zo Two isostructural 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-ones: disorder and supramolecular assembly By scripts.iucr.org Published On :: 2020-01-01 Two new chalcones containing both pyrazole and thiophene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one, C23H18N2O2S (I), and 3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one, C24H20N2O2S (II), are isomorphous as well as isostructural, and in each the thiophene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the molecules are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds. Comparisons are made with some related compounds. Full Article text
zo Crystal structure and Hirshfeld surface analysis of a copper(II) complex with ethylenediamine and non-coordinated benzoate By scripts.iucr.org Published On :: 2020-01-01 In the title compound, diaquabis(ethylenediamine-κ2N,N')copper(II) bis(2-nitrobenzoate), [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, two diaquabis(ethylenediamine)copper(II) cations and four nitrobenzoate anions are present in the asymmetric unit. All four anions are `whole-molecule' disordered over two sets of sites. The major components have refined occupancies of 0.572 (13), 0.591 (9), 0.601 (9) and 0.794 (10). The CuII ions exhibit slightly distorted octahedral geometries. In the crystal, cations and anions are connected to each other via N—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (200). The intermolecular contacts in the crystal were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are O⋯H/H⋯O (42.9%), followed by H⋯H (35.7%), C⋯H/H⋯C (14.2%), C⋯C (2.9%), C⋯O/O⋯C (2.2%), N⋯H/H⋯N (0.9%) and N⋯O/O⋯N (0.3%). Full Article text
zo Synthesis and crystal structure of (1,8-naphthyridine-κ2N,N')[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexafluoridophosphate dichloromethane monosolvate By scripts.iucr.org Published On :: 2020-01-01 The solvated title salt, [Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2, was obtained from the reaction between 1,8-naphthyridine (NAP) and an orthometalated iridium(III) precursor containing a 1-phenylpyrazole (ppz) ligand. The asymmetric unit comprises one [Ir(ppz)2(NAP)]+ cation, one PF6− counter-ion and one CH2Cl2 solvent molecule. The central IrIII atom of the [Ir(ppz)2(NAP)]+ cation is distorted-octahedrally coordinated by four N atoms and two C atoms, whereby two N atoms stem from the NAP ligand while the ppz ligands ligate through one N and one C atom each. In the crystal, the [Ir(ppz)2(NAP)]+ cations and PF6− counter-ions are connected with each other through weak intermolecular C—H⋯F hydrogen bonds. Together with an additional C—H⋯F interaction involving the solvent molecule, a three-dimensional network structure is formed. Full Article text
zo Crystal structure, Hirshfeld surface analysis and DFT studies of 1-benzyl-3-[(1-benzyl-1H-1,2,3-triazol-5-yl)methyl]-2,3-dihydro-1H-1,3-benzodiazol-2-one monohydrate By scripts.iucr.org Published On :: 2020-01-01 In the title molecule, C24H21N5O·H2O, the dihydrobenzodiazole moiety is not quite planar, while the whole molecule adopts a U-shaped conformation in which there is a close approach of the two benzyl groups. In the crystal, chains of alternating molecules and lattice water extending along [201] are formed by O—HUncoordW⋯ODhyr and O—HUncoordW⋯NTrz (UncoordW = uncoordinated water, Dhyr = dihydro and Trz = triazole) hydrogen bonds. The chains are connected into layers parallel to (010) by C—HTrz⋯OUncoordW hydrogen bonds with the dihydrobenzodiazole units in adjacent layers intercalating to form head-to-tail π-stacking [centroid-to-centroid distance = 3.5694 (11) Å] interactions between them, which generates the overall three-dimensional structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (52.1%), H⋯C/C⋯H (23.8%) and O⋯H/H⋯O (11.2%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
zo The 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and benzoic acid: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-01 The crystal and molecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide molecule has a (+)-antiperiplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid molecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hydroxy-O—H⋯N(pyridyl) hydrogen bonds between the benzoic acid molecules and the pyridyl residues of the diamide leads to a three-molecule aggregate. Centrosymmetrically related aggregates assemble into a six-molecule aggregate via amide-N—H⋯O(amide) hydrogen bonds through a 10-membered {⋯HNC2O}2 synthon. These are linked into a supramolecular tape via amide-N—H⋯O(carbonyl) hydrogen bonds and 22-membered {⋯HOCO⋯NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methylene-C—H⋯O(amide) and pyridyl-C—H⋯O(carbonyl). These interactions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces. Full Article text
zo Crystal structure, DFT and Hirshfeld surface analysis of (E)-N'-[(1-chloro-3,4-dihydronaphthalen-2-yl)methylidene]benzohydrazide monohydrate By scripts.iucr.org Published On :: 2020-01-03 In the title compound, C18H15ClN2O·H2O, a benzohydrazide derivative, the dihedral angle between the mean plane of the dihydronaphthalene ring system and the phenyl ring is 17.1 (2)°. In the crystal, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the benzohydrazide and water molecules, forming a layer parallel to the bc plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (45.7%) and H⋯C/C⋯H (20.2%) contacts. Full Article text
zo Crystal structure and Hirshfeld surface analysis of 1,2,4-triazolium hydrogen oxalate By scripts.iucr.org Published On :: 2020-01-07 The asymmetric unit of the title 1:1 salt 1,2,4-triazolium hydrogen oxalate, C2H4N3+·C2HO4− (I), comprises one 1,2,4-triazolium cation and one hydrogen oxalate anion. In the crystal, the hydrogen oxalate anions are linked by O—H⋯O hydrogen bonds into chains running parallel to [100]. In turn, the anionic chains are linked through the 1,2,4-triazolium cations by charge-assisted +N—H⋯O− hydrogen bonds into sheets aligned parallel to (01overline{1}). The sheets are further stacked through π–π interactions between the 1,2,4-triazolium rings [centroid-to-centroid distance = 3.642 (3) Å, normal distance = 3.225 (3) Å, slippage 1.691 Å], resulting in the formation of a three-dimensional supramolecular network. Hirshfeld surface analysis of the title salt suggests that the most significant contributions to the crystal packing are by H⋯O/O⋯H and H⋯N/N⋯H contacts involving the hydrogen bonds. Full Article text
zo 3,3-Bis(2-hydroxyethyl)-1-(4-nitrobenzoyl)thiourea: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-07 In the title compound, C12H15N3O5S, a trisubstituted thiourea derivative, the central CN2S chromophore is almost planar (r.m.s. deviation = 0.018 Å) and the pendant hydroxyethyl groups lie to either side of this plane. While to a first approximation the thione-S and carbonyl-O atoms lie to the same side of the molecule, the S—C—N—C torsion angle of −47.8 (2)° indicates a considerable twist. As one of the hydroxyethyl groups is orientated towards the thioamide residue, an intramolecular N—H⋯O hydrogen bond is formed which leads to an S(7) loop. A further twist in the molecule is indicated by the dihedral angle of 65.87 (7)° between the planes through the CN2S chromophore and the 4-nitrobenzene ring. There is a close match between the experimental and gas-phase, geometry-optimized (DFT) molecular structures. In the crystal, O—H⋯O and O—H⋯S hydrogen bonds give rise to supramolecular layers propagating in the ab plane. The connections between layers to consolidate the three-dimensional architecture are of the type C—H⋯O, C—H⋯S and nitro-O⋯π. The nature of the supramolecular association has been further analysed by a study of the calculated Hirshfeld surfaces, non-covalent interaction plots and computational chemistry, all of which point to the significant influence and energy of stabilization provided by the conventional hydrogen bonds. Full Article text
zo Synthesis and crystal structure of 3-(adamantan-1-yl)-4-(2-bromo-4-fluorophenyl)-1H-1,2,4-triazole-5(4H)-thione By scripts.iucr.org Published On :: 2020-01-10 In the title compound, C18H19BrFN3S, the 1,2,4-triazole ring is nearly planar with a maximum deviation of −0.009 (3) and 0.009 (4) Å, respectively, for the S-bound C atom and the N atom bonded to the bromofluorophenyl ring. The phenyl and triazole rings are almost perpendicular to each other, forming a dihedral angle of 89.5 (2)°. In the crystal, the molecules are linked by weak C—H⋯π(phenyl) interactions, forming supramolecular chains extending along the c-axis direction. The crystal packing is further consolidated by intermolecular N—H⋯S hydrogen bonds and by weak C—H⋯S interactions, yielding double chains propagating along the a-axis direction. The crystal studied was refined as a racemic twin. Full Article text
zo Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(pentafluoro-λ6-sulfanyl)benzonitrile By scripts.iucr.org Published On :: 2020-01-17 The title compound, C7H3F5INS, a pentafluorosulfanyl (SF5) containing arene, was synthesized from 4-(pentafluorosulfanyl)benzonitrile and lithium tetramethylpiperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 intermediates that have not been demonstrated using previous methods. The molecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the pentafluorosulfanyl substituent in the plane of the molecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The pentafluorosulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S—F bond lengths of the pentafluorosulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the molecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S—F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C—H⋯F and N⋯I interactions as well as out-of-plane F⋯C interactions are observed. According to the Hirshfeld analysis, the principal intermolecular contacts for the title compound are F⋯H (29.4%), F⋯I (15.8%), F⋯N (11.4%), F⋯F (6.0%), N⋯I (5.6%) and F⋯C (4.5%). Full Article text
zo Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and 4-chlorobenzoic acid By scripts.iucr.org Published On :: 2020-01-21 The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half molecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two molecules of 4-chlorobenzoic acid (CBA), each in general positions. Each 4LH2 molecule has a (+)antiperiplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 molecules. The anti conformation of the carbonyl groups enables the formation of intramolecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA molecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-molecule aggregates are formed via carboxylic acid-O—H⋯N(pyridyl) hydrogen bonding. These are connected into a supramolecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methylene-C—H⋯O(carbonyl) and CBA-C—H⋯O(amide) interactions. As revealed by a more detailed analysis of the molecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O interactions which provide interaction energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supramolecular tape. Full Article text
zo Crystal structure of the mixed methanol and ethanol solvate of bis{3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazidato}zinc(II) By scripts.iucr.org Published On :: 2020-02-06 The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex molecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π–π interactions between the planar ligand moieties, which are further connected by C⋯O and C⋯C interactions. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) interactions. Full Article text
zo Crystal structure, Hirshfeld surface analysis, interaction energy and DFT studies of (2Z)-2-(2,4-dichlorobenzylidene)-4-nonyl-3,4-dihydro-2H-1,4-benzothiazin-3-one By scripts.iucr.org Published On :: 2020-01-31 The title compound, C24H27Cl2NOS, contains 1,4-benzothiazine and 2,4-dichlorophenylmethylidene units in which the dihydrothiazine ring adopts a screw-boat conformation. In the crystal, intermolecular C—HBnz⋯OThz (Bnz = benzene and Thz = thiazine) hydrogen bonds form chains of molecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-dichlorophenyl) hydrogen bonds and C—HDchlphy⋯π (ring) interactions. These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.7%), C⋯H/H⋯C (23.7%), Cl⋯H/H⋯Cl (18.9%), O⋯H/H⋯O (5.0%) and S⋯H/H⋯S (4.8%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HDchlphy⋯OThz, C—HBnz⋯OThz and C—HBnz⋯ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio. Full Article text
zo Crystal structure of {4-[10,15,20-tris(4-methoxyphenyl)porphyrin-5-yl]benzyl 2-diazoacetato}zinc(II) By scripts.iucr.org Published On :: 2020-01-31 In the title compound, [Zn(C50H36N6O5)], the ZnII cation is chelated by four pyrrole N atoms of the porphyrinate anion and coordinated by a symmetry-generated keto O atom of the diazoester group in a distorted square-pyramidal geometry. The mean Zn—N(pyrrole) bond length is 2.058 Å and the Zn—O(diazoester) bond length is 2.179 (4) Å. The zinc cation is displaced by 0.2202 (13) Å from the N4C20 mean plane of the porphyrinate anion toward the O atom; the involvement of this atom leads to a [100] polymeric chain in the crystal. Full Article text
zo Crystal structure, synthesis and thermal properties of bis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)bis(methanol-κN)iron(II) By scripts.iucr.org Published On :: 2020-01-31 In the crystal structure of the title compound, [Fe(NCS)2(C12H9NO)2(CH4O)2], the FeII cations are octahedrally coordinated by two N atoms of 4-benzoylpyridine ligands, two N atoms of two terminal isothiocyanate anions and two methanol molecules into discrete complexes that are located on centres of inversion. These complexes are linked via intermolecular O—H⋯O hydrogen bonds between the methanol O—H H atoms and the carbonyl O atoms of the 4-benzoylpyridine ligands, forming layers parallel to (101). Powder X-ray diffraction proved that a pure sample was obtained but that this compound is unstable and transforms into an unknown crystalline phase within several weeks. However, the solvent molecules can be removed by heating in a thermobalance, which for the aged sample as well as the title compound leads to the formation of a compound with the composition Fe(NCS)2(4-benzoylpyridine)2, which exhibits a powder pattern that is similar to that of Mn(NCS)2(4-benzoylpyridine)2. Full Article text
zo Crystal structure of 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane bis(perchlorate) dichloride from synchrotron X-ray data By scripts.iucr.org Published On :: 2020-02-11 The crystal structure of title salt, C14H36N44+·2ClO4−·2Cl−, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit contains one half-cation (completed by crystallographic inversion symmetry), one perchlorate anion and one chloride anion. A distortion of the perchlorate anion is due to its involvement in hydrogen-bonding interactions with the cations. The crystal structure is consolidated by intermolecular hydrogen bonds involving the 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane N—H and C—H groups as donor groups, and the O atoms of the perchlorate and chloride anion as acceptor groups, giving rise to a three-dimensional network. Full Article text
zo Crystal structure of imidazo[1,5-a]pyridinium-based hybrid salt (C13H12N3)2[MnCl4] By scripts.iucr.org Published On :: 2020-02-06 A new organic–inorganic hybrid salt [L]2[MnCl4] (I) where L+ is the 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, is built of discrete organic cations and tetrachloridomanganate(II) anions. The L+ cation was formed in situ in the oxidative cyclocondensation of 2-pyridinecarbaldehyde and CH3NH2·HCl in methanol. The structure was refined as a two-component twin using PLATON (Spek, 2020) to de-twin the data. The twin law (−1 0 0 0 − 1 0 0.5 0 1) was applied in the refinement where the twin component fraction refined to 0.155 (1). The compound crystallizes in the space group P21/c with two crystallographically non-equivalent cations in the asymmetric unit, which possess similar structural conformations. The fused pyridinium and imidazolium rings of the cations are virtually coplanar [dihedral angles are 0.89 (18) and 0.78 (17)°]; the pendant pyridyl rings are twisted by 36.83 (14) and 36.14 (13)° with respect to the planes of the remaining atoms of the cations. The tetrahedral MnCl42– anion is slightly distorted with the Mn—Cl distances falling in the range 2.3469 (10)–2.3941 (9) Å. The distortion value of 0.044 relative to the ideal tetrahedron was obtained by continuous shape measurement (CShM) analysis. In the crystal, the cations and anions form separate stacks propagating along the a-axis direction. The organic cations display weak π–π stacking. The anions, which are stacked identically one above the other, demonstrate loose packing; the minimum Mn⋯Mn separation in the cation stack is approximately 7.49 Å. The investigation of the fluorescent properties of a powdered sample of (I) showed no emission. X-band EPR data for (I) at 293 and 77 K revealed broad fine structure signals, indicating moderate zero-field splitting. Full Article text
zo Crystal structure of poly[(μ3-4-amino-1,2,5-oxadiazole-3-hydroxamato)thallium(I)] By scripts.iucr.org Published On :: 2020-02-11 The title compound represents the thallium(I) salt of a substituted 1,2,5-oxadiazole, [Tl(C3H3N4O3)]n, with amino- and hydroxamate groups in the 4- and 3- positions of the oxadiazole ring, respectively. In the crystal, the deprotonated hydroxamate group represents an intermediate between the keto/enol tautomers and forms a five-membered chelate ring with the thallium(I) cation. The coordination sphere of the cation is augmented to a distorted disphenoid by two monodentately binding O atoms from two adjacent anions, leading to the formation of zigzag chains extending parallel to the b axis. The cohesion within the chains is supported by π–π stacking [centroid–centroid distance = 3.746 (3) Å] and intermolecular N—H⋯N hydrogen bonds. Full Article text
zo Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-(1,3-benzothiazol-2-yl)-3-(2-hydroxyethyl)imidazolidin-2-one By scripts.iucr.org Published On :: 2020-02-14 In the title molecule, C12H13N3O2S, the benzothiazine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy⋯NThz hydrogen bonds and weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hydroxyethyl, Thz = thiazole, Imdz = imidazolidine and Bnz = benzene) interactions, together with C—HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] interactions between thiazole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯N and C—H⋯O hydrogen-bond energies are 68.5 (for O—HHydethy⋯NThz), 60.1 (for C—HBnz⋯OImdz) and 41.8 kJ mol−1 (for C—HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. Full Article text
zo Conversion of diarylchalcones into 4,5-dihydropyrazole-1-carbothioamides: molecular and supramolecular structures of two precursors and three products By scripts.iucr.org Published On :: 2020-02-14 Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-dihydropyrazole-1-carbothioamides using a cyclocondensation reaction with thiosemicarbazide. The chalcones 1-(4-chlorophenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromophenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their molecules are linked into sheets by two independent C—H⋯π(arene) interactions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chlorophenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C19H16ClN3OS, (IV), (RS)-3-(4-bromophenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C19H16BrN3OS, (V), and (RS)-3-(4-methoxyphenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-ynyloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their molecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The molecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds. Full Article text
zo Crystal structure and Hirshfeld surface analysis of (E)-3-(benzylideneamino)-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2020-02-21 The central thiazolidine ring of the title salt, C16H16N3S+·Br−, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) interactions. Full Article text
zo Crystal structure of (R)-5-[(R)-3-(4-chlorophenyl)-5-methyl-4,5-dihydroisoxazol-5-yl]-2-methylcyclohex-2-enone By scripts.iucr.org Published On :: 2020-02-18 The title compound, C17H18ClNO2, was prepared and isolated as a pure diastereoisomer, using column chromatography followed by a succession of fractional crystallizations. Its exact structure was fully identified via 1H NMR and confirmed by X-ray diffraction. It is built up from a central five-membered dihydroisoxazole ring to which a p-chlorophenyl group and a cyclohex-2-enone ring are attached in the 3 and 5 positions. The cyclohex-2-one and isoxazoline rings each exhibit an envelope conformation. The crystal packing features C—H⋯O, C—H⋯N and C—H⋯π interactions, which generate a three-dimensional network. Full Article text
zo Structural, Hirshfeld and DFT studies of conjugated D–π–A carbazole chalcone crystal By scripts.iucr.org Published On :: 2020-02-18 A new conjugated carbazole chalcone compound, (E)-3-[4-(9,9a-dihydro-8aH-carbazol-9-yl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (CPNC), C27H18N2O3, was synthesized using a Claisen–Schmidt condensation reaction. CPNC crystallizes in the monoclinic non-centrosymmetric space group Cc and adopts an s-cis conformation with respect to the ethylenic double bonds (C=O and C=C). The crystal packing features C—H⋯O and C—H⋯π interactions whose percentage contribution was quantified by Hirshfeld surface analysis. Quantum chemistry calculations including geometrical optimization and molecular electrostatic potential (MEP) were analysed by density functional theory (DFT) with a B3LYP/6–311 G++(d,p) basis set. Full Article text
zo Crystal structure analysis of ethyl 3-(4-chlorophenyl)-1,6-dimethyl-4-methylsulfanyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate By scripts.iucr.org Published On :: 2020-02-25 In the title compound, C18H18ClN3O2S, the dihedral angle between the fused pyrazole and pyridine rings is 3.81 (9)°. The benzene ring forms dihedral angles of 35.08 (10) and 36.26 (9)° with the pyrazole and pyridine rings, respectively. In the crystal, weak C—H⋯O hydrogen bonds connect molecules along [100]. Full Article text
zo Crystal structure of ethyl 2-(5-amino-1-benzenesulfonyl-3-oxo-2,3-dihydro-1H-pyrazol-2-yl)acetate By scripts.iucr.org Published On :: 2020-03-03 In the title compound, C13H15N3O5S, the two rings face each other in a `V' form at the S atom, with one N—H⋯O=S and one C—H⋯O=S contact from the pyrazolyl substituents to the sulfonyl group. Two classical hydrogen bonds from the amine group, one of the form N—H⋯O=S and one N—H⋯O=Coxo, link the molecules to form layers parallel to the bc plane. Full Article text
zo Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of (S)-10-propargylpyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione By scripts.iucr.org Published On :: 2020-03-03 The title compound, C15H14N2O2, consists of pyrrole and benzodiazepine units linked to a propargyl moiety, where the pyrrole and diazepine rings adopt half-chair and boat conformations, respectively. The absolute configuration was assigned on the the basis of l-proline, which was used in the synthesis of benzodiazepine. In the crystal, weak C—HBnz⋯ODiazp and C—HProprg⋯ODiazp (Bnz = benzene, Diazp = diazepine and Proprg = propargyl) hydrogen bonds link the molecules into two-dimensional networks parallel to the bc plane, enclosing R44(28) ring motifs, with the networks forming oblique stacks along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.8%), H⋯C/C⋯H (25.7%) and H⋯O/O⋯H (20.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯O hydrogen-bond energies are 38.8 (for C—HBnz⋯ODiazp) and 27.1 (for C—HProprg⋯ODiazp) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
zo Crystal structure of 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane bis[chloridochromate(VI)] dichloride from synchrotron X-ray data By scripts.iucr.org Published On :: 2020-03-10 The crystal structure of title compound, (C14H36N4)[CrO3Cl]2Cl2, has been determined by synchrotron radiation X-ray crystallography at 220 K. The macrocyclic cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the organic cation, one chlorochromate anion and one chloride anion. Both the Cl− anion and chlorochromate Cl atom are involved in hydrogen bonding. In the crystal, hydrogen bonds involving the 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane (TMC) N—H groups and C—H groups as donor groups and three O atoms of the chlorochromate and the chloride anion as acceptor groups link the components, giving rise to a three-dimensional network. Full Article text
zo Synthesis and crystal structures of two 1,3-di(alkyloxy)-2-(methylsulfanyl)imidazolium tetrafluoridoborates By scripts.iucr.org Published On :: 2020-03-17 Two salts were prepared by methylation of the respective imidazoline-2-thione at the sulfur atom, using Meerwein's salt (trimethyloxonium tetrafluoridoborate) in CH2Cl2. 1,3-Dimethoxy-2-(methylsulfanyl)imidazolium tetrafluoridoborate (1), C6H11N2O2S+·BF4−, displays a syn conformation of its two methoxy groups relative to each other whereas the two benzyloxy groups present in 1,3-dibenzyloxy-2-(methylsulfanyl)imidazolium tetrafluoridoborate (2), C18H19N2O2S+·BF4−, adopt an anti conformation. In the molecules of 1 and 2, the methylsulfanyl group is rotated out of the plane of the respective heterocyclic ring. In both crystal structures, intermolecular interactions are dominated by C—H⋯F—B contacts, leading to three-dimensional networks. The tetrafluoridoborate counter-ion of 2 is disordered over three orientations (occupancy ratio 0.42:0.34:0.24), which are related by rotation about one of the B—F bonds. Full Article text
zo Structural investigation of methyl 3-(4-fluorobenzoyl)-7-methyl-2-phenylindolizine-1-carboxylate, an inhibitory drug towards Mycobacterium tuberculosis By scripts.iucr.org Published On :: 2020-03-20 The title compound, C24H18FNO3, crystallizes in the monoclinic centrosymmetric space group P21/n and its molecular conformation is stabilized via C—H⋯O intramolecular interactions. The supramolecular network mainly comprises C—H⋯O, C—H⋯F and C—H⋯π interactions, which contribute towards the formation of the crystal structure. The different intermolecular interactions have been further analysed via Hirshfeld surface analysis and fingerprint plots. Full Article text
zo Crystal structure of a new phenyl(morpholino)methanethione derivative: 4-[(morpholin-4-yl)carbothioyl]benzoic acid By scripts.iucr.org Published On :: 2020-03-27 4-[(Morpholin-4-yl)carbothioyl]benzoic acid, C12H13NO3S, a novel phenyl(morpholino)methanethione derivative, crystallizes in the monoclinic space group P21/n. The morpholine ring adopts a chair conformation and the carboxylic acid group is bent out slightly from the benzene ring mean plane. The molecular geometry of the carboxylic group is characterized by similar C—O bond lengths [1.266 (2) and 1.268 (2) Å] as the carboxylate H atom is disordered over two positions. This molecular arrangement leads to the formation of dimers through strong and centrosymmetric low barrier O—H⋯O hydrogen bonds between the carboxylic groups. In addition to these intermolecular interactions, the crystal packing consists of two different molecular sheets with an angle between their mean planes of 64.4 (2)°. The cohesion between the different layers is ensured by C—H⋯S and C—H⋯O interactions. Full Article text
zo Crystal structure, Hirshfeld surface analysis and interaction energy, DFT and antibacterial activity studies of ethyl 2-[(2Z)-2-(2-chlorobenzylidene)-3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl]acetate By scripts.iucr.org Published On :: 2020-04-07 The title compound, C19H16ClNO3S, consists of chlorophenyl methylidene and dihydrobenzothiazine units linked to an acetate moiety, where the thiazine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh⋯ODbt (Ph = phenyl and Dbt = dihydrobenzothiazine) hydrogen bonds form layers of molecules parallel to the bc plane. The layers stack along the a-axis direction with intercalation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (37.5%), H⋯C/C⋯H (24.6%) and H⋯O/O⋯H (16.7%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh⋯ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the antibacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria. Full Article text
zo Crystal structures of (η4-cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide and (η4-cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide By scripts.iucr.org Published On :: 2020-04-03 The title complexes, (η4-cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C5H8N2)2(C8H12)]I, (1) and (η4-cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C7H12N2)2(C8H12)]I, (2), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid l-proline to [Ir(COD)(IMe)2]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C2/m, while 2 crystallizes in the orthorhombic space group Pccn, both with Z = 4. Full Article text
zo Synthesis and crystal structures of tetrameric [2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]sodium and tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]ytterbium(III) By scripts.iucr.org Published On :: 2020-04-21 Reaction of 2-(4,4-dimethyl-2-oxazolin-2-yl)aniline (H2-L1) with one equivalent of Na[N(SiMe3)2] in toluene afforded pale-yellow crystals of tetrameric poly[bis[μ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][μ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)], [Na4(C11H13N2O)4]n or [Na4(H-L1)4]n (2), in excellent yield. Subsequent reaction of [Na4(H-L1)4]n (2) with 1.33 equivalents of anhydrous YbCl3 in a 50:50 mixture of toluene–THF afforded yellow crystals of tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III), [Yb(C11H13N2O)3] or Yb(H-L1)3 (3) in moderate yield. Direct reaction of three equivalents of 2-(4',4'-dimethyl-2'-oxazolinyl)aniline (H2-L1) with Yb[N(SiMe3)2]3 in toluene resulted in elimination of hexamethyldisilazane, HN(SiMe3)2, and produced Yb(H-L1)3 (3) in excellent yield. The structure of 2 consists of tetrameric Na4(H-L1)4 subunits in which each Na+ cation is bound to two H-L1 bridging bidentate ligands and these subunits are connected into a polymeric chain by two of the four oxazoline O atoms bridging to Na+ cations in the adjacent tetramer. This results in two 4-coordinate and two 5-coordinate Na+ cations within each tetrameric unit. The structure of 3 consists of a distorted octahedron where the bite angle of ligand L1 ranges between 74.72 (11) and 77.79 (11) degrees. The oxazoline (and anilide) N atoms occupy meridional sites such that for one ligand an anilide nitrogen is trans to an oxazoline nitrogen while for the other two oxazoline N atoms are trans to each other. This results in a significantly longer Yb—N(oxazoline) distance [2.468 (3) Å] for the bond trans to the anilide compared to those for the oxazoline N atoms trans to one another [2.376 (3), 2.390 (3) Å]. Full Article text
zo Crystal structure of bis(1-mesityl-1H-imidazole-κN3)diphenylboron trifluoromethanesulfonate By scripts.iucr.org Published On :: 2020-04-21 The solid-state structure of bis(1-mesityl-1H-imidazole-κN3)diphenylboron trifluoromethanesulfonate, C36H38BN4+·CF3SO3− or (Ph2B(MesIm)2OTf), is reported. Bis(1-mesityl-1H-imidazole-κN3)diphenylboron (Ph2B(MesIm)2+) is a bulky ligand that crystallizes in the orthorhombic space group Pbcn. The asymmetric unit contains one Ph2B(MesIm)2+ cationic ligand and one trifluoromethanesulfonate anion that balances the positive charge of the ligand. The tetrahedral geometry around the boron center is distorted as a result of the steric bulk of the phenyl groups. Weak interactions, such as π–π stacking are present in the crystal structure. Full Article text
zo Synthesis and structure of ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]acetate By scripts.iucr.org Published On :: 2020-04-17 The title compound, C18H16N2O3S, was synthesized by reaction of 2-mercapto-3-phenylquinazolin-4(3H)-one with ethyl chloroacetate. The quinazoline ring forms a dihedral angle of 86.83 (5)° with the phenyl ring. The terminal methyl group is disordered by a rotation of about 60° in a 0.531 (13): 0.469 (13) ratio. In the crystal, C—H⋯O hydrogen-bonding interactions result in the formation of columns running in the [010] direction. Two parallel columns further interact by C—H⋯O hydrogen bonds. The most important contributions to the surface contacts are from H⋯H (48.4%), C⋯H/H⋯C (21.5%) and O⋯H/H⋯O (18.7%) interactions, as concluded from a Hirshfeld analysis. Full Article text
zo Functionalized 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-substituted-phenyl)prop-2-en-1-ones: synthetic pathway, and the structures of six examples By scripts.iucr.org Published On :: 2020-04-21 Five examples each of 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-ones and the corresponding 1-(4-azidophenyl)-3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones have been synthesized in a highly efficient manner, starting from a common source precursor, and structures have been determined for three examples of each type. In each of 3-[5-(2-chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one, C28H21ClN2O3, (Ib), the isomeric 3-[5-(2-chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one, (Ic), and 3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C32H24N2O3, (Ie), the molecules are linked into chains of rings, formed by two independent C—H⋯O hydrogen bonds in (Ib) and by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in each of (Ic) and (Ie). There are no direction-specific intermolecular interactions in the structure of 1-(4-azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C26H21N5O2, (IIa). In 1-(4-azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C25H17Cl2N5O2, (IId), the dichlorophenyl group is disordered over two sets of atomic sites having occupancies 0.55 (4) and 0.45 (4), and the molecules are linked by a single C—H⋯O hydrogen bond to form cyclic, centrosymmetric R22(20) dimers. Similar dimers are formed in 1-(4-azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C29H21N5O2, (IIe), but here the dimers are linked into a chain of rings by two independent C—H..π(arene) hydrogen bonds. Comparisons are made between the molecular conformations within both series of compounds. Full Article text
zo Crystal structure, Hirshfeld surface analysis and DFT studies of 6-bromo-3-(12-bromododecyl)-2-(4-nitrophenyl)-4H-imidazo[4,5-b]pyridine By scripts.iucr.org Published On :: 2020-04-21 The title compound, C24H30Br2N4O2, consists of a 2-(4-nitrophenyl)-4H-imidazo[4,5-b]pyridine entity with a 12-bromododecyl substituent attached to the pyridine N atom. The middle eight-carbon portion of the side chain is planar to within 0.09 (1) Å and makes a dihedral angle of 21.9 (8)° with the mean plane of the imidazolopyridine moiety, giving the molecule a V-shape. In the crystal, the imidazolopyridine units are associated through slipped π–π stacking interactions together with weak C—HPyr⋯ONtr and C—HBrmdcyl⋯ONtr (Pyr = pyridine, Ntr = nitro and Brmdcyl = bromododecyl) hydrogen bonds. The 12-bromododecyl chains overlap with each other between the stacks. The terminal –CH2Br group of the side chain shows disorder over two resolved sites in a 0.902 (3):0.098 (3) ratio. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.1%), H⋯Br/Br⋯H (15.0%) and H⋯O/O⋯H (12.8%) interactions. The optimized molecular structure, using density functional theory at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
zo Crystal structure and Hirshfeld surface analysis of 2-phenyl-1H-phenanthro[9,10-d]imidazol-3-ium benzoate By scripts.iucr.org Published On :: 2020-04-24 In the title compound, C21H15N2+·C7H5O2−, 2-phenyl-1H-phenanthro[9,10-d]imidazole and benzoic acid form an ion pair complex. The system is consolidated by hydrogen bonds along with π–π interactions and N—H⋯π interactions between the constituent units. For a better understanding of the crystal structure and intermolecular interactions, a Hirshfeld surface analysis was performed. Full Article text
zo Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)methyl]amino}benzoic acid dimethylformamide monosolvate By scripts.iucr.org Published On :: 2020-04-24 The title compound, C22H17NO2·C3H7NO, was synthesized by condensation of an aromatic aldehyde with a secondary amine and subsequent reduction. It was crystallized from a dimethylformamide solution as a monosolvate, C22H17NO2·C3H7NO. The aromatic molecule is non-planar with a dihedral angle between the mean planes of the aniline moiety and the methyl anthracene moiety of 81.36 (8)°. The torsion angle of the Caryl—CH2—NH—Caryl backbone is 175.9 (2)°. The crystal structure exhibits a three-dimensional supramolecular network, resulting from hydrogen-bonding interactions between the carboxylic OH group and the solvent O atom as well as between the amine functionality and the O atom of the carboxylic group and additional C—H⋯π interactions. Hirshfeld surface analysis was performed to quantify the intermolecular interactions. Full Article text
zo Crystal structure and Hirshfeld surface analysis of 6-benzoyl-3,5-diphenylcyclohex-2-en-1-one By scripts.iucr.org Published On :: 2020-04-21 In the title compound, C25H20O2, the central cyclohexenone ring adopts an envelope conformation. The mean plane of the cyclohexenone ring makes dihedral angles of 87.66 (11) and 23.76 (12)°, respectively, with the two attached phenyl rings, while it is inclined by 69.55 (11)° to the phenyl ring of the benzoyl group. In the crystal, the molecules are linked by C—H⋯O and C—H⋯π interactions, forming a three-dimensional network. Full Article text
zo Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-chlorophenyl)-5-cyclopropyl-1-(4-methoxyphenyl)-1H-1,2,3-triazole-4-carboxamide By scripts.iucr.org Published On :: 2020-04-30 The title compound, C19H17ClN4O2, was obtained via a two-step synthesis involving the enol-mediated click Dimroth reaction of 4-azidoanisole with methyl 3-cyclopropyl-3-oxopropanoate leading to the 5-cyclopropyl-1-(4-methoxyphenyl)-1H-1,2,3-triazole-4-carboxylic acid and subsequent acid amidation with 4-chloroaniline by 1,1'-carbonyldiimidazole (CDI). It crystallizes in space group P21/n, with one molecule in the asymmetric unit. In the extended structure, two molecules arranged in a near coplanar fashion relative to the triazole ring planes are interconnected by N—H⋯N and C—H⋯N hydrogen bonds into a homodimer. The formation of dimers is a consequence of the above interaction and the edge-to-face stacking of aromatic rings, which are turned by 58.0 (3)° relative to each other. The dimers are linked by C—H⋯O interactions into ribbons. DFT calculations demonstrate that the frontier molecular orbitals are well separated in energy and the HOMO is largely localized on the 4-chlorophenyl amide motif while the LUMO is associated with aryltriazole grouping. A Hirshfeld surface analysis was performed to further analyse the intermolecular interactions. Full Article text
zo Insight into the role of pre-assembly and desolvation in crystal nucleation: a case of p-nitrobenzoic acid By scripts.iucr.org Published On :: 2019-09-18 As one of the most important phenomena in crystallization, the crystal nucleation process has always been the focus of research. In this work, influences of pre-assembly species and the desolvation process on the crystal nucleation process were studied. p-Nitrobenzoic acid (PNBA) was taken as a model compound to investigate the relationship between solution chemistry and nucleation kinetics in seven different solvents. One unsolvated form and four solvates of PNBA were obtained and one of the solvates was newly discovered. The nucleation behaviours and nucleation kinetics of PNBA in the seven solvents were studied and analyzed. Density functional theory (DFT) and solvation energy calculation were adopted to evaluate the strength of solute–solvent interactions. Vibrational spectroscopy combined with molecular simulation was applied to reveal the pre-assembly species in the solution. Based on these results, a comprehensive understanding of the relationship between molecular structure, crystal structure, solution chemistry and nucleation dynamics was proposed and discussed. It was found that the structural similarity between solution chemistry and crystal structure, the interaction between specific sites and the overall strength of solvation will jointly affect the nucleation process. Full Article text
zo Measurement of the horizontal beam emittance of undulator radiation by tandem-double-slit optical system By scripts.iucr.org Published On :: 2020-04-15 A tandem-double-slit optical system was constructed to evaluate the practical beam emittance of undulator radiation. The optical system was a combination of an upstream slit (S1) and downstream slit (S2) aligned on the optical axis with an appropriate separation. The intensity distribution after the double slits, I(x1, x2), was measured by scanning S1 and S2 in the horizontal direction. Coordinates having 1/sqrt e intensity were extracted from I(x1, x2), whose contour provided the standard deviation ellipse in the x1–x2 space. I(x1, x2) was converted to the corresponding distribution in the phase space, I(x1, x1'). The horizontal beam emittance was evaluated to be 3.1 nm rad, which was larger than the value of 2.4 nm rad estimated by using ray-tracing. It was found that the increase was mainly due to an increase in beam divergence rather than size. Full Article text
zo Measurement and compensation of misalignment in double-sided hard X-ray Fresnel zone plates By scripts.iucr.org Published On :: 2020-03-18 Double-sided Fresnel zone plates are diffractive lenses used for high-resolution hard X-ray microscopy. The double-sided structures have significantly higher aspect ratios compared with single-sided components and hence enable more efficient imaging. The zone plates discussed in this paper are fabricated on each side of a thin support membrane, and the alignment of the zone plates with respect to each other is critical. Here, a simple and reliable way of quantifying misalignments by recording efficiency maps and measuring the absolute diffraction efficiency of the zone plates as a function of tilting angle in two directions is presented. The measurements are performed in a setup based on a tungsten-anode microfocus X-ray tube, providing an X-ray energy of 8.4 keV through differential measurements with a Cu and an Ni filter. This study investigates the sources of the misalignments and concludes that they can be avoided by decreasing the structure heights on both sides of the membrane and by pre-programming size differences between the front- and back-side zone plates. Full Article text
zo Measurement of single crystal piezo modulus by the method of diffraction of synchrotron radiation at angles near π By journals.iucr.org Published On :: The diffraction response of a single crystal to electric field measured by X-ray diffraction by angles close to π. Such schemes allow one to determine with high (~ 10–5–10–6) accuracy the relative changes in the lattice constant. Full Article text
zo A new ZnII metallocryptand with unprecedented diflexure helix induced by V-shaped diimidazole building blocks By journals.iucr.org Published On :: A new ZnII metallocryptand is presented, with an unprecedented diflexure helix. Full Article text
zo 2-(2-Ethoxy-2-oxoacetamido)benzoic acid By scripts.iucr.org Published On :: 2020-05-06 The title compound, C11H11NO5, has a nearly planar geometry. In the crystal, the molecules are assembled into chains parallel to the [overline{1}11] direction by O—H...O and C—H...O hydrogen bonds. Full Article text
zo Crystal structure of the Schizosaccharomyces pombe U7BR E2-binding region in complex with Ubc7 By scripts.iucr.org Published On :: 2019-08-02 Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality-control pathway in eukaryotes in which misfolded ER proteins are polyubiquitylated, extracted and ultimately degraded by the proteasome. This process involves ER membrane-embedded ubiquitin E2 and E3 enzymes, as well as a soluble E2 enzyme (Ubc7 in Saccharomyces cerevisiae and UBE2G2 in mammals). E2-binding regions (E2BRs) that recruit these soluble ERAD E2s to the ER have been identified in humans and S. cerevisiae, and structures of E2–E2BR complexes from both species have been determined. In addition to sequence and structural differences between the human and S. cerevisiae E2BRs, the binding of E2BRs also elicits different biochemical outcomes with respect to E2 charging by E1 and E2 discharge. Here, the Schizosaccharomyces pombe E2BR was identified and purified with Ubc7 to resolve a 1.7 Å resolution co-crystal structure of the E2BR in complex with Ubc7. The S. pombe E2BR binds to the back side of the E2 as an α-helix and, while differences exist, it exhibits greater similarity to the human E2BR. Structure-based sequence alignments reveal differences and conserved elements among these species. Structural comparisons and biochemistry reveal that the S. pombe E2BR presents a steric impediment to E1 binding and inhibits E1-mediated charging, respectively. Full Article text
zo Baby Boom of Endangered Species at Smithsonian’s National Zoo’s Conservation and Research Center By insider.si.edu Published On :: Wed, 15 Jul 2009 11:49:43 +0000 It was an exciting and busy 24 hours at the National Zoo’s Conservation and Research Center in Front Royal, Va., last week as three births took place just hours apart. On the evening of July 9, a clouded leopard cub was born, followed by a Przewalski’s horse foal and a red panda cub. The post Baby Boom of Endangered Species at Smithsonian’s National Zoo’s Conservation and Research Center appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature animal births captive breeding conservation biology endangered species Smithsonian's National Zoo
zo Golden years at the Zoo: Veterinarians work to help animals live longer, stay healthy By insider.si.edu Published On :: Thu, 27 Aug 2009 11:53:04 +0000 Successes in animal health care presents many new challenges for veterinarians. Longer life spans in captivity mean zoo animals are now experiencing age-related health problems that their zoo predecessors never lived long enough to develop—like diabetes in cheetahs, arthritis in big cats and dental issues for coatis. The post Golden years at the Zoo: Veterinarians work to help animals live longer, stay healthy appeared first on Smithsonian Insider. Full Article Animals Science & Nature conservation biology Smithsonian's National Zoo veterinary medicine