high Punjab sees 105 more Covid-19 cases in highest single-day spike By www.newkerala.com Published On :: Fri, 01 May 2020 08:13:02 +0530 Full Article
high Navi Mumbai records highest single-day surge in cases By www.thehindu.com Published On :: Sun, 10 May 2020 01:10:28 +0530 PMC to allow commercial establishments to open shutters on specific days Full Article Mumbai
high S. Korea reports 34 new coronavirus cases, highest in a month By www.thehindu.com Published On :: Sun, 10 May 2020 08:36:45 +0530 The outbreak came just as South Korea has eased some social distancing restrictions and is seeking to fully reopen schools and businesses Full Article International
high Tamil Nadu forms high level committee to assess Covid-19 impact on economy By www.business-standard.com Published On :: Sat, 09 May 2020 19:07:00 +0530 The committee shall submit its final reports to the government within three months time and also submit an interim report Full Article
high Stimulus package likely next week; Guaranteed higher working capital limit for MSME on cards By www.thehindubusinessline.com Published On :: Sat, 09 May 2020 22:34:47 +0530 Centre plans to raise the total borrowings to ₹12 lakh crore this fiscal Full Article Economy
high NSA Ajit Doval conducts high-level intelligence meet; asks to tighten counter-infiltration grid By www.dnaindia.com Published On :: Sun, 10 May 2020 05:32:00 GMT According to a report by security agencies, the presence of around 450 terrorists, including those from Lashkar-e-Taiba (LeT), Hizbul Mujahideen (HM) and Jaish-e-Mohammad (JeM), has been seen on the launching pads adjacent to the Line of Control (LoC). Full Article India
high Low-dose X-ray structure analysis of cytochrome c oxidase utilizing high-energy X-rays By scripts.iucr.org Published On :: 2019-06-14 To investigate the effect of high-energy X-rays on site-specific radiation-damage, low-dose diffraction data were collected from radiation-sensitive crystals of the metal enzyme cytochrome c oxidase. Data were collected at the Structural Biology I beamline (BL41XU) at SPring-8, using 30 keV X-rays and a highly sensitive pixel array detector equipped with a cadmium telluride sensor. The experimental setup of continuous sample translation using multiple crystals allowed the average diffraction weighted dose per data set to be reduced to 58 kGy, and the resulting data revealed a ligand structure featuring an identical bond length to that in the damage-free structure determined using an X-ray free-electron laser. However, precise analysis of the residual density around the ligand structure refined with the synchrotron data showed the possibility of a small level of specific damage, which might have resulted from the accumulated dose of 58 kGy per data set. Further investigation of the photon-energy dependence of specific damage, as assessed by variations in UV-vis absorption spectra, was conducted using an on-line spectrometer at various energies ranging from 10 to 30 keV. No evidence was found for specific radiation damage being energy dependent. Full Article text
high Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering By scripts.iucr.org Published On :: 2019-08-09 Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode. Full Article text
high Generating three-color pulses in high-gain harmonic-generation free-electron lasers with a tilted electron bunch By scripts.iucr.org Published On :: 2019-08-12 A multi-color light source is a significant tool for nonlinear optics experiments, pump–dump/repump–probe experiments and in other fields. Here, a novel method is proposed to create three-color pulses based on a high-gain harmonic-generation (HGHG) free-electron laser with a tilted electron bunch. In this method, the initial bunch tilt is created by transverse wakefields after the bunch passes through a corrugated structure with an off-axis orbit, and is further enlarged in a following drift section. Then the tilted bunch experiences the off-axis field of a quadrupole magnet to cool down the large transverse velocity induced before. After that, it enters an HGHG configuration adopting a transverse gradient undulator (TGU) as the radiator, where only three separated fractions of the tilted bunch will resonate at three adjacent harmonics of the seed wavelength and are enabled to emit three-color pulses simultaneously. In addition, the use of the natural transverse gradient of a normal planar undulator instead of the TGU radiator to emit three-color pulses is also studied in detail. Numerical simulations including the generation of the tilted bunch and the free-electron laser radiation confirm the validity and feasibility of this scheme both for the TGU radiator and the natural gradient in the extreme-ultraviolet waveband. Full Article text
high Coherence properties of the high-energy fourth-generation X-ray synchrotron sources By scripts.iucr.org Published On :: 2019-11-01 An analysis of the coherence properties of the fourth-generation high-energy storage rings with emittance values of 10 pm rad is performed. It is presently expected that a storage ring with these low emittance values will reach diffraction limit at hard X-rays. Simulations of coherence properties were performed with the XRT software and an analytical approach for different photon energies from 500 eV to 50 keV. It was demonstrated that a minimum photon emittance (diffraction limit) reached at such storage rings is λ/2π. Using mode decomposition it is shown that, for the parameters of the storage ring considered in this work, the diffraction limit will be reached for soft X-ray energies of 500 eV. About ten modes will contribute to the radiation field at 12 keV photon energy and even more modes give a contribution at higher photon energies. Energy spread effects of the electron beam in a low-emittance storage ring were analysed in detail. Simulations were performed at different relative energy spread values from zero to 2 × 10−3. A decrease of the degree of coherence with an increase of the relative energy spread value was observed. This analysis shows that, to reach the diffraction limit for high photon energies, electron beam emittance should go down to 1 pm rad and below. Full Article text
high ProQEXAFS: a highly optimized parallelized rapid processing software for QEXAFS data By scripts.iucr.org Published On :: 2020-02-07 The high temporal resolution in data acquisition, possible in the quick-scanning EXAFS (QEXAFS) mode of operation, provides new challenges in efficient data processing methods. Here a new approach is developed that combines an easy to use interactive graphical interface with highly optimized and fully parallelized Python-based routines for extracting, normalizing and interpolating oversampled time-resolved XAS spectra from a raw binary stream of data acquired during operando QEXAFS studies. The programs developed are freely available via a Github repository. Full Article text
high Rochelle salt – a structural reinvestigation with improved tools. I. The high-T paraelectric phase at 308 K By journals.iucr.org Published On :: A novel sample cell with control of temperature and relative humidity permitted collection of data of excellent quality, enabling unrestrained refinement of all atomic parameters. One of the K atoms in the structure is disordered; very strong anisotropy in three of the four water O atoms indicates partial static disorder, which does not involve the bonded H atoms. Full Article text
high Scottish Highlands hit by earthquake with magnitude measuring 2.3 - The Scottish Sun By www.thescottishsun.co.uk Published On :: Tue, 07 Jan 2020 08:00:00 GMT Scottish Highlands hit by earthquake with magnitude measuring 2.3 The Scottish Sun Full Article
high Earthquake strikes the west Highlands - Press and Journal By www.pressandjournal.co.uk Published On :: Wed, 08 Jan 2020 08:00:00 GMT Earthquake strikes the west Highlands Press and Journal Full Article
high Research Centre Finance Administrator job with UNIVERSITY OF LEEDS | 206139 - Times Higher Education (THE) By www.timeshighereducation.com Published On :: Thu, 07 May 2020 05:09:11 GMT Research Centre Finance Administrator job with UNIVERSITY OF LEEDS | 206139 Times Higher Education (THE) Full Article
high High-pressure synthesis and crystal structure of SrGa4As4 By scripts.iucr.org Published On :: 2019-10-22 Strontium tetragallate(II,III) tetraarsenide, SrGa4As4, was synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8 GPa and 1573 K. The compound crystallizes in a new structure type (P3221, Z = 3) as a three-dimensional (3D) framework of corner-sharing SrAs8 quadratic antiprisms with strontium situated on a twofold rotation axis (Wyckoff position 3b). This arrangement is surrounded by a 3D framework which can be described as alternately stacked layers of either condensed GaIIIAs4 tetrahedra or honeycomb-like layers built up from distorted ethane-like GaII2As6 units comprising Ga—Ga bonds. Full Article text
high Accurate high-resolution single-crystal diffraction data from a Pilatus3 X CdTe detector By scripts.iucr.org Published On :: 2020-04-23 Hybrid photon-counting detectors are widely established at third-generation synchrotron facilities and the specifications of the Pilatus3 X CdTe were quickly recognized as highly promising in charge-density investigations. This is mainly attributable to the detection efficiency in the high-energy X-ray regime, in combination with a dynamic range and noise level that should overcome the perpetual problem of detecting strong and weak data simultaneously. These benefits, however, come at the expense of a persistent problem for high diffracted beam flux, which is particularly problematic in single-crystal diffraction of materials with strong scattering power and sharp diffraction peaks. Here, an in-depth examination of data collected on an inorganic material, FeSb2, and an organic semiconductor, rubrene, revealed systematic differences in strong intensities for different incoming beam fluxes, and the implemented detector intensity corrections were found to be inadequate. Only significant beam attenuation for the collection of strong reflections was able to circumvent this systematic error. All data were collected on a bending-magnet beamline at a third-generation synchrotron radiation facility, so undulator and wiggler beamlines and fourth-generation synchrotrons will be even more prone to this error. On the other hand, the low background now allows for an accurate measurement of very weak intensities, and it is shown that it is possible to extract structure factors of exceptional quality using standard crystallographic software for data processing (SAINT-Plus, SADABS and SORTAV), although special attention has to be paid to the estimation of the background. This study resulted in electron-density models of substantially higher accuracy and precision compared with a previous investigation, thus for the first time fulfilling the promise of photon-counting detectors for very accurate structure factor measurements. Full Article text
high Formation of a highly dense tetra-rhenium cluster in a protein crystal and its implications in medical imaging By scripts.iucr.org Published On :: 2019-06-13 The fact that a protein crystal can serve as a chemical reaction vessel is intrinsically fascinating. That it can produce an electron-dense tetranuclear rhenium cluster compound from a rhenium tricarbonyl tribromo starting compound adds to the fascination. Such a cluster has been synthesized previously in vitro, where it formed under basic conditions. Therefore, its synthesis in a protein crystal grown at pH 4.5 is even more unexpected. The X-ray crystal structures presented here are for the protein hen egg-white lysozyme incubated with a rhenium tricarbonyl tribromo compound for periods of one and two years. These reveal a completed, very well resolved, tetra-rhenium cluster after two years and an intermediate state, where the carbonyl ligands to the rhenium cluster are not yet clearly resolved, after one year. A dense tetranuclear rhenium cluster, and its technetium form, offer enhanced contrast in medical imaging. Stimulated by these crystallography results, the unusual formation of such a species directly in an in vivo situation has been considered. It offers a new option for medical imaging compounds, particularly when considering the application of the pre-formed tetranuclear cluster, suggesting that it may be suitable for medical diagnosis because of its stability, preference of formation and biological compatibility. Full Article text
high X-ray magnetic diffraction under high pressure By scripts.iucr.org Published On :: 2019-06-21 Advances in both non-resonant and resonant X-ray magnetic diffraction since the 1980s have provided researchers with a powerful tool for exploring the spin, orbital and ion degrees of freedom in magnetic solids, as well as parsing their interplay. Here, we discuss key issues for performing X-ray magnetic diffraction on single-crystal samples under high pressure (above 40 GPa) and at cryogenic temperatures (4 K). We present case studies of both non-resonant and resonant X-ray magnetic diffraction under pressure for a spin-flip transition in an incommensurate spin-density-wave material and a continuous quantum phase transition of a commensurate all-in–all-out antiferromagnet. Both cases use diamond-anvil-cell technologies at third-generation synchrotron radiation sources. In addition to the exploration of the athermal emergence and evolution of antiferromagnetism discussed here, these techniques can be applied to the study of the pressure evolution of weak charge order such as charge-density waves, antiferro-type orbital order, the charge anisotropic tensor susceptibility and charge superlattices associated with either primary spin order or softened phonons. Full Article text
high High-throughput structures of protein–ligand complexes at room temperature using serial femtosecond crystallography By scripts.iucr.org Published On :: 2019-10-10 High-throughput X-ray crystal structures of protein–ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein–ligand complexes using SFX. Full Article text
high High-pressure polymorphism in pyridine By scripts.iucr.org Published On :: 2020-01-01 Single crystals of the high-pressure phases II and III of pyridine have been obtained by in situ crystallization at 1.09 and 1.69 GPa, revealing the crystal structure of phase III for the first time using X-ray diffraction. Phase II crystallizes in P212121 with Z' = 1 and phase III in P41212 with Z' = ½. Neutron powder diffraction experiments using pyridine-d5 establish approximate equations of state of both phases. The space group and unit-cell dimensions of phase III are similar to the structures of other simple compounds with C2v molecular symmetry, and the phase becomes stable at high pressure because it is topologically close-packed, resulting in a lower molar volume than the topologically body-centred cubic phase II. Phases II and III have been observed previously by Raman spectroscopy, but have been mis-identified or inconsistently named. Raman spectra collected on the same samples as used in the X-ray experiments establish the vibrational characteristics of both phases unambiguously. The pyridine molecules interact in both phases through CH⋯π and CH⋯N interactions. The nature of individual contacts is preserved through the phase transition between phases III and II, which occurs on decompression. A combination of rigid-body symmetry mode analysis and density functional theory calculations enables the soft vibrational lattice mode which governs the transformation to be identified. Full Article text
high The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase By scripts.iucr.org Published On :: 2020-01-25 Single-particle electron cryo-microscopy (cryoEM) has undergone a `resolution revolution' that makes it possible to characterize megadalton (MDa) complexes at atomic resolution without crystals. To fully exploit the new opportunities in molecular microscopy, new procedures for the cloning, expression and purification of macromolecular complexes need to be explored. Macromolecular assemblies are often unstable, and invasive construct design or inadequate purification conditions and sample-preparation methods can result in disassembly or denaturation. The structure of the 2.6 MDa yeast fatty acid synthase (FAS) has been studied by electron microscopy since the 1960s. Here, a new, streamlined protocol for the rapid production of purified yeast FAS for structure determination by high-resolution cryoEM is reported. Together with a companion protocol for preparing cryoEM specimens on a hydrophilized graphene layer, the new protocol yielded a 3.1 Å resolution map of yeast FAS from 15 000 automatically picked particles within a day. The high map quality enabled a complete atomic model of an intact fungal FAS to be built. Full Article text
high Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1 By scripts.iucr.org Published On :: 2020-02-11 Methods are presented that detect three types of aberrations in single-particle cryo-EM data sets: symmetrical and antisymmetrical optical aberrations and magnification anisotropy. Because these methods only depend on the availability of a preliminary 3D reconstruction from the data, they can be used to correct for these aberrations for any given cryo-EM data set, a posteriori. Using five publicly available data sets, it is shown that considering these aberrations improves the resolution of the 3D reconstruction when these effects are present. The methods are implemented in version 3.1 of the open-source software package RELION. Full Article text
high High-resolution cryo-EM reconstructions in the presence of substantial aberrations By scripts.iucr.org Published On :: 2020-03-26 Here, an analysis is performed of how uncorrected antisymmetric aberrations, such as coma and trefoil, affect cryo-EM single-particle reconstruction (SPR) results, and an analytical formula quantifying information loss owing to their presence is inferred that explains why Fourier-shell coefficient-based statistics may report significantly overestimated resolution if these aberrations are not fully corrected. The analysis is validated with reference-based aberration refinement for two cryo-EM SPR data sets acquired with a 200 kV microscope in the presence of coma exceeding 40 µm, and 2.3 and 2.7 Å reconstructions for 144 and 173 kDa particles, respectively, were obtained. The results provide a description of an efficient approach for assessing information loss in cryo-EM SPR data acquired in the presence of higher order aberrations, and address inconsistent guidelines regarding the level of aberrations that is acceptable in cryo-EM SPR experiments. Full Article text
high Visualization of protein crystals by high-energy phase-contrast X-ray imaging By scripts.iucr.org Published On :: 2019-10-31 For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallography beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources. Full Article text
high High-energy-resolution inelastic X-ray scattering spectrometer at beamline 30-ID of the Advanced Photon Source By scripts.iucr.org Published On :: 2020-04-06 Inelastic X-ray scattering is a powerful and versatile technique for studying lattice dynamics in materials of scientific and technological importance. In this article, the design and capabilities of the momentum-resolved high-energy-resolution inelastic X-ray spectrometer (HERIX) at beamline 30-ID of the Advanced Photon Source are reported. The instrument operates at 23.724 keV and has an energy resolution of 1.3–1.7 meV. It can accommodate momentum transfers of up to 72 nm−1, at a typical X-ray flux of 4.5 × 109 photons s−1 meV−1 at the sample. A suite of in situ sample environments are provided, including high pressure, static magnetic fields and uniaxial strains, all at high or cryogenic temperatures. Full Article text
high High-dynamic-range transmission-mode detection of synchrotron radiation using X-ray excited optical luminescence in diamond By scripts.iucr.org Published On :: 2020-03-13 Enhancement of X-ray excited optical luminescence in a 100 µm-thick diamond plate by introduction of defect states via electron beam irradiation and subsequent high-temperature annealing is demonstrated. The resulting X-ray transmission-mode scintillator features a linear response to incident photon flux in the range 7.6 × 108 to 1.26 × 1012 photons s−1 mm−2 for hard X-rays (15.9 keV) using exposure times from 0.01 to 5 s. These characteristics enable a real-time transmission-mode imaging of X-ray photon flux density without disruption of X-ray instrument operation. Full Article text
high Comparative study of the around-Fermi electronic structure of 5d metals and metal-oxides by means of high-resolution X-ray emission and absorption spectroscopies By scripts.iucr.org Published On :: 2020-04-14 The composition of occupied and unoccupied electronic states in the vicinity of Fermi energies is vital for all materials and relates to their physical, chemical and mechanical properties. This work demonstrates how the combination of resonant and non-resonant X-ray emission spectroscopies supplemented with theoretical modelling allows for quantitative analysis of electronic states in 5d transition metal and metal-oxide materials. Application of X-rays provides element selectivity that, in combination with the penetrating properties of hard X-rays, allows determination of the composition of electronic states under working conditions, i.e. non-vacuum environment. Tungsten metal and tungsten oxide are evaluated to show the capability to simultaneously assess composition of around-band-gap electronic states as well as the character and magnitude of the crystal field splitting. Full Article text
high Focusing with saw-tooth refractive lenses at a high-energy X-ray beamline By scripts.iucr.org Published On :: 2020-04-07 The Advanced Photon Source 1-ID beamline, operating in the 40–140 keV X-ray energy range, has successfully employed continuously tunable saw-tooth refractive lenses to routinely deliver beams focused in both one and two dimensions to experiments for over 15 years. The practical experience of implementing such lenses, made of silicon and aluminium, is presented, including their properties, control, alignment, and diagnostic methods, achieving ∼1 µm focusing (vertically). Ongoing development and prospects towards submicrometre focusing at these high energies are also mentioned. Full Article text
high High-efficiency ultra-precision comparator for d-spacing mapping measurement of silicon By scripts.iucr.org Published On :: 2020-03-13 This article describes a high-efficiency experimental configuration for a self-referenced lattice comparator with a `brush beam' of synchrotron radiation from a bending magnet and two linear position-sensitive photon-counting-type X-ray detectors. The efficiency is more than ten times greater compared with the `pencil-beam' configuration and a pair of zero-dimensional detectors. A solution for correcting the systematic deviation of d-spacing measurements caused by the horizontal non-uniformity of the brush beam is provided. Also, the use of photon-counting-type one-dimensional detectors not only improves the spatial resolution of the measurements remarkably but can also adjust the sample's attitude angles easily. Full Article text
high Development of an X-ray imaging detector for high-energy X-ray microtomography By journals.iucr.org Published On :: A dedicated X-ray imaging detector for 200 keV high-energy X-ray microtomography was developed to realize high-efficiency high-resolution imaging while keeping the field of view wide. Full Article text
high A high-power, high-repetition-rate THz source for pump–probe experiments at Linac Coherent Light Source II By journals.iucr.org Published On :: Full Article text
high High-performance Python for crystallographic computing By scripts.iucr.org Published On :: 2019-07-24 The Python programming language, combined with the numerical computing library NumPy and the scientific computing library SciPy, has become the de facto standard for scientific computing in a variety of fields. This popularity is mainly due to the ease with which a Python program can be written and executed (easy syntax, dynamical typing, no compilation etc.), coupled with the existence of a large number of specialized third-party libraries that aim to lift all the limitations of the raw Python language. NumPy introduces vector programming, improving execution speeds, whereas SciPy brings a wealth of highly optimized and reliable scientific functions. There are cases, however, where vector programming alone is not sufficient to reach optimal performance. This issue is addressed with dedicated compilers that aim to translate Python code into native and statically typed code with support for the multi-core architectures of modern processors. In the present article it is shown how these approaches can be efficiently used to tackle different problems, with increasing complexity, that are relevant to crystallography: the 2D Laue function, scattering from a strained 2D crystal, scattering from 3D nanocrystals and, finally, diffraction from films and multilayers. For each case, detailed implementations and explanations of the functioning of the algorithms are provided. Different Python compilers (namely NumExpr, Numba, Pythran and Cython) are used to improve performance and are benchmarked against state-of-the-art NumPy implementations. All examples are also provided as commented and didactic Python (Jupyter) notebooks that can be used as starting points for crystallographers curious to enter the Python ecosystem or wishing to accelerate their existing codes. Full Article text
high High-viscosity sample-injection device for serial femtosecond crystallography at atmospheric pressure By scripts.iucr.org Published On :: 2019-10-17 A sample-injection device has been developed at SPring-8 Angstrom Compact Free-Electron Laser (SACLA) for serial femtosecond crystallography (SFX) at atmospheric pressure. Microcrystals embedded in a highly viscous carrier are stably delivered from a capillary nozzle with the aid of a coaxial gas flow and a suction device. The cartridge-type sample reservoir is easily replaceable and facilitates sample reloading or exchange. The reservoir is positioned in a cooling jacket with a temperature-regulated water flow, which is useful to prevent drastic changes in the sample temperature during data collection. This work demonstrates that the injector successfully worked in SFX of the human A2A adenosine receptor complexed with an antagonist, ZM241385, in lipidic cubic phase and for hen egg-white lysozyme microcrystals in a grease carrier. The injection device has also been applied to many kinds of proteins, not only for static structural analyses but also for dynamics studies using pump–probe techniques. Full Article text
high PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data By scripts.iucr.org Published On :: 2020-03-13 Over the past decade, ptychography has been proven to be a robust tool for non-destructive high-resolution quantitative electron, X-ray and optical microscopy. It allows for quantitative reconstruction of the specimen's transmissivity, as well as recovery of the illuminating wavefront. Additionally, various algorithms have been developed to account for systematic errors and improved convergence. With fast ptychographic microscopes and more advanced algorithms, both the complexity of the reconstruction task and the data volume increase significantly. PtychoShelves is a software package which combines high-level modularity for easy and fast changes to the data-processing pipeline, and high-performance computing on CPUs and GPUs. Full Article text
high Application of a high-throughput microcrystal delivery system to serial femtosecond crystallography By scripts.iucr.org Published On :: 2020-03-25 Microcrystal delivery methods are pivotal in the use of serial femtosecond crystallography (SFX) to resolve the macromolecular structures of proteins. Here, the development of a novel technique and instruments for efficiently delivering microcrystals for SFX are presented. The new method, which relies on a one-dimensional fixed-target system that includes a microcrystal container, consumes an extremely low amount of sample compared with conventional two-dimensional fixed-target techniques at ambient temperature. This novel system can deliver soluble microcrystals without highly viscous carrier media and, moreover, can be used as a microcrystal growth device for SFX. Diffraction data collection utilizing this advanced technique along with a real-time visual servo scan system has been successfully demonstrated for the structure determination of proteinase K microcrystals at 1.85 Å resolution. Full Article text
high High-resolution phonon energy shift measurements with the inelastic neutron spin echo technique By journals.iucr.org Published On :: An energy resolution of <10 µeV for the measurement of phonon energy change is achieved with the inelastic neutron spin echo technique on a conventional neutron triple-axis spectrometer. Full Article text
high Accurate high-resolution single-crystal diffraction data from a Pilatus3 X CdTe detector By journals.iucr.org Published On :: Detailed analysis of the high-flux deficiencies of pixel-array detectors leads to a protocol for the measurement of structure factors of unprecedented accuracy even for inorganic materials, and this significantly advances the prospects for experimental electron-density investigations. Full Article text
high Dark-field electron holography as a recording of crystal diffraction in real space: a comparative study with high-resolution X-ray diffraction for strain analysis of MOSFETs By journals.iucr.org Published On :: A detailed theoretical and experimental comparison of dark-field electron holography (DFEH) and high-resolution X-ray diffraction (HRXRD) is performed. Both techniques are being applied to measure elastic strain in an array of transistors and the role of the geometric phase is emphasized. Full Article text
high High-resolution crystal structures of Escherichia coli FtsZ bound to GDP and GTP By scripts.iucr.org Published On :: 2020-02-05 Bacterial cytokinesis is mediated by the Z-ring, which is formed by the prokaryotic tubulin homolog FtsZ. Recent data indicate that the Z-ring is composed of small patches of FtsZ protofilaments that travel around the bacterial cell by treadmilling. Treadmilling involves a switch from a relaxed (R) state, favored for monomers, to a tense (T) conformation, which is favored upon association into filaments. The R conformation has been observed in numerous monomeric FtsZ crystal structures and the T conformation in Staphylococcus aureus FtsZ crystallized as assembled filaments. However, while Escherichia coli has served as a main model system for the study of the Z-ring and the associated divisome, a structure has not yet been reported for E. coli FtsZ. To address this gap, structures were determined of the E. coli FtsZ mutant FtsZ(L178E) with GDP and GTP bound to 1.35 and 1.40 Å resolution, respectively. The E. coli FtsZ(L178E) structures both crystallized as straight filaments with subunits in the R conformation. These high-resolution structures can be employed to facilitate experimental cell-division studies and their interpretation in E. coli. Full Article text
high Earth’s highest coastal mountain range moved 1,367 miles in 170 million years By insider.si.edu Published On :: Thu, 23 Sep 2010 12:47:46 +0000 Using the ancient magnetic field recorded in these rocks, a Smithsonian research group revealed Santa Marta’s 2,200-kilometer journey from northern Peru to its modern position on the Caribbean coast of Colombia during the past 170 million years. The post Earth’s highest coastal mountain range moved 1,367 miles in 170 million years appeared first on Smithsonian Insider. Full Article Research News Science & Nature Caribbean Colombia geology prehistoric rocks & minerals South America Tropical Research Institute
high From chewing tough insects to soft fruit, bat teeth are highly specialized By insider.si.edu Published On :: Tue, 22 Feb 2011 15:55:06 +0000 They found that the molars of fruit-eating species had sharp outer edges that likely allow them to pierce tough fruit skin and pulp... By contrast, the molars of insect-eating species were less complex, possibly because of their smoother shearing surfaces. The post From chewing tough insects to soft fruit, bat teeth are highly specialized appeared first on Smithsonian Insider. Full Article Animals Science & Nature bats endangered species insects mammals Tropical Research Institute
high X-ray stripes in exploded star may reveal highest energies of cosmic rays produced in our Galaxy By insider.si.edu Published On :: Mon, 28 Mar 2011 14:00:54 +0000 The discovery of a pattern of X-ray “stripes” in the remains of an exploded star may provide the first direct evidence that a cosmic event […] The post X-ray stripes in exploded star may reveal highest energies of cosmic rays produced in our Galaxy appeared first on Smithsonian Insider. Full Article Research News Science & Nature astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Chandra X-Ray Observatory Smithsonian Astrophysical Observatory supernova
high Stunning high-resolution NASA images available online for public exhibits By insider.si.edu Published On :: Thu, 05 May 2011 13:06:38 +0000 The National Aeronautics and Space Administration has made available to the public a new online collection of images that capture the excitement of planetary exploration and the journey to understand the origin and evolution of the solar system. The post Stunning high-resolution NASA images available online for public exhibits appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory
high Unlocking the mysteries of Jefferson’s bible with high-tech analysis and microscopic testing By insider.si.edu Published On :: Wed, 24 Aug 2011 16:27:23 +0000 The Life and Morals of Jesus of Nazareth, more commonly known as the Jefferson bible, is a volume created by Thomas Jefferson containing passages he […] The post Unlocking the mysteries of Jefferson’s bible with high-tech analysis and microscopic testing appeared first on Smithsonian Insider. Full Article Science & Nature Spotlight conservation materials science National Museum of American History
high Astronomers release highest-resolution images ever of the Sun’s corona By insider.si.edu Published On :: Fri, 20 Jul 2012 15:19:56 +0000 Today, astronomers are releasing the highest-resolution images ever taken of the Sun's corona, or million-degree outer atmosphere, in an extreme-ultraviolet wavelength of light. The post Astronomers release highest-resolution images ever of the Sun’s corona appeared first on Smithsonian Insider. Full Article Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory Sun
high National Zoo orangutans turn high-tech with apps for apes By insider.si.edu Published On :: Tue, 22 Jan 2013 17:20:20 +0000 With the tap of a finger, keepers are introducing the Zoo’s six orangutans to iPads, which provide unique stimuli. The post National Zoo orangutans turn high-tech with apps for apes appeared first on Smithsonian Insider. Full Article Animals Anthropology Science & Nature endangered species mammals primates Smithsonian's National Zoo
high New study proves the remora’s sucker disc is in fact a highly modified dorsal fin / Q&A with taxonomist David Johnson By insider.si.edu Published On :: Fri, 08 Feb 2013 12:54:10 +0000 The remora's sucker disc is "one of the most remarkable and most highly modified skeletal structures among vertebrates." The post New study proves the remora’s sucker disc is in fact a highly modified dorsal fin / Q&A with taxonomist David Johnson appeared first on Smithsonian Insider. Full Article Animals Marine Science Q & A fishes National Museum of Natural History new species osteology
high Highly distorted supernova remnant seen by Chandra X-ray Observatory By insider.si.edu Published On :: Thu, 14 Feb 2013 18:40:31 +0000 New data from NASA's Chandra X-ray Observatory suggest a highly distorted supernova remnant (shown here) may contain the most recent black hole formed in the Milky Way galaxy. The post Highly distorted supernova remnant seen by Chandra X-ray Observatory appeared first on Smithsonian Insider. Full Article Space Spotlight astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Chandra X-Ray Observatory Milky Way supernova
high High hopes for 60 year-old crocodile to become mother again By insider.si.edu Published On :: Thu, 04 Dec 2014 12:00:46 +0000 The challenges of conceiving only get greater as we get older. But if you have some of the most prized genes within your entire species, […] The post High hopes for 60 year-old crocodile to become mother again appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature captive breeding conservation biology endangered species Smithsonian's National Zoo