be difficult and time-consuming, especially for non-expert users. An algorithm is proposed, based on machine learning, representation learning and SAXS-specific preprocessing methods, which instantly selects the nanoparticle model best suited to describe SAXS data. The different algorithms compared are trained and evaluated on a simulated database. This database includes 75 000 scattering spectra from nine nanoparticle models, and realistically simulates two distinct device configurations. It will be made freely available to serve as a basis of comparison for future work. Deploying a universal solution for automatic nanoparticle model selection is a challenge made more difficult by the diversity of SAXS instruments and their flexible settings. The poor transferability of classification rules learned on one device configuration to another is highlighted. It is shown that training on several device configurations enables the algorithm to be generalized, without degrading performance compared with configuration-specific training. Finally, the classification algorithm is evaluated on a real data set obtained by performing SAXS experiments on nanoparticles for each of the instrumental configurations, which have been characterized by transmission electron microscopy. This data set, although very limited, allows estimation of the transferability of the classification rules learned on simulated data to real data.




sin

The single-atom R1: a new optimization method to solve crystal structures

A crystal structure with N atoms in its unit cell can be solved starting from a model with atoms 1 to j − 1 being located. To locate the next atom j, the method uses a modified definition of the traditional R1 factor where its dependencies on the locations of atoms j + 1 to N are removed. This modified R1 is called the single-atom R1 (sR1), because the locations of atoms 1 to j − 1 in sR1 are the known parameters, and only the location of atom j is unknown. Finding the correct position of atom j translates thus into the optimization of the sR1 function, with respect to its fractional coordinates, xj, yj, zj. Using experimental data, it has been verified that an sR1 has a hole near each missing atom. Further, it has been verified that an algorithm based on sR1, hereby called the sR1 method, can solve crystal structures (with up to 156 non-hydrogen atoms in the unit cell). The strategy to carry out this calculation has also been optimized. The main feature of the sR1 method is that, starting from a single arbitrarily positioned atom, the structure is gradually revealed. With the user's help to delete poorly determined parts of the structure, the sR1 method can build the model to a high final quality. Thus, sR1 is a viable and useful tool for solving crystal structures.




sin

Crystal structure of guanosine 5'-monophosphate synthetase from the thermophilic bacterium Thermus thermophilus HB8

Guanosine 5'-monophosphate (GMP) synthetase (GuaA) catalyzes the last step of GMP synthesis in the purine nucleotide biosynthetic pathway. This enzyme catalyzes a reaction in which xanthine 5'-monophosphate (XMP) is converted to GMP in the presence of Gln and ATP through an adenyl-XMP intermediate. A structure of an XMP-bound form of GuaA from the domain Bacteria has not yet been determined. In this study, the crystal structure of an XMP-bound form of GuaA from the thermophilic bacterium Thermus thermophilus HB8 (TtGuaA) was determined at a resolution of 2.20 Å and that of an apo form of TtGuaA was determined at 2.10 Å resolution. TtGuaA forms a homodimer, and the monomer is composed of three domains, which is a typical structure for GuaA. Disordered regions in the crystal structure were obtained from the AlphaFold2-predicted model structure, and a model with substrates (Gln, XMP and ATP) was constructed for molecular-dynamics (MD) simulations. The structural fluctuations of the TtGuaA dimer as well as the interactions between the active-site residues were analyzed by MD simulations.




sin

Mapping domain structures near a grain boundary in a lead zirconate titanate ferroelectric film using X-ray nanodiffraction

Direct measurements have been taken of nanoscale domain structure in ferroelectric lead zirconate titanate around a grain boundary. Characterizing the evolution of this structure under an electric field is critical for predicting dielectric and piezoelectric response.




sin

Improving the reliability of small- and wide-angle X-ray scattering measurements of anisotropic precipitates in metallic alloys using sample rotation

Rotations of small- and wide-angle X-ray scattering samples during acquisition are shown to give a drastic improvement in the reliability of the characterization of anisotropic precipitates in metallic alloys.




sin

Real-time analysis of liquid-jet sample-delivery stability for an X-ray free-electron laser using machine vision

This paper describes real-time statistical analysis of liquid jet images for SFX experiments at the European XFEL. This analysis forms one part of the automated jet re-alignment system for SFX experiments at the SPB/SFX instrument of European XFEL.




sin

TOMOMAN: a software package for large-scale cryo-electron tomography data preprocessing, community data sharing and collaborative computing

Here we describe TOMOMAN (TOMOgram MANager), an extensible open-sourced software package for handling cryo-electron tomography data preprocessing. TOMOMAN streamlines interoperability between a wide range of external packages and provides tools for project sharing and archival.




sin

High accuracy, high resolution measurements of fluorescence in manganese using extended-range high-energy-resolution fluorescence detection

We explain analysis of RIXS, HERFD and XR-HERFD data to discover new physical processes in manganese and manganese-containing materials, by applying our new technique XR-HERFD, developed from high resolution RIXS and HERFD.




sin

Improving the reliability of small- and wide-angle X-ray scattering measurements of anisotropic precipitates in metallic alloys using sample rotation

Nanometric precipitates in metallic alloys often have highly anisotropic shapes. Given the large grain size and non-random texture typical of these alloys, performing small- and wide-angle X-ray scattering (SAXS/WAXS) measurements on such samples for determining their characteristics (typically size and volume fraction) results in highly anisotropic and irreproducible data. Rotations of flat samples during SAXS/WAXS acquisitions are presented here as a solution to these anisotropy issues. Two aluminium alloys containing anisotropic precipitates are used as examples to validate the approach with a −45°/45° angular range. Clear improvements can be seen on the SAXS I(q) fitting and the consistency between the different SAXS/WAXS measurements. This methodology results in more reliable measurements of the precipitate's characteristics, and thus allows for time- and space-resolved measurements with higher accuracy.




sin

Mapping domain structures near a grain boundary in a lead zirconate titanate ferroelectric film using X-ray nanodiffraction

The effect of an electric field on local domain structure near a 24° tilt grain boundary in a 200 nm-thick Pb(Zr0.2Ti0.8)O3 bi-crystal ferroelectric film was probed using synchrotron nanodiffraction. The bi-crystal film was grown epitaxially on SrRuO3-coated (001) SrTiO3 24° tilt bi-crystal substrates. From the nanodiffraction data, real-space maps of the ferroelectric domain structure around the grain boundary prior to and during application of a 200 kV cm−1 electric field were reconstructed. In the vicinity of the tilt grain boundary, the distributions of densities of c-type tetragonal domains with the c axis aligned with the film normal were calculated on the basis of diffracted intensity ratios of c- and a-type domains and reference powder diffraction data. Diffracted intensity was averaged along the grain boundary, and it was shown that the density of c-type tetragonal domains dropped to ∼50% of that of the bulk of the film over a range ±150 nm from the grain boundary. This work complements previous results acquired by band excitation piezoresponse force microscopy, suggesting that reduced nonlinear piezoelectric response around grain boundaries may be related to the change in domain structure, as well as to the possibility of increased pinning of domain wall motion. The implications of the results and analysis in terms of understanding the role of grain boundaries in affecting the nonlinear piezoelectric and dielectric responses of ferroelectric materials are discussed.




sin

An active piezoelectric plane X-ray focusing mirror with a linearly changing thickness

X-ray mirrors for synchrotron radiation are often bent into a curved figure and work under grazing-incidence conditions due to the strong penetrating nature of X-rays to most materials. Mirrors of different cross sections have been recommended to reduce the mirror's slope inaccuracy and clamping difficulty in order to overcome mechanical tolerances. With the development of hard X-ray focusing, it is difficult to meet the needs of focusing mirrors with small slope error with the existing mirror processing technology. Deformable mirrors are adaptive optics that can produce a flexible surface figure. A method of using a deformable mirror as a phase compensator is described to enhance the focusing performance of an X-ray mirror. This paper presents an active piezoelectric plane X-ray focusing mirror with a linearly changing thickness that has the ability of phase compensation while focusing X-rays. Benefiting from its special structural design, the mirror can realize flexible focusing at different focusing geometries using a single input driving voltage. A prototype was used to measure its performance under one-dimension and two-dimension conditions. The results prove that, even at a bending magnet beamline, the mirror can easily achieve a single-micrometre focusing without a complicated bending mechanism or high-precision surface processing. It is hoped that this kind of deformable mirror will have a wide and flexible application in the synchrotron radiation field.




sin

Protocol using similarity score and improved shrink-wrap algorithm for better convergence of phase-retrieval calculation in X-ray diffraction imaging

In X-ray diffraction imaging (XDI), electron density maps of a targeted particle are reconstructed computationally from the diffraction pattern alone using phase-retrieval (PR) algorithms. However, the PR calculations sometimes fail to yield realistic electron density maps that approximate the structure of the particle. This occurs due to the absence of structure amplitudes at and near the zero-scattering angle and the presence of Poisson noise in weak diffraction patterns. Consequently, the PR calculation becomes a bottleneck for XDI structure analyses. Here, a protocol to efficiently yield realistic maps is proposed. The protocol is based on the empirical observation that realistic maps tend to yield low similarity scores, as suggested in our prior study [Sekiguchi et al. (2017), J. Synchrotron Rad. 24, 1024–1038]. Among independently and concurrently executed PR calculations, the protocol modifies all maps using the electron-density maps exhibiting low similarity scores. This approach, along with a new protocol for estimating particle shape, improved the probability of obtaining realistic maps for diffraction patterns from various aggregates of colloidal gold particles, as compared with PR calculations performed without the protocol. Consequently, the protocol has the potential to reduce computational costs in PR calculations and enable efficient XDI structure analysis of non-crystalline particles using synchrotron X-rays and X-ray free-electron laser pulses.




sin

In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy

The use of hard X-ray transmission nano- and microdiffraction to perform in situ stress and strain measurements during deformation has recently been demonstrated and used to investigate many thin film systems. Here a newly commissioned sample environment based on a commercially available nanoindenter is presented, which is available at the NanoMAX beamline at the MAX IV synchrotron. Using X-ray nanoprobes of around 60–70 nm at 14–16 keV and a scanning step size of 100 nm, we map the strains, stresses, plastic deformation and fracture during nanoindentation of industrial coatings with thicknesses in the range of several micrometres, relatively strong texture and large grains. The successful measurements of such challenging samples illustrate broad applicability. The sample environment is openly accessible for NanoMAX beamline users through the MAX IV sample environment pool, and its capability can be further extended for specific purposes through additional available modules.




sin

Submillisecond in situ X-ray diffraction measurement system with changing temperature and pressure using diamond anvil cells at BL10XU/SPring-8

Recently, there has been a high demand for elucidating kinetics and visualizing reaction processes under extreme dynamic conditions, such as chemical reactions under meteorite impact conditions, structural changes under non­equilibrium conditions, and in situ observations of dynamic changes. To accelerate material science studies and Earth science fields under dynamic conditions, a submillisecond in situ X-ray diffraction measurement system has been developed using a diamond anvil cell to observe reaction processes under rapidly changing pressure and temperature conditions replicating extreme dynamic conditions. The development and measurements were performed at the high-pressure beamline BL10XU/SPring-8 by synchronizing a high-speed hybrid pixel array detector, laser heating and temperature measurement system, and gas-pressure control system that enables remote and rapid pressure changes using the diamond anvil cell. The synchronized system enabled momentary heating and rapid cooling experiments up to 5000 K via laser heating as well as the visualization of structural changes in high-pressure samples under extreme dynamic conditions during high-speed pressure changes.




sin

ProSPyX: software for post-processing images of X-ray ptychography with spectral capabilities

X-ray ptychography is a coherent diffraction imaging technique based on acquiring multiple diffraction patterns obtained through the illumination of the sample at different partially overlapping probe positions. The diffraction patterns collected are used to retrieve the complex transmittivity function of the sample and the probe using a phase retrieval algorithm. Absorption or phase contrast images of the sample as well as the real and imaginary parts of the probe function can be obtained. Furthermore, X-ray ptychography can also provide spectral information of the sample from absorption or phase shift images by capturing multiple ptychographic projections at varying energies around the resonant energy of the element of interest. However, post-processing of the images is required to extract the spectra. To facilitate this, ProSPyX, a Python package that offers the analysis tools and a graphical user interface required to process spectral ptychography datasets, is presented. Using the PyQt5 Python open-source module for development and design, the software facilitates extraction of absorption and phase spectral information from spectral ptychographic datasets. It also saves the spectra in file formats compatible with other X-ray absorption spectroscopy data analysis software tools, streamlining integration into existing spectroscopic data analysis pipelines. To illustrate its capabilities, ProSPyX was applied to process the spectral ptychography dataset recently acquired on a nickel wire at the SWING beamline of the SOLEIL synchrotron.




sin

Sub-micrometre focusing of intense 100 keV X-rays with multilayer reflective optics

A high-flux sub-micrometre focusing system was constructed using multilayer focusing mirrors in Kirkpatrick–Baez geometry for 100 keV X-rays. The focusing mirror system had a wide bandwidth of 5% and a high peak reflectivity of 74%. Performance was evaluated at the undulator beamline BL05XU of SPring-8, which produced an intense 100 keV X-ray beam with a bandwidth of 1%. When the light source was focused directly in both vertical and horizontal directions, the beam size was measured to be 0.32 µm (V) × 5.3 µm (H) with a flux of 1 × 1012 photons s−1. However, when a limited horizontal slit was used to form a secondary source, the focusing beam size decreased to 0.25 µm (V) × 0.26 µm (H) with a flux of 6 × 1010 photons s−1. The 200 nm line and space patterns of a Siemens star chart made of tantalum were clearly resolved by the absorption contrast of the focused beam. This 100 keV focusing system is applicable to various fields of nondestructive analyses with sub-micrometre resolutions.




sin

Optimization of synchrotron radiation parameters using swarm intelligence and evolutionary algorithms

Alignment of each optical element at a synchrotron beamline takes days, even weeks, for each experiment costing valuable beam time. Evolutionary algorithms (EAs), efficient heuristic search methods based on Darwinian evolution, can be utilized for multi-objective optimization problems in different application areas. In this study, the flux and spot size of a synchrotron beam are optimized for two different experimental setups including optical elements such as lenses and mirrors. Calculations were carried out with the X-ray Tracer beamline simulator using swarm intelligence (SI) algorithms and for comparison the same setups were optimized with EAs. The EAs and SI algorithms used in this study for two different experimental setups are the Genetic Algorithm (GA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). While one of the algorithms optimizes the lens position, the other focuses on optimizing the focal distances of Kirkpatrick–Baez mirrors. First, mono-objective evolutionary algorithms were used and the spot size or flux values checked separately. After comparison of mono-objective algorithms, the multi-objective evolutionary algorithm NSGA-II was run for both objectives – minimum spot size and maximum flux. Every algorithm configuration was run several times for Monte Carlo simulations since these processes generate random solutions and the simulator also produces solutions that are stochastic. The results show that the PSO algorithm gives the best values over all setups.




sin

At-wavelength metrology of an X-ray mirror using a downstream wavefront modulator

At-wavelength metrology of X-ray optics plays a crucial role in evaluating the performance of optics under actual beamline operating conditions, enabling in situ diagnostics and optimization. Techniques utilizing a wavefront random modulator have gained increasing attention in recent years. However, accurately mapping the measured wavefront slope to a curved X-ray mirror surface when the modulator is downstream of the mirror has posed a challenge. To address this problem, an iterative method has been developed in this study. The results demonstrate a significant improvement compared with conventional approaches and agree with offline measurements obtained from optical metrology. We believe that the proposed method enhances the accuracy of at-wavelength metrology techniques, and empowers them to play a greater role in beamline operation and optics fabrication.




sin

A distributed data processing scheme based on Hadoop for synchrotron radiation experiments

With the development of synchrotron radiation sources and high-frame-rate detectors, the amount of experimental data collected at synchrotron radiation beamlines has increased exponentially. As a result, data processing for synchrotron radiation experiments has entered the era of big data. It is becoming increasingly important for beamlines to have the capability to process large-scale data in parallel to keep up with the rapid growth of data. Currently, there is no set of data processing solutions based on the big data technology framework for beamlines. Apache Hadoop is a widely used distributed system architecture for solving the problem of massive data storage and computation. This paper presents a set of distributed data processing schemes for beamlines with experimental data using Hadoop. The Hadoop Distributed File System is utilized as the distributed file storage system, and Hadoop YARN serves as the resource scheduler for the distributed computing cluster. A distributed data processing pipeline that can carry out massively parallel computation is designed and developed using Hadoop Spark. The entire data processing platform adopts a distributed microservice architecture, which makes the system easy to expand, reduces module coupling and improves reliability.




sin

Wavefront analysis and phase correctors design using SHADOW

Knife-edge imaging is a successful method for determining the wavefront distortion of focusing optics such as Kirkpatrick–Baez mirrors or compound refractive lenses. In this study, the wavefront error of an imperfect elliptical mirror is predicted by developing a knife-edge program using the SHADOW/OASYS platform. It is shown that the focusing optics can be aligned perfectly by minimizing the parabolic and cubic coefficients of the wavefront error. The residual wavefront error provides precise information about the figure/height errors of the focusing optics suggesting it as an accurate method for in situ optical metrology. A Python program is developed to design a customized wavefront refractive corrector to minimize the residual wavefront error. Uniform beam at and out of focus and higher peak intensity are achieved by the wavefront correction in comparison with ideal focusing. The developed code provides a quick way for wavefront error analysis and corrector design for non-ideal optics especially for the new-generation diffraction-limited sources, and saves considerable experimental time and effort.




sin

3D imaging of magnetic domains in Nd2Fe14B using scanning hard X-ray nanotomography

Nanoscale structural and electronic heterogeneities are prevalent in condensed matter physics. Investigating these heterogeneities in 3D has become an important task for understanding material properties. To provide a tool to unravel the connection between nanoscale heterogeneity and macroscopic emergent properties in magnetic materials, scanning transmission X-ray microscopy (STXM) is combined with X-ray magnetic circular dichroism. A vector tomography algorithm has been developed to reconstruct the full 3D magnetic vector field without any prior noise assumptions or knowledge about the sample. Two tomographic scans around the vertical axis are acquired on single-crystalline Nd2Fe14B pillars tilted at two different angles, with 2D STXM projections recorded using a focused 120 nm X-ray beam with left and right circular polarization. Image alignment and iterative registration have been implemented based on the 2D STXM projections for the two tilts. Dichroic projections obtained from difference images are used for the tomographic reconstruction to obtain the 3D magnetization distribution at the nanoscale.




sin

Soft X-ray wavefront sensing at an ellipsoidal mirror shell

A reliable `in situ' method for wavefront sensing in the soft X-ray domain is reported, developed for the characterization of rotationally symmetric optical elements, like an ellipsoidal mirror shell. In a laboratory setup, the mirror sample is irradiated by an electron-excited (4.4 keV), micrometre-sized (∼2 µm) fluorescence source (carbon Kα, 277 eV). Substantially, the three-dimensional intensity distribution I(r) is recorded by a CCD camera (2048 × 512 pixels of 13.5 µm) at two positions along the optical axis, symmetrically displaced by ±21–25% from the focus. The transport-of-intensity equation is interpreted in a geometrical sense from plane to plane and implemented as a ray tracing code, to retrieve the phase Φ(r) from the radial intensity gradient on a sub-pixel scale. For reasons of statistical reliability, five intra-/extra-focal CCD image pairs are evaluated and averaged to an annular two-dimensional map of the wavefront error {cal W}. In units of the test wavelength (C Kα), an r.m.s. value sigma_{cal{W}} = ±10.9λ0 and a peak-to-valley amplitude of ±31.3λ0 are obtained. By means of the wavefront, the focus is first reconstructed with a result for its diameter of 38.4 µm, close to the direct experimental observation of 39.4 µm (FWHM). Secondly, figure and slope errors of the ellipsoid are characterized with an average of ±1.14 µm and ±8.8 arcsec (r.m.s.), respectively, the latter in reasonable agreement with the measured focal intensity distribution. The findings enable, amongst others, the precise alignment of axisymmetric X-ray mirrors or the design of a wavefront corrector for high-resolution X-ray science.




sin

Sub-nanometre quality X-ray mirrors created using ion beam figuring

Ion beam figuring (IBF) is a powerful technique for figure correction of X-ray mirrors to a high accuracy. Here, recent technical advancements in the IBF instrument developed at Diamond Light Source are presented and experimental results for figuring of X-ray mirrors are given. The IBF system is equipped with a stable DC gridded ion source (120 mm diameter), a four-axis motion stage to manipulate the optic, a Faraday cup to monitor the ion-beam current, and a camera for alignment. A novel laser speckle angular measurement instrument also provides on-board metrology. To demonstrate the IBF system's capabilities, two silicon X-ray mirrors were processed. For 1D correction, a height error of 0.08 nm r.m.s. and a slope error of 44 nrad r.m.s. were achieved. For 2D correction over a 67 mm × 17 mm clear aperture, a height error of 0.8 nm r.m.s. and a slope error of 230 nrad r.m.s. were obtained. For the 1D case, this optical quality is comparable with the highest-grade, commercially available, X-ray optics.




sin

Revealing the structure of the active sites for the electrocatalytic CO2 reduction to CO over Co single atom catalysts using operando XANES and machine learning

Transition-metal nitro­gen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co–N–C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co–N–C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co–N–C catalysts, and further optimization of this class of electrocatalytic systems.




sin

StreamSAXS: a Python-based workflow platform for processing streaming SAXS/WAXS data

StreamSAXS is a Python-based small- and wide-angle X-ray scattering (SAXS/WAXS) data analysis workflow platform with graphical user interface (GUI). It aims to provide an interactive and user-friendly tool for analysis of both batch data files and real-time data streams. Users can easily create customizable workflows through the GUI to meet their specific needs. One characteristic of StreamSAXS is its plug-in framework, which enables developers to extend the built-in workflow tasks. Another feature is the support for both already acquired and real-time data sources, allowing StreamSAXS to function as an offline analysis platform or be integrated into large-scale acquisition systems for end-to-end data management. This paper presents the core design of StreamSAXS and provides user cases demonstrating its utilization for SAXS/WAXS data analysis in offline and online scenarios.




sin

Study on the UV FEL single-shot damage threshold of an Au thin film

The damage threshold of an Au-coated flat mirror, one of the reflective optics installed on the FEL-2 beamline of the Dalian Coherent Light Source, China, upon far-UV free-electron laser irradiation is evaluated. The surface of the coating is characterized by profilometer and optical microscope. A theoretical approach of the phenomenon is also presented, by application of conventional single-pulse damage threshold calculations, a one-dimensional thermal diffusion model, as well as finite-element analysis with ANSYS.




sin

New opportunities for time-resolved imaging using diffraction-limited storage rings

The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring. It is demonstrated that this enhanced flux density using a single harmonic of the source allows micrometre-resolution time-resolved imaging at 2000 tomograms per second and 1.1 MHz 2D acquisition rates using the full dynamic range of the detector system.




sin

Spexwavepy: an open-source Python package for X-ray wavefront sensing using speckle-based techniques

In situ wavefront sensing plays a critical role in the delivery of high-quality beams for X-ray experiments. X-ray speckle-based techniques stand out among other in situ techniques for their easy experimental setup and various data acquisition modes. Although X-ray speckle-based techniques have been under development for more than a decade, there are still no user-friendly software packages for new researchers to begin with. Here, we present an open-source Python package, spexwavepy, for X-ray wavefront sensing using speckle-based techniques. This Python package covers a variety of X-ray speckle-based techniques, provides plenty of examples with real experimental data and offers detailed online documentation for users. We hope it can help new researchers learn and apply the speckle-based techniques for X-ray wavefront sensing to synchrotron radiation and X-ray free-electron laser beamlines.




sin

The diamond–silicon carbide composite Skeleton® as a promising material for substrates of intense X-ray beam optics

The paper considers the possibility of using the diamond-silicon carbide composite Skeleton® with a technological coating of polycrystalline silicon as a substrate for X-ray mirrors used with powerful synchrotron radiation sources (third+ and fourth generation). Samples were studied after polishing to provide the following surface parameters: root-mean-square flatness ≃ 50 nm, micro-roughness on the frame 2 µm × 2 µm σ ≃ 0.15 nm. The heat capacity, thermal conductivity and coefficient of linear thermal expansion were investigated. For comparison, a monocrystalline silicon sample was studied under the same conditions using the same methods. The value of the coefficient of linear thermal expansion turned out to be higher than that of monocrystalline silicon and amounted to 4.3 × 10−6 K−1, and the values of thermal conductivity (5.0 W cm−1 K−1) and heat capacity (1.2 J K−1 g−1) also exceeded the values for Si. Thermally induced deformations of both Skeleton® and monocrystalline silicon samples under irradiation with a CO2 laser beam have also been experimentally studied. Taking into account the obtained thermophysical constants, the calculation of thermally induced deformation under irradiation with hard (20 keV) X-rays showed almost three times less deformation of the Skeleton® sample than of the monocrystalline silicon sample.




sin

New achievements in orbital angular momentum beam characterization using a Hartmann wavefront sensor and the Kirkpatrick–Baez active optical system KAOS

Advances in physics have been significantly driven by state-of-the-art technology, and in photonics and X-ray science this calls for the ability to manipulate the characteristics of optical beams. Orbital angular momentum (OAM) beams hold substantial promise in various domains such as ultra-high-capacity optical communication, rotating body detection, optical tweezers, laser processing, super-resolution imaging etc. Hence, the advancement of OAM beam-generation technology and the enhancement of its technical proficiency and characterization capabilities are of paramount importance. These endeavours will not only facilitate the use of OAM beams in the aforementioned sectors but also extend the scope of applications in diverse fields related to OAM beams. At the FERMI Free-Electron Laser (Trieste, Italy), OAM beams are generated either by tailoring the emission process on the undulator side or, in most cases, by coupling a spiral zone plate (SZP) in tandem with the refocusing Kirkpatrick–Baez active optic system (KAOS). To provide a robust and reproducible workflow to users, a Hartmann wavefront sensor (WFS) is used for both optics tuning and beam characterization. KAOS is capable of delivering both tightly focused and broad spots, with independent control over vertical and horizontal magnification. This study explores a novel non-conventional `near collimation' operational mode aimed at generating beams with OAM that employs the use of a lithographically manufactured SZP to achieve this goal. The article evaluates the mirror's performance through Hartmann wavefront sensing, offers a discussion of data analysis methodologies, and provides a quantitative analysis of these results with ptychographic reconstructions.




sin

In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy. Corrigendum

Errors in variable subscripts, equations and Fig. 8 in Section 3.2 of the article by Lotze et al. [(2024). J. Synchrotron Rad. 31, 42–52] are corrected.




sin

Demonstration of full polarization control of soft X-ray pulses with Apple X undulators at SwissFEL using recoil ion momentum spectroscopy

The ability to freely control the polarization of X-rays enables measurement techniques relying on circular or linear dichroism, which have become indispensable tools for characterizing the properties of chiral molecules or magnetic structures. Therefore, the demand for polarization control in X-ray free-electron lasers is increasing to enable polarization-sensitive dynamical studies on ultrafast time scales. The soft X-ray branch Athos of SwissFEL was designed with the aim of providing freely adjustable and arbitrary polarization by building its undulator solely from modules of the novel Apple X type. In this paper, the magnetic model of the linear inclined and circular Apple X polarization schemes are studied. The polarization is characterized by measuring the angular electron emission distributions of helium for various polarizations using cold target recoil ion momentum spectroscopy. The generation of fully linear polarized light of arbitrary angle, as well as elliptical polarizations of varying degree, are demonstrated.




sin

Vibrational stability improvement of a mirror system using active mass damping

Addressing the demand for high stability of beamline instruments at the SHINE facility, a high stability mirror regulating mechanism has been developed for mirror adjustments. Active mass damping was adopted to attenuate pitch angle vibrations of mirrors caused by structural vibrations. An internal absolute velocity feedback was used to reduce the negative impact of spillover effects and to improve performance. The experiment was conducted on a prototype structure of a mirror regulating mechanism, and results showed that the vibration RMS of the pitch angle was effectively attenuated from 47 nrad to 27 nrad above 1 Hz.




sin

Using convolutional neural network denoising to reduce ambiguity in X-ray coherent diffraction imaging

The inherent ambiguity in reconstructed images from coherent diffraction imaging (CDI) poses an intrinsic challenge, as images derived from the same dataset under varying initial conditions often display inconsistencies. This study introduces a method that employs the Noise2Noise approach combined with neural networks to effectively mitigate these ambiguities. We applied this methodology to hundreds of ambiguous reconstructed images retrieved from a single diffraction pattern using a conventional retrieval algorithm. Our results demonstrate that ambiguous features in these reconstructions are effectively treated as inter-reconstruction noise and are significantly reduced. The post-Noise2Noise treated images closely approximate the average and singular value decomposition analysis of various reconstructions, providing consistent and reliable reconstructions.




sin

Investigating the missing-wedge problem in small-angle X-ray scattering tensor tomography across real and reciprocal space

Small-angle-scattering tensor tomography is a technique for studying anisotropic nanostructures of millimetre-sized samples in a volume-resolved manner. It requires the acquisition of data through repeated tomographic rotations about an axis which is subjected to a series of tilts. The tilt that can be achieved with a typical setup is geometrically constrained, which leads to limits in the set of directions from which the different parts of the reciprocal space map can be probed. Here, we characterize the impact of this limitation on reconstructions in terms of the missing wedge problem of tomography, by treating the problem of tensor tomography as the reconstruction of a three-dimensional field of functions on the unit sphere, represented by a grid of Gaussian radial basis functions. We then devise an acquisition scheme to obtain complete data by remounting the sample, which we apply to a sample of human trabecular bone. Performing tensor tomographic reconstructions of limited data sets as well as the complete data set, we further investigate and validate the missing wedge problem by investigating reconstruction errors due to data incompleteness across both real and reciprocal space. Finally, we carry out an analysis of orientations and derived scalar quantities, to quantify the impact of this missing wedge problem on a typical tensor tomographic analysis. We conclude that the effects of data incompleteness are consistent with the predicted impact of the missing wedge problem, and that the impact on tensor tomographic analysis is appreciable but limited, especially if precautions are taken. In particular, there is only limited impact on the means and relative anisotropies of the reconstructed reciprocal space maps.




sin

Comparing single-shot damage thresholds of boron carbide and silicon at the European XFEL

Xray free-electron lasers (XFELs) enable experiments that would have been impractical or impossible at conventional X-ray laser facilities. Indeed, more XFEL facilities are being built and planned, with their aim to deliver larger pulse energies and higher peak brilliance. While seeking to increase the pulse power, it is quintessential to consider the maximum pulse fluence that a grazing-incidence FEL mirror can withstand. To address this issue, several studies were conducted on grazing-incidence damage by soft X-ray FEL pulses at the European XFEL facility. Boron carbide (B4C) coatings on polished silicon substrate were investigated using 1 keV photon energy, similar to the X-ray mirrors currently installed at the soft X-ray beamlines (SASE3). The purpose of this study is to compare the damage threshold of B4C and Si to determine the advantages, tolerance and limits of using B4C coatings.




sin

Redetermination of germacrone type II based on single-crystal X-ray data

The extraction and purification procedures, crystallization and crystal structure refinement (single-crystal X-ray data) of germacrone type II, C15H22O, are presented. The structural results are compared with a previous powder X-ray synchrotron study [Kaduk et al. (2022). Powder Diffr. 37, 98–104], revealing significant improvements in terms of accuracy and precision. Hirshfeld atom refinement (HAR), as well as Hirshfeld surface analysis, give insight into the inter­molecular inter­actions of germacrone type II.




sin

α-d-2'-De­oxy­adenosine, an irradiation product of canonical DNA and a com­ponent of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis

α-d-2'-De­oxy­ribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-de­oxy­adenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydro­gen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydro­gen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydro­gen bonds formed by the conformers. The formation of the supra­molecular assembly of α-dA is controlled by hydro­gen bonding and stacking inter­actions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydro­gen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydro­gen bonds involving the sugar moieties to form a sheet. A com­parison of the solid-state structures of the anomeric 2'-de­oxy­adenosines revealed significant differences of their conformational parameters.