zo

Crystal structure and Hirshfeld surface analysis of a new di­thio­glycoluril: 1,4-bis­(4-meth­oxy­phen­yl)-3a-methyl­tetra­hydro­imidazo[4,5-d]imidazole-2,5(1H,3H)-di­thione

In the title di­thio­glycoluril derivative, C19H20N4O3S2, there is a difference in the torsion angles between the thio­imidazole moiety and the meth­oxy­phenyl groups on either side of the mol­ecule [C—N—Car—Car = 116.9 (2) and −86.1 (3)°, respectively]. The N—C—N bond angle on one side of the di­thio­glycoluril moiety is slightly smaller compared to that on the opposite side, [110.9 (2)° cf. 112.0 (2)°], probably as a result of the steric effect of the methyl group. In the crystal, N—H⋯S hydrogen bonds link adjacent mol­ecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane. The layers are then linked by C—H⋯π inter­actions, leading to the formation of a three-dimensional supra­molecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the mol­ecular inter­actions in the crystal.




zo

Crystal structure and Hirshfeld surface analysis of bis­(benzoato-κ2O,O')[bis­(pyridin-2-yl-κN)amine]nickel(II)

A new mononuclear NiII complex with bis­(pyridin-2-yl)amine (dpyam) and benzoate (benz), [Ni(C7H5O2)2(C10H9N3)], crystallizes in the monoclinic space group P21/c. The NiII ion adopts a cis-distorted octa­hedral geometry with an [NiN2O4] chromophore. In the crystal, the complex mol­ecules are linked together into a one-dimensional chain by symmetry-related π–π stacking inter­actions [centroid-to-centroid distance = 3.7257 (17) Å], along with N—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further stabilized by C—H⋯π inter­actions, which were investigated by Hirshfeld surface analysis.




zo

Synthesis and crystal structure of 1,3-bis­(4-hy­droxy­phen­yl)-1H-imidazol-3-ium chloride

Imidazolium salts are common building blocks for functional materials and in the synthesis of N-heterocyclic carbene (NHC) as σ-donor ligands for stable metal complexes. The title salt, 1,3-bis­(4-hy­droxy­phen­yl)-1H-imidazol-3-ium chloride (IOH·Cl), C15H13N2O2+·Cl−, is a new imidazolium salt with a hy­droxy functionality. The synthesis of IOH·Cl was achieved in high yield via a two-step procedure involving a di­aza­butadiene precursor followed by ring closure using tri­methylchloro­silane and paraformaldehyde. The structure of IOH·Cl consists of a central planar imidazolium ring (r.m.s. deviation = 0.0015 Å), with out-of-plane phenolic side arms. The dihedral angles between the 4-hy­droxy­phenyl substituents and the imidazole ring are 55.27 (7) and 48.85 (11)°. In the crystal, O—H⋯Cl hydrogen bonds connect the distal hy­droxy groups and Cl− anions in adjacent asymmetric units, one related by inversion (−x + 1, −y + 1, −z + 1) and one by the n-glide (x − {1over 2}, −y + {1over 2}, z − {1over 2}), with donor–acceptor distances of 2.977 (2) and 3.0130 (18) Å, respectively. The phenolic rings are each π–π stacked with their respective inversion-related [(−x + 1, −y + 1, −z + 1) and (−x, −y + 1, −z + 1)] counterparts, with inter­planar distances of 3.560 (3) and 3.778 (3) Å. The only other noteworthy inter­molecular inter­action is an O⋯O (not hydrogen bonded) close contact of 2.999 (3) Å between crystallographically different hy­droxy O atoms on translationally adjacent mol­ecules (x + 1, y, x + 1).




zo

The first crystal structure of the pyrrolo­[1,2-c]oxazole ring system

The title compound, C7H4F3NO2, 3-tri­fluoro­methyl-1H-pyrrolo­[1,2-c]oxazol-1-one, is the first crystal structure of the pyrrolo­[1,2-c]oxazole ring system: the fused ring system is almost planar (r.m.s. deviation = 0.006 Å). In the crystal, weak C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into [001] chains and π–π stacking inter­actions consolidate the structure.




zo

Crystal structure and magnetic properties of bis­[butyl­tris­(1H-pyrazol-1-yl)borato]iron(II)

The asymmetric unit of the title compound, [Fe(C13H18BN6)2], contains two half independent complex mol­ecules. In each complex, the FeII atom is located on an inversion center and is surrounded by two scorpionate ligand butyl­tris­(1H-pyrazol-1-yl)borate mol­ecules that coordinate to the iron(II) ion through the N atoms of the pyrazole groups. The two independent complex mol­ecules differ essentially in the conformation of the butyl substituents. In the crystal, the complex mol­ecules are linked by a series of C—H⋯π inter­actions, which generate a supra­molecular three-dimensional structure. At 120 K, the average Fe—N bond distance is 1.969 Å, indicating the low-spin state of the iron(II) atom, which does not change upon heating, as demonstrated by high-temperature magnetic susceptibility measurements.




zo

Absolute structure of (3aS,5S,7aS,7bS,9aR,10R,12aR,12bS)-7b-hy­droxy-4,4,7a,9a,12a-penta­methyl-10-[(2'R)-6-methyl­heptan-2-yl]-2,8,9-trioxo­octa­deca­hydro­benzo[d]indeno­[4,5-b]azepin-5-yl acetate from 62-year-old

The structure of the title compound, C32H51NO6, was determined from 62-year-old crystals at room temperature and refined with 100 K data in a monoclinic (C2) space group. This compound with a triterpenoid structure, now confirmed by this study, played an important role in the determination of the structure of lanosterol. The mol­ecules pack in linear O—H⋯O hydrogen-bonded chains along the short axis (b), while parallel chains display weak van der Waals inter­actions that explain the needle-shaped crystal morphology. The structure exhibits disorder of the flexible methyl­heptane chain at one end of the main mol­ecule with a small void around it. Crystals of the compounds were resistant to data collection for decades with the available cameras and Mo Kα radiation single-crystal diffractometer in our laboratory until a new instrument with Cu Kα radiation operating at 100 K allowed the structure to be solved and refined.




zo

Crystal structure, Hirshfeld surface analysis and computational studies of 5-[(prop-2-en-1-yl)sulfan­yl]-1-[2-(tri­fluoro­meth­yl)phen­yl]-1H-tetra­zole

The title compound, C11H9F3N4S, was synthesized from 2-(tri­fluoro­meth­yl)aniline by a multi-step reaction. It crystallizes in the non-centrosymmetric space group Pna21, with one mol­ecule in the asymmetric unit, and is constructed from a pair of aromatic rings [2-(tri­fluoro­meth­yl)phenyl and tetra­zole], which are twisted by 76.8 (1)° relative to each other because of significant steric hindrance of the tri­fluoro­methyl group at the ortho position of the benzene ring. In the crystal, very weak C—H⋯N and C—H⋯F hydrogen bonds and aromatic π–π stacking inter­actions link the mol­ecules into a three-dimensional network. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis, as well as inter­action energy calculations, were performed.




zo

Synthesis and crystal structure of tert-butyl 1-(2-iodo­benzo­yl)cyclo­pent-3-ene-1-carboxyl­ate

1-(2-Iodo­benzo­yl)-cyclo­pent-3-ene-1-carboxyl­ates are novel substrates to construct bi­cyclo­[3.2.1]octa­nes with anti­bacterial and anti­thrombotic activities. In this context, tert-butyl 1-(2-iodo­benzo­yl)-cyclo­pent-3-ene-1-carboxyl­ate, C17H19IO3, was synthesized and structurally characterized. The 2-iodo­benzoyl group is attached to the tertiary C atom of the cyclo­pent-3-ene ring. The dihedral angle between the benzene ring and the mean plane of the envelope-type cyclo­pent-3-ene ring is 26.0 (3)°. In the crystal, pairs of C-H⋯O hydrogen bonds link the mol­ecules to form inversion dimers.




zo

Synthesis and redetermination of the crystal structure of salicyl­aldehyde N(4)-morpholino­thio­semi­carbazone

The structure of the title compound (systematic name: N-{[(2-hy­droxy­phen­yl)methyl­idene]amino}­morpholine-4-carbo­thio­amide), C12H15N3O2S, was prev­iously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supra­molecular inter­actions. The mol­ecular structure shows intra­molecular O—H⋯N and C—H⋯S inter­actions. The configuration of the C=N bond is E. The mol­ecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the mol­ecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis.




zo

The crystal structures and Hirshfeld surface analyses of four 3,5-diacetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl derivatives

The title compounds, 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl benzoate, C20H19N3O4S (I), 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl isobutyrate 0.25-hydrate, C17H21N3O4S·0.25H2O (II), 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl propionate, C16H19N3O4S (III) and 4-(5-acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)phenyl cinnamate chloro­form hemisolvate, C22H21N3O4S·0.5CHCl3 (IV), all crystallize with two independent mol­ecules (A and B) in the asymmetric unit in the triclinic Poverline{1} space group. Compound II crystallizes as a quaterhydrate, while compound IV crystallizes as a chloro­form hemisolvate. In compounds I, II, III (mol­ecules A and B) and IV (mol­ecule A) the five-membered thia­diazole ring adopts an envelope conformation, with the tetra­substituted C atom as the flap. In mol­ecule B of IV this ring is flat (r.m.s. deviation 0.044 Å). The central benzene ring is in general almost normal to the mean plane of the thia­diazole ring in each mol­ecule, with dihedral angles ranging from 75.8 (1) to 85.5 (2)°. In the crystals of all four compounds, the A and B mol­ecules are linked via strong N—H⋯O hydrogen bonds and generate centrosymmetric four-membered R44(28) ring motifs. There are C—H⋯O hydrogen bonds present in the crystals of all four compounds, and in I and II there are also C—H⋯π inter­actions present. The inter­molecular contacts in the crystals of all four compounds were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.




zo

Crystal structure and Hirshfeld surface analysis of 2-hy­droxy-7-meth­oxy-1,8-bis­(2,4,6-tri­chloro­benzo­yl)naphthalene

In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-tri­chloro­benzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C—(C=O)—C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intra­molecular O—H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective inter­molecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts.




zo

Crystal structure of 4-bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methyl­idene]aniline

In the title compound, C27H29BrN2, the carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0781 (16) Å. An intra­molecular N—H⋯N hydrogen bond forms an S(6) ring motif. One of the tert-butyl substituents shows rotational disorder over two sites with occupancies of 0.592 (3) and 0.408 (3). In the crystal, two mol­ecules are associated into an inversion dimer through a pair of C—H⋯π inter­actions. The dimers are further linked by another pair of C—H⋯π inter­actions, forming a ribbon along the c-axis direction. A C—H⋯π inter­action involving the minor disordered component and the carbazole ring system links the ribbons, generating a network sheet parallel to (100).




zo

Crystal structure of bis­[2-(1H-benzimidazol-2-yl-κN3)aniline-κN]bis­(nitrato-κO)cadmium(II)

In the title compound, [Cd(NO3)2(C13H11N3)2], the CdII atom lies on a twofold rotation axis and is coordinated by four N atoms and two O atoms, provided by two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands, and two nitrato O atoms, forming a distorted octa­hedral geometry [range of bond angles around the Cd atom = 73.82 (2)–106.95 (8)°]. In the ligand, the dihedral angle between the aniline ring and the benzimidazole ring system is 30.43 (7)°. The discrete complex mol­ecule is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network.




zo

Crystal structure and Hirshfeld surface analysis of 5-(3,5-di-tert-butyl-4-hy­droxy­phen­yl)-3-phenyl-4,5-di­hydro-1H-pyrazole-1-carboxamide

In the title compound, C24H31N3O2, the mean plane of the central pyrazole ring [r.m.s. deviation = 0.095 Å] makes dihedral angles of 11.93 (9) and 84.53 (8)°, respectively, with the phenyl and benzene rings. There is a short intra­molecular N—H⋯N contact, which generates an S(5) ring motif. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, generating an R22(8) ring motif. The Hirshfeld surface analysis indicates that the most significant contribution involves H⋯H contacts of 68.6%




zo

3,3-Bis(2-hy­droxy­eth­yl)-1-(4-methyl­benzoyl)thio­urea: crystal structure, Hirshfeld surface analysis and computational study

In the title tri-substituted thio­urea derivative, C13H18N2O3S, the thione-S and carbonyl-O atoms lie, to a first approximation, to the same side of the mol­ecule [the S—C—N—C torsion angle is −49.3 (2)°]. The CN2S plane is almost planar (r.m.s. deviation = 0.018 Å) with the hy­droxy­ethyl groups lying to either side of this plane. One hy­droxy­ethyl group is orientated towards the thio­amide functionality enabling the formation of an intra­molecular N—H⋯O hydrogen bond leading to an S(7) loop. The dihedral angle [72.12 (9)°] between the planes through the CN2S atoms and the 4-tolyl ring indicates the mol­ecule is twisted. The experimental mol­ecular structure is close to the gas-phase, geometry-optimized structure calculated by DFT methods. In the mol­ecular packing, hydroxyl-O—H⋯O(hydrox­yl) and hydroxyl-O—H⋯S(thione) hydrogen bonds lead to the formation of a supra­molecular layer in the ab plane; no directional inter­actions are found between layers. The influence of the specified supra­molecular inter­actions is apparent in the calculated Hirshfeld surfaces and these are shown to be attractive in non-covalent inter­action plots; the inter­action energies point to the important stabilization provided by directional O—H⋯O hydrogen bonds.




zo

Crystal structure and Hirshfeld surface analysis of N-(tert-but­yl)-2-(phenyl­ethyn­yl)imidazo[1,2-a]pyridin-3-amine

The bicyclic imidazo[1,2-a]pyridine core of the title compound, C19H19N3, is relatively planar with an r.m.s. deviation of 0.040 Å. The phenyl ring is inclined to the mean plane of the imidazo[1,2-a]pyridine unit by 18.2 (1)°. In the crystal, mol­ecules are linked by N—H⋯H hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to the ac plane. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal structure is dominated by H⋯H (54%) and C⋯H/H⋯C (35.6%) contacts. The crystal studied was refined as an inversion twin




zo

Crystal structures of 3-chloro-2-nitro­benzoic acid with quinoline derivatives: 3-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1), 3-chloro-2-nitro­benzoic acid–6-nitro­quinoline (1/1) and 8-hy­droxy­quinolinium 3-ch

The structures of three compounds of 3-chloro-2-nitro­benzoic acid with 5-nitro­quinoline, (I), 6-nitro­quinoline, (II), and 8-hy­droxy­quinoline, (III), have been determined at 190 K. In each of the two isomeric compounds, (I) and (II), C7H4ClNO4·C9H6N2O2, the acid and base mol­ecules are held together by O—H⋯N and C—H⋯O hydrogen bonds. In compound (III), C9H8NO+·C7H3ClNO4−, an acid–base inter­action involving H-atom transfer occurs and the H atom is located at the N site of the base mol­ecule. In the crystal of (I), the hydrogen-bonded acid–base units are linked by C—H⋯O hydrogen bonds, forming a tape structure along the b-axis direction. Adjacent tapes, which are related by a twofold rotation axis, are linked by a third C—H⋯O hydrogen bond, forming wide ribbons parallel to the (overline{1}03) plane. These ribbons are stacked via π–π inter­actions between the quinoline ring systems [centroid–centroid distances = 3.4935 (5)–3.7721 (6) Å], forming layers parallel to the ab plane. In the crystal of (II), the hydrogen-bonded acid–base units are also linked into a tape structure along the b-axis direction via C—H⋯O hydrogen bonds. Inversion-related tapes are linked by further C—H⋯O hydrogen bonds to form wide ribbons parallel to the (overline{3}08) plane. The ribbons are linked by weak π–π inter­actions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], forming a three-dimensional structure. In the crystal of (III), the cations and the anions are alternately linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a 21 helix running along the b-axis direction. The cations and the anions are further stacked alternately in columns along the a-axis direction via π–π inter­actions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], and the mol­ecular chains are linked into layers parallel to the ab plane through these inter­actions.




zo

The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline] and 6'-(naphthalen-1-yl)-6a

The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6'-(naphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octa­hydro-2H-spiro­[ace­naphthyl­ene-1,12'-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thia­zole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thia­zole ring adopts a boat conformation. An intra­molecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intra­molecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π inter­actions help to consolidate the structure, but no significant π–π inter­actions with centroid–centroid distances of less than 4 Å are observed.




zo

Crystal structure and Hirshfeld surface analysis of 2-[(1,3-benzoxazol-2-yl)sulfan­yl]-N-(2-meth­oxy­phen­yl)acetamide

In the title compound, C16H14N2O3S, the 1,3-benzoxazole ring system is essentially planar (r.m.s deviation = 0.004 Å) and makes a dihedral angle of 66.16 (17)° with the benzene ring of the meth­oxy­phenyl group. Two intra­molecular N—H⋯O and N—H⋯N hydrogen bonds occur, forming S(5) and S(7) ring motifs, respectively. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with R22(14) ring motifs, stacked along the b-axis direction. The inversion dimers are linked by C—H⋯π and π–π-stacking inter­actions [centroid-to-centroid distances = 3.631 (2) and 3.631 (2) Å], forming a three-dimensional network. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from H⋯H (39.3%), C⋯H/H⋯C (18.0%), O⋯H/H⋯O (15.6) and S⋯H/H⋯S (10.2%) inter­actions.




zo

Crystal structure and Hirshfeld surface analysis of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide

In the cation of the title salt, C9H12N3S+·Br−, the thia­zolidine ring adopts an envelope conformation with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking inter­actions between the phenyl rings of adjacent cations also contribute to the mol­ecular packing. A Hirshfeld surface analysis was conducted to qu­antify the contributions of the different inter­molecular inter­actions and contacts.




zo

Crystal structures of two charge–transfer com­plexes of benzo[1,2-c:3,4-c':5,6-c'']tri­thio­phene (D3h-BTT)

Benzo[1,2-c:3,4-c':5,6-c'']tri­thio­phene (D3h-BTT) is an easily prepared electron donor that readily forms charge–transfer complexes with organic acceptors. We report here two crystal structures of its charge–transfer complexes with 7,7,8,8-tetra­cyano­quinodi­methane (TCNQ) and buckminsterfullerene (C60). The D3h-BTT·TCNQ complex, C12H6S3·C12H4N4, crystallizes with mixed layers of donors and acceptors, with an estimated degree of charge transfer at 0.09 e. In the D3h-BTT·C60·toluene complex, C12H6S3·C60·C7H8, the central ring of BTT is `squeezed' by the C60 mol­ecules from both faces. However, the degree of charge transfer is low. The C60 unit is disordered over two sites in a 0.766 (3):0.234 (3) ratio and was refined as a two-component inversion twin.




zo

Crystal structures of two 4H-chromene derivatives: 2-amino-3-cyano-4-(3,4-di­chloro­phen­yl)-7-hy­droxy-4H-benzo[1,2-b]pyran 1,4-dioxane monosolvate and 2-amino-3-cyano-4-(2,6-di­chloro­phen­yl)-7-hy­droxy-4H-benzo[

In the title compounds, C16H9Cl2N2O2·C4H8O2 and C16H9Cl2N2O2, the bicyclic 4H-chromene cores are nearly planar with maximum deviations of 0.081 (2) and 0.087 (2) Å. In both structures, the chromene derivative mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, forming R22(16) motifs. These dimers are further linked in the 3,4-di­chloro­phenyl derivative by N—H⋯N hydrogen bonds into double layers parallel to (100) and in the 2,6-di­chloro­phenyl derivative by O—H⋯N hydrogen bonds into ribbons along the [1overline{1}0] direction. In the 3,4-di­chloro­phenyl derivative, the 1,4-dioxane solvent mol­ecules are connected to the chromene mol­ecules via O—H⋯O hydrogen bonds.




zo

Crystal structure, DFT calculation, Hirshfeld surface analysis and energy framework study of 6-bromo-2-(4-bromo­phen­yl)imidazo[1,2-a]pyridine

The title imidazo[1,2-a] pyridine derivative, C13H8Br2N2, was synthesized via a single-step reaction method. The title mol­ecule is planar, showing a dihedral angle of 0.62 (17)° between the phenyl and the imidazo[1,2-a] pyridine rings. An intra­molecular C—H⋯N hydrogen bond with an S(5) ring motif is present. In the crystal, a short H⋯H contact links adjacent mol­ecules into inversion-related dimers. The dimers are linked in turn by weak C—H⋯π and slipped π–π stacking inter­actions, forming layers parallel to (110). The layers are connected into a three-dimensional network by short Br⋯H contacts. Two-dimensional fingerprint plots and three-dimensional Hirshfeld surface analysis of the inter­molecular contacts reveal that the most important contributions for the crystal packing are from H⋯Br/Br⋯H (26.1%), H⋯H (21.7%), H⋯C/C⋯H (21.3%) and C⋯C (6.5%) inter­actions. Energy framework calculations suggest that the contacts formed between mol­ecules are largely dispersive in nature. Analysis of HOMO–LUMO energies from a DFT calculation reveals the pure π character of the aromatic rings with the highest electron density on the phenyl ring, and σ character of the electron density on the Br atoms. The HOMO–LUMO gap was found to be 4.343 eV.




zo

Synthesis, crystal structure and Hirshfeld surface analysis of 4-[3-(4-hy­droxy­phen­yl)-4,5-di­hydro-1H-pyrazol-5-yl]-2-meth­oxy­phenol monohydrate

In the title pyrazoline derivative, C16H16N2O3·H2O, the pyrazoline ring has an envelope conformation with the substituted sp2 C atom on the flap. The pyrazoline ring makes angles of 86.73 (12) and 13.44 (12)° with the tris­ubstituted and disubstituted benzene rings, respectively. In the crystal structure, the mol­ecules are connected into chains running in the b-axis direction by O—H⋯N hydrogen bonding. Parallel chains inter­act through N—H⋯O hydrogen bonds and π–π stacking of the tris­ubstituted phenyl rings. The major contribution to the surface contacts are H⋯H contacts (44.3%) as concluded from a Hirshfeld surface analysis.




zo

Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chloro­phen­yl)-7-hy­droxy-4H-benzo[1,2-b]pyran-3-carbo­nitrile

The benzo­pyran ring of the title com­pound, C16H11ClN2O2, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chloro­phenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, N—H⋯O, O—H⋯N, C—H⋯O and C—H⋯Cl hydrogen bonds form inter- and intra­molecular inter­actions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO–LUMO energy levels. The mol­ecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions in the mol­ecule.




zo

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of (2Z)-4-benzyl-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one

The title compound, C22H15Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­­chloro­benzyl­idene units, where the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by inter­molecular C—HMethy⋯SThz (Methy = methyl­ene) hydrogen bonds, en­closing R44(22) ring motifs. Offset π-stacking inter­actions between 2,4-di­­chloro­phenyl rings [centroid–centroid = 3.7701 (8) Å] and π-inter­actions which are associated by C—HBnz⋯π(ring) and C—HDchlphy⋯π(ring) (Dchlphy = 2,4-di­chloro­phen­yl) inter­actions may be effective in the stabilization of the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OThz and C—HMethy⋯SThz hydrogen-bond energies are 55.0 and 27.1 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




zo

Crystal structure and luminescence properties of 2-[(2',6'-dimeth­oxy-2,3'-bipyridin-6-yl)­oxy]-9-(pyridin-2-yl)-9H-carbazole

In the title com­pound, C29H22N4O3, the carbazole system forms a dihedral angle of 68.45 (3)° with the mean plane of the bi­pyridine ring system. The bi­pyridine ring system, with two meth­oxy substituents, is approximately planar (r.m.s. deviation = 0.0670 Å), with a dihedral angle of 7.91 (13)° between the planes of the two pyridine rings. Intra­molecular C—H⋯O/N hydrogen bonds may promote the planarity of the bipyridyl ring system. In the pyridyl-substituted carbazole fragment, the pyridine ring is tilted by 56.65 (4)° with respect to the mean plane of the carbazole system (r.m.s. deviation = 0.0191 Å). In the crystal, adjacent mol­ecules are connected via C—H⋯O/N hydrogen bonds and C—H⋯π inter­actions, resulting in the formation of a three-dimensional (3D) supra­molecular network. In addition, the 3D structure contains inter­molecular π–π stacking inter­actions, with centroid–centroid distances of 3.5634 (12) Å between pyridine rings. The title com­pound exhibits a high energy gap (3.48 eV) and triplet energy (2.64 eV), indicating that it could be a suitable host material in organic light-emitting diode (OLED) applications.




zo

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of methyl 4-[3,6-bis­(pyridin-2-yl)pyridazin-4-yl]benzoate

The title com­pound, C22H16N4O2, contains two pyridine rings and one meth­oxy­carbonyl­phenyl group attached to a pyridazine ring which deviates very slightly from planarity. In the crystal, ribbons consisting of inversion-related chains of mol­ecules extending along the a-axis direction are formed by C—HMthy⋯OCarbx (Mthy = methyl and Carbx = carboxyl­ate) hydrogen bonds. The ribbons are connected into layers parallel to the bc plane by C—HBnz⋯π(ring) (Bnz = benzene) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (39.7%), H⋯C/C⋯H (27.5%), H⋯N/N⋯H (15.5%) and O⋯H/H⋯O (11.1%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HMthy⋯OCarbx hydrogen-bond energies are 62.0 and 34.3 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are com­pared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




zo

Bis[2-(4,5-diphenyl-1H-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate: crystal structure and Hirshfeld surface analysis

The crystal and mol­ecular structures of the title CuII complex, isolated as a dihydrate, [Cu(C21H14N3O3)2]·2H2O, reveals a highly distorted coordination geometry inter­mediate between square-planar and tetra­hedral defined by an N2O2 donor set derived from two mono-anionic bidentate ligands. Furthermore, each six-membered chelate ring adopts an envelope conformation with the Cu atom being the flap. In the crystal, imidazolyl-amine-N—H⋯O(water), water-O—H⋯O(coordinated, nitro and water), phenyl-C—H⋯O(nitro) and π(imidazol­yl)–π(nitro­benzene) [inter-centroid distances = 3.7452 (14) and 3.6647 (13) Å] contacts link the components into a supra­molecular layer lying parallel to (101). The connections between layers forming a three-dimensional architecture are of the types nitro­benzene-C—H⋯O(nitro) and phenyl-C—H⋯π(phen­yl). The distorted coordination geometry for the CuII atom is highlighted in an analysis of the Hirshfeld surface calculated for the metal centre alone. The significance of the inter­molecular contacts is also revealed in a study of the calculated Hirshfeld surfaces; the dominant contacts in the crystal are H⋯H (41.0%), O⋯H/H⋯O (27.1%) and C⋯H/H⋯C (19.6%).




zo

Crystal structure, synthesis and thermal properties of bis­(aceto­nitrile-κN)bis­(4-benzoyl­pyridine-κN)bis­(iso­thio­cyanato-κN)nickel(II)

In the crystal structure of the title com­pound, [Ni(NCS)2(CH3CN)2(C12H9NO)2] or Ni(NCS)2(4-benzoyl­pyridine)2(aceto­nitrile)2, the NiII ions are octa­hedrally coordinated by the N atoms of two thio­cyanate anions, two 4-benzoyl­pyridine ligands and two aceto­nitrile mol­ecules into discrete com­plexes that are located on centres of inversion. In the crystal, the discrete com­plexes are linked by centrosymmetric pairs of weak C—H⋯S hydrogen bonds into chains. Thermogravimetric measurements prove that, upon heating, the title com­plex loses the two aceto­nitrile ligands and transforms into a new crystalline modification of the chain com­pound [Ni(NCS)2(4-benzoyl­pyridine)2], which is different from that of the corresponding CoII, NiII and CdII coordination polymers reported in the literature. IR spectroscopic investigations indicate the presence of bridging thio­cyanate anions but the powder pattern cannot be indexed and, therefore, this structure is unknown.




zo

The first structural characterization of the proton­ated aza­cyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carb­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­deca­ne] bis­(per&

The asymmetric unit of the title com­pound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carb­oxy­prop­yl)-1,5,8,12-tetra­aza-3-azonia­cyclo­tetra­decane-κ4N1,N5,N8,N12] bis­(per­chlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated per­chlorate anion and two per­chlorate ions as counter-anions. The metal ion is coordinated in a tetra­gonally distorted octa­hedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the per­chlorate anion and the carbonyl O atom of the protonated carb­oxy­lic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxyl­ate and average 2.62 (7) Å for disordered per­chlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carb­oxy­lic acid group of the cation to a neighbouring com­plex unit results in the formation of infinite chains running along the b-axis direction, which are cross­linked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the per­chlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts.




zo

Crystal structure of a 1:1 cocrystal of nicotinamide with 2-chloro-5-nitro­benzoic acid

In the title 1:1 cocrystal, C7H4ClNO4·C6H6N2O, nicotinamide (NIC) and 2-chloro-5-nitro­benzoic acid (CNBA) cocrystallize with one mol­ecule each of NIC and CNBA in the asymmetric unit. In this structure, CNBA and NIC form hydrogen bonds through O—H⋯N, N—H⋯O and C—H⋯O inter­actions along with N—H⋯O dimer hydrogen bonds of NIC. Further additional weak π–π inter­actions stabilize the mol­ecular assembly of this cocrystal.




zo

Crystal structures of the two isomeric hydrogen-bonded cocrystals 2-chloro-4-nitro­benzoic acid–5-nitro­quinoline (1/1) and 5-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1)

The structures of two isomeric com­pounds of 5-nitro­quinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitro­benzoic acid–5-nitro­quinoline (1/1), (I), and 5-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each com­pound, the acid and base mol­ecules are held together by an O—H⋯N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond, forming a tape structure along [1overline{2}0]. The tapes are stacked into a layer parallel to the ab plane via N—O⋯π inter­actions between the nitro group of the base mol­ecule and the quinoline ring system. The layers are further linked by other C—H⋯O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1overline{1}0] via C—H⋯O hydrogen bonds. The ribbons are further linked via another C—H⋯O hydrogen bond, forming a layer parallel to (110). Weak π–π inter­actions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitro­quinoline mol­ecules of the two com­pounds mapped over shape index and dnorm were generated to visualize the weak inter­molecular inter­actions.




zo

Crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phenyl)-5(S)-(propan-2-yl)imidazolidin-4-one

A 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phen­yl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine and 4-nitro­benz­alde­hyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine at its hydrazine group to provide a 4-nitro­benzyl­idene derivative, followed by a cyclization reaction with another mol­ecule of 4-nitro­benzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with racemization at the 2-position. In the crystal, N—H⋯O(nitro) hydrogen bonds, weak C—H⋯O(carbon­yl) and C—H⋯O(nitro) hydrogen bonds, as well as C—H⋯π, N—H⋯π and π–π inter­actions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported.




zo

Crystal structure and Hirshfeld surface analysis of 2-(4-nitro­phen­yl)-2-oxoethyl benzoate

The title com­pound, C15H11NO5, is relatively planar, with the planes of the two aromatic rings being inclined to each other by 3.09 (5)°. In the crystal, mol­ecules are linked by a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which enclose an R22(16) ring motif. The dimers are linked by a further pair of C—H⋯O hydrogen-bonds forming ribbons enclosing R44(26) ring motifs. The ribbons are linked by offset π–π inter­actions [centroid–centroid distances = 3.6754 (6)–3.7519 (6) Å] to form layers parallel to the ac plane. Through Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were examined to verify the contributions of the different inter­molecular contacts within the supra­molecular structure. The shape-index surface shows that two sides of the mol­ecule are involved with the same contacts in neighbouring mol­ecules, and the curvedness plot shows flat surface patches that are characteristic of planar stacking.




zo

Crystal structure and photoluminescence properties of catena-poly[[bis­(1-benzyl-1H-imidazole-κN3)cadmium(II)]-di-μ-azido-κ4N1:N3]

The new title one-dimensional CdII coordination polymer, [Cd(C10H10N2)2(μ1,3-N3)2]n, has been synthesized and structurally characterized by single-crystal X-ray diffraction. The asymmetric unit consists of a CdII ion, one azide and one 1-benzyl­imidazole (bzi) ligand. The CdII ion is located on an inversion centre and is surrounded in a distorted octa­hedral coordination sphere by six N atoms from four symmetry-related azide ligands and two symmetry-related bzi ligands. The CdII ions are linked by double azide bridging ligands within a μ1,3-N3 end-to-end (EE) coordination mode, leading to a one-dimensional linear structure extending parallel to [100]. The supra­molecular framework is stabilized by the presence of weak C—H⋯N inter­actions, π–π stacking [centroid-to-centroid distance of 3.832 (2) Å] and C—H⋯π inter­actions between neighbouring chains.




zo

Different packing motifs mediated by weak inter­actions and polymorphism in the crystal structures of five 2-(benzyl­idene)benzosuberone derivatives

The syntheses and crystal structures of five 2-benzyl­idene-1-benzosuberone [1-benzosuberone is 6,7,8,9-tetra­hydro-5H-benzo[7]annulen-5-one] derivatives, viz. 2-(4-meth­oxy­benzyl­idene)-1-benzosuberone, C19H18O2, (I), 2-(4-eth­oxy­benzyl­idene)-1-benzosuberone, C20H20O2, (II), 2-(4-benzyl­benzyl­idene)-1-benzosuberone, C25H22O2, (III), 2-(4-chloro­benzyl­idene)-1-benzosuberone, C18H15ClO, (IV) and 2-(4-cyano­benzyl­idene)-1-benzosuberone, C19H15NO, (V), are described. The conformations of the benzosuberone fused six- plus seven-membered ring fragments are very similar in each case, but the dihedral angles between the fused benzene ring and the pendant benzene ring differ somewhat, with values of 23.79 (3) for (I), 24.60 (4) for (II), 33.72 (4) for (III), 29.93 (8) for (IV) and 21.81 (7)° for (V). Key features of the packing include pairwise C—H⋯O hydrogen bonds for (II) and (IV), and pairwise C—H⋯N hydrogen bonds for (V), which generate inversion dimers in each case. The packing for (I) and (III) feature C—H⋯O hydrogen bonds, which lead to [010] and [100] chains, respectively. Weak C—H⋯π inter­actions consolidate the structures and weak aromatic π–π stacking is seen in (II) [centroid–centroid separation = 3.8414 (7) Å] and (III) [3.9475 (7) Å]. A polymorph of (I) crystallized from a different solvent has been reported previously [Dimmock et al. (1999) J. Med. Chem. 42, 1358–1366] in the same space group but with a packing motif based on inversion dimers resembling that seen in (IV) in the present study. The Hirshfeld surfaces and fingerprint plots for (I) and its polymorph are com­pared and structural features of the 2-benzyl­idene-1-benzosuberone family of phases are surveyed.




zo

Crystal structure and Hirshfeld surface analysis of 2-(4-nitro­phen­yl)-2-oxoethyl 2-chloro­benzoate

The title compound, C15H10ClNO5, is relatively planar with the two aromatic rings being inclined to each other by 3.56 (11)°. The central —C(=O)—C–O—C(=O)— bridge is slightly twisted, with a C—C—O—C torsion angle of 164.95 (16)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯Cl hydrogen bonds, forming layers parallel to the (101) plane. The layers are linked by a further C—H⋯O hydrogen bond, forming a three-dimensional supra­molecular structure. There are a number of offset π–π inter­actions present between the layers [inter­centroid distances vary from 3.8264 (15) to 3.9775 (14) Å]. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint plots were examined to verify the contributions of the different inter­molecular contacts within the supra­molecular structure. The shape-index surface shows that two sides of the mol­ecule are involved in the same contacts with neighbouring mol­ecules, and the curvedness plot shows flat surface patches that are characteristic of planar stacking.




zo

Crystal structure of benzo[h]quinoline-3-carbox­amide

The title com­pound, C14H10N2O, crystallizes in the monoclinic space group P21/c with four mol­ecules in the unit cell. All 17 non-H atoms of one mol­ecule lie essentially in one plane. In the unit cell, two pairs of mol­ecules are exactly coplanar, while the angle between these two orientations is close to perfectly perpendicular at 87.64 (6)°. In the crystal, mol­ecules adopt a 50:50 crisscross arrangement, which is held together by two nonclassical and two classical inter­molecular hydrogen bonds. The hydrogen-bonding network together with off-centre π–π stacking inter­actions between the pyridine and outermost benzene rings, stack the mol­ecules along the b-axis direction.




zo

Crystal structures of two coordination isomers of copper(II) 4-sulfo­benzoic acid hexa­hydrate and two mixed silver/potassium 4-sulfo­benzoic acid salts

A reaction of copper(II) carbonate and potassium 4-sulfo­benzoic acid in water acidified with hydro­chloric acid yielded two crystalline products. Tetra­aqua­bis­(4-carb­oxy­benzene­sulfonato)­copper(II) dihydrate, [Cu(O3SC6H4CO2H)2(H2O)4]·2H2O, (I), crystallizes in the triclinic space group Poverline{1} with the Cu2+ ions located on centers of inversion. Each copper ion is coordinated to four water mol­ecules in a square plane with two sulfonate O atoms in the apical positions of a Jahn–Teller-distorted octa­hedron. The carboxyl­ate group is protonated and not involved in coordination to the metal ions. The complexes pack so as to create a layered structure with alternating inorganic and organic domains. The packing is reinforced by several O—H⋯O hydrogen bonds involving coordinated and non-coordinated water mol­ecules, the carb­oxy­lic acid group and the sulfonate group. Hexa­aqua­copper(II) 4-carb­oxy­benzene­sulfonate, [Cu(H2O)6](O3SC6H4CO2H)2, (II), also crystallizes in the triclinic space group Poverline{1} with Jahn–Teller-distorted octa­hedral copper(II) aqua complexes on the centers of inversion. As in (I), the carboxyl­ate group on the anion is protonated and the structure consists of alternating layers of inorganic cations and organic anions linked by O—H⋯O hydrogen bonds. A reaction of silver nitrate and potassium 4-sulfo­benzoic acid in water also resulted in two distinct products that have been structurally characterized. An anhydrous silver potassium 4-carb­oxy­benzene­sulfonate salt, [Ag0.69K0.31](O3SC6H4CO2H), (III), crystallizes in the monoclinic space group C2/c. There are two independent metal sites, one fully occupied by silver ions and the other showing a 62% K+/38% Ag+ (fixed) ratio, refined in two slightly different positions. The coordination environments of the metal ions are composed primarily of sulfonate O atoms, with some participation by the non-protonated carboxyl­ate O atoms in the disordered site. As in the copper compounds, the cations and anions cleanly segregate into alternating layers. A hydrated mixed silver potassium 4-carb­oxy­benzene­sulfonate salt dihydrate, [Ag0.20K0.80](O3SC6H4CO2H)·2H2O, (IV), crystallizes in the monoclinic space group P21/c with the Ag+ and K+ ions sharing one unique metal site coordinated by two water mol­ecules and six sulfonate O atoms. The packing in (IV) follows the dominant motif of alternating inorganic and organic layers. The protonated carboxyl­ate groups do not inter­act with the cations directly, but do participate in hydrogen bonds with the coordinated water mol­ecules. (IV) is isostructural with pure potassium 4-sulfo­benzoic acid dihydrate.




zo

Crystal structure of 1,4-bis­[5-(2-meth­oxy­phen­yl)-2H-tetra­zol-2-yl]butane

The title compound, C20H22N8O2, was synthesized by the coupling reaction of a sodium tetra­zolate salt and di­bromo­butane in a molar ratio of 2:1. The reaction can produce several possible regioisomers and the title compound was separated as the major product. The X-ray crystallographic study confirmed that the title compound crystallizes in the monoclinic P21/c space group and possesses a bridging butyl­ene group that connects two identical phenyl tetra­zole moieties. The butyl­ene group is attached not to the first but the second nitro­gen atoms of both tetra­zole rings. The dihedral angles between the phenyl groups and the adjacent tetra­zolyl rings are 5.32 (6) and 15.37 (7)°. In the crystal, the mol­ecules form centrosymmetric dimers through C—H⋯O hydrogen bonds between a C—H group of the butyl­ene linker and the O atom of a meth­oxy group.




zo

Crystal structure of 4-chloro-2-nitro­benzoic acid with 4-hy­droxy­quinoline: a disordered structure over two states of 4-chloro-2-nitro­benzoic acid–quinolin-4(1H)-one (1/1) and 4-hy­droxy­quinolinium 4-chloro-2-nitro­b

The title compound, C9H7.5NO·C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto–enol tautomerization in the base mol­ecule. The co-crystal is 4-chloro-2-nitro­benzoic acid–quinolin-4(1H)-one (1/1), C7H4ClNO4·C9H7NO, and the salt is 4-hy­droxy­quinolinium 4-chloro-2-nitro­benzoate, C9H8NO+·C7H3ClNO4−. In the compound, the acid and base mol­ecules are held together by a short hydrogen bond [O⋯O = 2.4393 (15) Å], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid–base units are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via π–π inter­actions [centroid–centroid distances = 3.5504 (8)–3.9010 (11) Å]. The layers are further linked by another C—H⋯O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and dnorm were generated to visualize the inter­molecular inter­actions.




zo

Crystal and mol­ecular structure of jatrophane diterpenoid (2R,3R,4S,5R,7S,8S,9S,13S,14S,15R)-2,3,8,9-tetra­acet­oxy-5,14-bis­(benzo­yloxy)-15-hydroxy-7-(iso­butano­yloxy)jatropha-6(17),11(E)-diene

The structure of the jatrophane diterpenoid (ES2), C46H56O15, has ortho­rhom­bic (P212121) symmetry. The absolute configuration in the crystal has been determined as 2R,3R,4S,5R,7S,8S,9S,13S,14S,15R [the Flack parameter is −0.06 (11)]. The mol­ecular structure features intra­molecular O—H⋯O and C—H⋯O hydrogen bonding. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into supra­molecular columns parallel to the a axis. One of the acet­oxy substituents is disordered over two orientations in a 0.826 (8):0.174 (8) ratio.




zo

Crystal structure, Hirshfeld surface analysis and contact enrichment ratios of 1-(2,7-di­methyl­imidazo[1,2-a]pyridin-3-yl)-2-(1,3-di­thio­lan-2-yl­idene)ethanone monohydrate

In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-di­thiol­ane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-di­thiol­ane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intra­molecular C—H⋯O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid mol­ecules are associated in R22(14) dimeric units by weak C—H⋯O inter­actions. O—H⋯O hydrogen bonds link the water mol­ecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H⋯N hydrogen bonding. Analysis of inter­molecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water mol­ecules are the main driving force in the crystal packing formation.




zo

Crystal structure, computational study and Hirshfeld surface analysis of ethyl (2S,3R)-3-(3-amino-1H-1,2,4-triazol-1-yl)-2-hy­droxy-3-phenyl­propano­ate

In the title mol­ecule, C13H16N4O3, the mean planes of the phenyl and triazole rings are nearly perpendicular to one another as a result of the intra­molecular C—H⋯O and C—H⋯π(ring) inter­actions. In the crystal, layers parallel to (101) are generated by O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds. The layers are connected by inversion-related pairs of C—H⋯O hydrogen bonds. The experimental mol­ecular structure is close to the gas-phase geometry-optimized structure calculated by DFT methods. Hirshfeld surface analysis indicates that the most important inter­action involving hydrogen in the title compound is the H⋯H contact. The contribution of the H⋯O, H⋯N, and H⋯H contacts are 13.6, 16.1, and 54.6%, respectively.




zo

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one

In the title mol­ecule, C11H10N2O, the di­hydro­benzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C—HMthy⋯π(ring) inter­actions and C—HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = di­hydro) hydrogen bonds form corrugated layers parallel to (10overline{1}), which are associated through additional C—HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] inter­actions between di­hydro­benzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C—H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C—HProp⋯ODhyr) and 20.2 (for C—HBnz⋯ODhyr) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




zo

Crystal structure, Hirshfeld analysis and a mol­ecular docking study of a new inhibitor of the Hepatitis B virus (HBV): ethyl 5-methyl-1,1-dioxo-2-{[5-(pentan-3-yl)-1,2,4-oxa­diazol-3-yl]meth­yl}-2H-1,2,6-thia­diazine-4-carboxyl­a

The title compound, C15H22N4O5S, was prepared via alkyl­ation of 3-(chloro­meth­yl)-5-(pentan-3-yl)-1,2,4-oxa­diazole in anhydrous dioxane in the presence of tri­ethyl­amine. The thia­diazine ring has an envelope conformation with the S atom displaced by 0.4883 (6) Å from the mean plane through the other five atoms. The planar 1,2,4-oxa­diazole ring is inclined to the mean plane of the thia­diazine ring by 77.45 (11)°. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter­molecular contacts present in the crystal. Mol­ecular docking studies were use to evaluate the title compound as a potential system that inter­acts effectively with the capsid of the Hepatitis B virus (HBV), supported by an experimental in vitro HBV replication model.




zo

Crystal structures of three 6-aryl-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazo­les

Three title compounds, namely, 2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole, C26H19ClN4S, (I), 2-(4-chloro­benz­yl)-6-(4-fluoro­phen­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18ClFN4S, (II), and 6-(4-bromo­phen­yl)-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18BrClN4S, (III), have been prepared using a reductive condensation of indole with the corresponding 6-aryl-2-(4-chloro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehydes (aryl = phenyl, 4-fluoro­phenyl or 4-bromo­phen­yl), and their crystal structures have been determined. The asymmetric unit of compound (I) consists of two independent mol­ecules and one of the mol­ecules exhibits disorder of the 4-chloro­benzyl substituent with occupancies 0.6289 (17) and 0.3711 (17). Each type of mol­ecule forms a C(8) chain motif built from N—H⋯N hydrogen bonds, which for the fully ordered mol­ecule is reinforced by C—H⋯π inter­actions. In compound (II), the chloro­benzyl unit is again disordered, with occupancies 0.822 (6) and 0.178 (6), and the mol­ecules form C(8) chains similar to those in (I), reinforced by C—H⋯π inter­actions involving only the major disorder component. The chloro­benzyl unit in compound (III) is also disordered with occupancies of 0.839 (5) and 0.161 (5). The mol­ecules are linked by a combination of one N—H⋯N hydrogen bond and four C—H⋯π inter­actions, forming a three-dimensional framework.




zo

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid

In the mol­ecule of the title anthracene derivative, C22H17NO2, the benzene ring is inclined to the mean plane of the anthracene ring system (r.m.s. deviation = 0.024 Å) by 75.21 (9)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical carb­oxy­lic acid inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯π inter­actions, forming a supra­molecular framework.




zo

Crystal and mol­ecular structures of a binuclear mixed ligand complex of silver(I) with thio­cyanate and 1H-1,2,4-triazole-5(4H)-thione

The complete mol­ecule of the binuclear title complex, bis­[μ-1H-1,2,4-triazole-5(4H)-thione-κ2S:S]bis­{(thio­cyanato-κS)[1H-1,2,4-triazole-5(4H)-thione-κS]silver(I)}, [Ag2(SCN)2(C2H3N3S)4], is generated by crystallographic inversion symmetry. The independent triazole-3-thione ligands employ the exocyclic-S atoms exclusively in coordination. One acts as a terminal S-ligand and the other in a bidentate (μ2) bridging mode to provide a link between two AgI centres. Each AgI atom is also coordinated by a terminal S-bound thio­cyanate ligand, resulting in a distorted AgS4 tetra­hedral coordination geometry. An intra­molecular N—H⋯S(thio­cyanate) hydrogen bond is noted. In the crystal, amine-N—H⋯S(thione), N—H⋯N(triazol­yl) and N—H⋯N(thio­cyanate) hydrogen bonds give rise to a three-dimensional architecture. The packing is consolidated by triazolyl-C—H⋯S(thio­cyanate), triazolyl-C—H⋯N(thiocyanate) and S⋯S [3.2463 (9) Å] inter­actions as well as face-to-face π–π stacking between the independent triazolyl rings [inter-centroid separation = 3.4444 (15) Å]. An analysis of the calculated Hirshfeld surfaces shows the three major contributors are due to N⋯H/H⋯N, S⋯H/H⋯S and C⋯H/H⋯C contacts, at 35.8, 19.4 and 12.7%, respectively; H⋯H contacts contribute only 7.6% to the overall surface.