z

Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ

Jürgen Cox
Sep 1, 2014; 13:2513-2526
Technological Innovation and Resources




z

Reply to Cosgrove: Non-enzymatic action of expansins [Letters to the Editor]

In our computational study, we use molecular simulations to substantiate a hypothetical mechanism for glycosidic bond cleavage in the presence of a single catalytic acid at the active site of the mutant D10N HiCel45A. In addition to discussing this plausible mechanism from the context of structurally related MltA lytic transglycosylase and subfamily C GH45s, we also suggest the implications of the plausible mechanism for our current understanding of the action of expansins and lytic transglycosylases. As correctly pointed out by Professor Cosgrove (1), there is large body of evidence, a significant portion of which was regrettably not discussed in our paper, that suggests that expansins are incapable of lytic action on polysaccharide substrates. Whereas these insights do not change the results or the conclusions of our article, we would like to thank Professor Cosgrove for these additional insights. In particular, our main point with respect to expansins is that our results suggest the possibility that expansins are capable of nonhydrolytic lytic activity. Our intention was not to suggest this was the mechanism of expansins, but that it should be considered based on our results and the similarity of the active sites.The molecular mechanisms of how expansins enable cell wall expansion remains to be fully understood. Whereas our proposed mechanism resulting in the formation of the 1,6-anhdro product might be found in expansins and might contribute to the mode of action of expansins, we would like to emphasize that the intent of this study was only to suggest this as a...




z

Non-enzymatic action of expansins [Letters to the Editor]

From their simulations of endoglucanase Cel45A, Bharadwaj et al. (1) propose that structurally related expansins and MltA may cut glycan backbones without generating reducing ends. This is tenable for MltA, a peptidoglycan lytic transglycosylase whose action produces nonreducing 1,6-anhydro products, but is untenable for expansins.Expansins loosen plant cell walls and induce wall expansion. Contrary to the assertion by Bharadwaj et al., the conclusion that expansins are not lytic is not merely based on lack of new reducing ends but is supported by multiple (negative) tests for polysaccharide cleavage that do not rely on detection of reducing ends. At least eight studies with three divergent groups of expansins document this point. For instance, α-expansin did not reduce the viscosity of various wall polysaccharide solutions, an endolytic assay that does not rely on measuring reducing ends (e.g. see Ref. 2 and other studies).Walls treated with α-expansin did not release saccharide fragments, measured by pulsed amperometric detection, which can detect nonreducing saccharides (3).In the case of β-expansins, protein treatments did not cleave the backbones of a wide range of dye-coupled cross-linked wall polysaccharides; nor did they cleave backbones of polysaccharides extracted from plant cell walls, measured by gel permeation chromatography (4).For five microbial expansins, tests with a range of dye-coupled cross-linked polysaccharides likewise did not detect lytic activity (e.g. see Ref. 5). Thus, extensive published evidence argues against lytic action by expansins, as proposed by Bharadwaj (1), and attempts to identify 1,6-anhydro products seem unlikely to succeed.




z

The cytochrome P450 enzyme CYP24A1 increases proliferation of mutant KRAS-dependent lung adenocarcinoma independent of its catalytic activity [Cell Biology]

We previously reported that overexpression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) increases lung cancer cell proliferation by activating RAS signaling and that CYP24A1 knockdown inhibits tumor growth. However, the mechanism of CYP24A1-mediated cancer cell proliferation remains unclear. Here, we conducted cell synchronization and biochemical experiments in lung adenocarcinoma cells, revealing a link between CYP24A1 and anaphase-promoting complex (APC), a key cell cycle regulator. We demonstrate that CYP24A1 expression is cell cycle–dependent; it was higher in the G2-M phase and diminished upon G1 entry. CYP24A1 has a functional destruction box (D-box) motif that allows binding with two APC adaptors, CDC20-homologue 1 (CDH1) and cell division cycle 20 (CDC20). Unlike other APC substrates, however, CYP24A1 acted as a pseudo-substrate, inhibiting CDH1 activity and promoting mitotic progression. Conversely, overexpression of a CYP24A1 D-box mutant compromised CDH1 binding, allowing CDH1 hyperactivation, thereby hastening degradation of its substrates cyclin B1 and CDC20, and accumulation of the CDC20 substrate p21, prolonging mitotic exit. These activities also occurred with a CYP24A1 isoform 2 lacking the catalytic cysteine (Cys-462), suggesting that CYP24A1's oncogenic potential is independent of its catalytic activity. CYP24A1 degradation reduced clonogenic survival of mutant KRAS-driven lung cancer cells, and calcitriol treatment increased CYP24A1 levels and tumor burden in Lsl-KRASG12D mice. These results disclose a catalytic activity-independent growth-promoting role of CYP24A1 in mutant KRAS-driven lung cancer. This suggests that CYP24A1 could be therapeutically targeted in lung cancers in which its expression is high.




z

SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation [Protein Synthesis and Degradation]

SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes.




z

12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA2{gamma} knockout [Signal Transduction]

The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions.




z

Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'{delta} holoenzyme [Enzymology]

Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge–swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge–swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal–regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.




z

Biophysical characterization of SARAH domain-mediated multimerization of Hippo pathway complexes in Drosophila [Signal Transduction]

Hippo pathway signaling limits cell growth and proliferation and maintains the stem-cell niche. These cellular events result from the coordinated activity of a core kinase cassette that is regulated, in part, by interactions involving Hippo, Salvador, and dRassF. These interactions are mediated by a conserved coiled-coil domain, termed SARAH, in each of these proteins. SARAH domain–mediated homodimerization of Hippo kinase leads to autophosphorylation and activation. Paradoxically, SARAH domain–mediated heterodimerization between Hippo and Salvador enhances Hippo kinase activity in cells, whereas complex formation with dRassF inhibits it. To better understand the mechanism by which each complex distinctly modulates Hippo kinase and pathway activity, here we biophysically characterized the entire suite of SARAH domain–mediated complexes. We purified the three SARAH domains from Drosophila melanogaster and performed an unbiased pulldown assay to identify all possible interactions, revealing that isolated SARAH domains are sufficient to recapitulate the cellular assemblies and that Hippo is a universal binding partner. Additionally, we found that the Salvador SARAH domain homodimerizes and demonstrate that this interaction is conserved in Salvador's mammalian homolog. Using native MS, we show that each of these complexes is dimeric in solution. We also measured the stability of each SARAH domain complex, finding that despite similarities at both the sequence and structural levels, SARAH domain complexes differ in stability. The identity, stoichiometry, and stability of these interactions characterized here comprehensively reveal the nature of SARAH domain–mediated complex formation and provide mechanistic insights into how SARAH domain–mediated interactions influence Hippo pathway activity.




z

Polarization of protease-activated receptor 2 (PAR-2) signaling is altered during airway epithelial remodeling and deciliation [Immunology]

Protease-activated receptor 2 (PAR-2) is activated by secreted proteases from immune cells or fungi. PAR-2 is normally expressed basolaterally in differentiated nasal ciliated cells. We hypothesized that epithelial remodeling during diseases characterized by cilial loss and squamous metaplasia may alter PAR-2 polarization. Here, using a fluorescent arrestin assay, we confirmed that the common fungal airway pathogen Aspergillus fumigatus activates heterologously-expressed PAR-2. Endogenous PAR-2 activation in submerged airway RPMI 2650 or NCI–H520 squamous cells increased intracellular calcium levels and granulocyte macrophage–colony-stimulating factor, tumor necrosis factor α, and interleukin (IL)-6 secretion. RPMI 2650 cells cultured at an air–liquid interface (ALI) responded to apically or basolaterally applied PAR-2 agonists. However, well-differentiated primary nasal epithelial ALIs responded only to basolateral PAR-2 stimulation, indicated by calcium elevation, increased cilia beat frequency, and increased fluid and cytokine secretion. We exposed primary cells to disease-related modifiers that alter epithelial morphology, including IL-13, cigarette smoke condensate, and retinoic acid deficiency, at concentrations and times that altered epithelial morphology without causing breakdown of the epithelial barrier to model early disease states. These altered primary cultures responded to both apical and basolateral PAR-2 stimulation. Imaging nasal polyps and control middle turbinate explants, we found that nasal polyps, but not turbinates, exhibit apical calcium responses to PAR-2 stimulation. However, isolated ciliated cells from both polyps and turbinates maintained basolateral PAR-2 polarization, suggesting that the calcium responses originated from nonciliated cells. Altered PAR-2 polarization in disease-remodeled epithelia may enhance apical responses and increase sensitivity to inhaled proteases.




z

Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2 [Genomics and Proteomics]

Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein–coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function.




z

Biochemical and structural insights into how amino acids regulate pyruvate kinase muscle isoform 2 [Enzymology]

Pyruvate kinase muscle isoform 2 (PKM2) is a key glycolytic enzyme involved in ATP generation and critical for cancer metabolism. PKM2 is expressed in many human cancers and is regulated by complex mechanisms that promote tumor growth and proliferation. Therefore, it is considered an attractive therapeutic target for modulating tumor metabolism. Various stimuli allosterically regulate PKM2 by cycling it between highly active and less active states. Several small molecules activate PKM2 by binding to its intersubunit interface. Serine and cysteine serve as an activator and inhibitor of PKM2, respectively, by binding to its amino acid (AA)-binding pocket, which therefore represents a potential druggable site. Despite binding similarly to PKM2, how cysteine and serine differentially regulate this enzyme remains elusive. Using kinetic analyses, fluorescence binding, X-ray crystallography, and gel filtration experiments with asparagine, aspartate, and valine as PKM2 ligands, we examined whether the differences in the side-chain polarity of these AAs trigger distinct allosteric responses in PKM2. We found that Asn (polar) and Asp (charged) activate PKM2 and that Val (hydrophobic) inhibits it. The results also indicate that both Asn and Asp can restore the activity of Val-inhibited PKM2. AA-bound crystal structures of PKM2 displayed distinctive interactions within the binding pocket, causing unique allosteric effects in the enzyme. These structure-function analyses of AA-mediated PKM2 regulation shed light on the chemical requirements in the development of mechanism-based small-molecule modulators targeting the AA-binding pocket of PKM2 and provide broader insights into the regulatory mechanisms of complex allosteric enzymes.




z

Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes [Enzymology]

Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.




z

An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1 [Enzymology]

Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers.




z

Structural and mutational analyses of the bifunctional arginine dihydrolase and ornithine cyclodeaminase AgrE from the cyanobacterium Anabaena [Enzymology]

In cyanobacteria, metabolic pathways that use the nitrogen-rich amino acid arginine play a pivotal role in nitrogen storage and mobilization. The N-terminal domains of two recently identified bacterial enzymes: ArgZ from Synechocystis and AgrE from Anabaena, have been found to contain an arginine dihydrolase. This enzyme provides catabolic activity that converts arginine to ornithine, resulting in concomitant release of CO2 and ammonia. In Synechocystis, the ArgZ-mediated ornithine–ammonia cycle plays a central role in nitrogen storage and remobilization. The C-terminal domain of AgrE contains an ornithine cyclodeaminase responsible for the formation of proline from ornithine and ammonia production, indicating that AgrE is a bifunctional enzyme catalyzing two sequential reactions in arginine catabolism. Here, the crystal structures of AgrE in three different ligation states revealed that it has a tetrameric conformation, possesses a binding site for the arginine dihydrolase substrate l-arginine and product l-ornithine, and contains a binding site for the coenzyme NAD(H) required for ornithine cyclodeaminase activity. Structure–function analyses indicated that the structure and catalytic mechanism of arginine dihydrolase in AgrE are highly homologous with those of a known bacterial arginine hydrolase. We found that in addition to other active-site residues, Asn-71 is essential for AgrE's dihydrolase activity. Further analysis suggested the presence of a passage for substrate channeling between the two distinct AgrE active sites, which are situated ∼45 Å apart. These results provide structural and functional insights into the bifunctional arginine dihydrolase–ornithine cyclodeaminase enzyme AgrE required for arginine catabolism in Anabaena.




z

Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation [Enzymology]

Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5–ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5–ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5–ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.




z

Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'{delta} holoenzyme [Enzymology]

Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge–swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge–swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal–regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.




z

Structure of an ancestral mammalian family 1B1 cytochrome P450 with increased thermostability [Enzymology]

Mammalian cytochrome P450 enzymes often metabolize many pharmaceuticals and other xenobiotics, a feature that is valuable in a biotechnology setting. However, extant P450 enzymes are typically relatively unstable, with T50 values of ∼30–40 °C. Reconstructed ancestral cytochrome P450 enzymes tend to have variable substrate selectivity compared with related extant forms, but they also have higher thermostability and therefore may be excellent tools for commercial biosynthesis of important intermediates, final drug molecules, or drug metabolites. The mammalian ancestor of the cytochrome P450 1B subfamily was herein characterized structurally and functionally, revealing differences from the extant human CYP1B1 in ligand binding, metabolism, and potential molecular contributors to its thermostability. Whereas extant human CYP1B1 has one molecule of α-naphthoflavone in a closed active site, we observed that subtle amino acid substitutions outside the active site in the ancestor CYP1B enzyme yielded an open active site with four ligand copies. A structure of the ancestor with 17β-estradiol revealed only one molecule in the active site, which still had the same open conformation. Detailed comparisons between the extant and ancestor forms revealed increases in electrostatic and aromatic interactions between distinct secondary structure elements in the ancestral forms that may contribute to their thermostability. To the best of our knowledge, this represents the first structural evaluation of a reconstructed ancestral cytochrome P450, revealing key features that appear to contribute to its thermostability.




z

Processivity of dextransucrases synthesizing very-high-molar-mass dextran is mediated by sugar-binding pockets in domain V [Glycobiology and Extracellular Matrices]

The dextransucrase DSR-OK from the Gram-positive bacterium Oenococcus kitaharae DSM17330 produces a dextran of the highest molar mass reported to date (∼109 g/mol). In this study, we selected a recombinant form, DSR-OKΔ1, to identify molecular determinants involved in the sugar polymerization mechanism and that confer its ability to produce a very-high-molar-mass polymer. In domain V of DSR-OK, we identified seven putative sugar-binding pockets characteristic of glycoside hydrolase 70 (GH70) glucansucrases that are known to be involved in glucan binding. We investigated their role in polymer synthesis through several approaches, including monitoring of dextran synthesis, affinity assays, sugar binding pocket deletions, site-directed mutagenesis, and construction of chimeric enzymes. Substitution of only two stacking aromatic residues in two consecutive sugar-binding pockets (variant DSR-OKΔ1-Y1162A-F1228A) induced quasi-complete loss of very-high-molar-mass dextran synthesis, resulting in production of only 10–13 kg/mol polymers. Moreover, the double mutation completely switched the semiprocessive mode of DSR-OKΔ1 toward a distributive one, highlighting the strong influence of these pockets on enzyme processivity. Finally, the position of each pocket relative to the active site also appeared to be important for polymer elongation. We propose that sugar-binding pockets spatially closer to the catalytic domain play a major role in the control of processivity. A deep structural characterization, if possible with large-molar-mass sugar ligands, would allow confirming this hypothesis.




z

The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn2+-dependent phosphoethanolamine transferase [Glycobiology and Extracellular Matrices]

Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane–localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.




z

A Legionella effector kinase is activated by host inositol hexakisphosphate [Enzymology]

The transfer of a phosphate from ATP to a protein substrate, a modification known as protein phosphorylation, is catalyzed by protein kinases. Protein kinases play a crucial role in virtually every cellular activity. Recent studies of atypical protein kinases have highlighted the structural similarity of the kinase superfamily despite notable differences in primary amino acid sequence. Here, using a bioinformatics screen, we searched for putative protein kinases in the intracellular bacterial pathogen Legionella pneumophila and identified the type 4 secretion system effector Lpg2603 as a remote member of the protein kinase superfamily. Employing an array of biochemical and structural biology approaches, including in vitro kinase assays and isothermal titration calorimetry, we show that Lpg2603 is an active protein kinase with several atypical structural features. Importantly, we found that the eukaryote-specific host signaling molecule inositol hexakisphosphate (IP6) is required for Lpg2603 kinase activity. Crystal structures of Lpg2603 in the apo-form and when bound to IP6 revealed an active-site rearrangement that allows for ATP binding and catalysis. Our results on the structure and activity of Lpg2603 reveal a unique mode of regulation of a protein kinase, provide the first example of a bacterial kinase that requires IP6 for its activation, and may aid future work on the function of this effector during Legionella pathogenesis.




z

Impact of 1,N6-ethenoadenosine, a damaged ribonucleotide in DNA, on translesion synthesis and repair [Enzymology]

Incorporation of ribonucleotides into DNA can severely diminish genome integrity. However, how ribonucleotides instigate DNA damage is poorly understood. In DNA, they can promote replication stress and genomic instability and have been implicated in several diseases. We report here the impact of the ribonucleotide rATP and of its naturally occurring damaged analog 1,N6-ethenoadenosine (1,N6-ϵrA) on translesion synthesis (TLS), mediated by human DNA polymerase η (hpol η), and on RNase H2–mediated incision. Mass spectral analysis revealed that 1,N6-ϵrA in DNA generates extensive frameshifts during TLS, which can lead to genomic instability. Moreover, steady-state kinetic analysis of the TLS process indicated that deoxypurines (i.e. dATP and dGTP) are inserted predominantly opposite 1,N6-ϵrA. We also show that hpol η acts as a reverse transcriptase in the presence of damaged ribonucleotide 1,N6-ϵrA but has poor RNA primer extension activities. Steady-state kinetic analysis of reverse transcription and RNA primer extension showed that hpol η favors the addition of dATP and dGTP opposite 1,N6-ϵrA. We also found that RNase H2 recognizes 1,N6-ϵrA but has limited incision activity across from this lesion, which can lead to the persistence of this detrimental DNA adduct. We conclude that the damaged and unrepaired ribonucleotide 1,N6-ϵrA in DNA exhibits mutagenic potential and can also alter the reading frame in an mRNA transcript because 1,N6-ϵrA is incompletely incised by RNase H2.




z

Roles of active-site residues in catalysis, substrate binding, cooperativity, and the reaction mechanism of the quinoprotein glycine oxidase [Enzymology]

The quinoprotein glycine oxidase from the marine bacterium Pseudoalteromonas luteoviolacea (PlGoxA) uses a protein-derived cysteine tryptophylquinone (CTQ) cofactor to catalyze conversion of glycine to glyoxylate and ammonia. This homotetrameric enzyme exhibits strong cooperativity toward glycine binding. It is a good model for studying enzyme kinetics and cooperativity, specifically for being able to separate those aspects of protein function through directed mutagenesis. Variant proteins were generated with mutations in four active-site residues, Phe-316, His-583, Tyr-766, and His-767. Structures for glycine-soaked crystals were obtained for each. Different mutations had differential effects on kcat and K0.5 for catalysis, K0.5 for substrate binding, and the Hill coefficients describing the steady-state kinetics or substrate binding. Phe-316 and Tyr-766 variants retained catalytic activity, albeit with altered kinetics and cooperativity. Substitutions of His-583 revealed that it is essential for glycine binding, and the structure of H583C PlGoxA had no active-site glycine present in glycine-soaked crystals. The structure of H767A PlGoxA revealed a previously undetected reaction intermediate, a carbinolamine product-reduced CTQ adduct, and exhibited only negligible activity. The results of these experiments, as well as those with the native enzyme and previous variants, enabled construction of a detailed mechanism for the reductive half-reaction of glycine oxidation. This proposed mechanism includes three discrete reaction intermediates that are covalently bound to CTQ during the reaction, two of which have now been structurally characterized by X-ray crystallography.




z

Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations [Enzymology]

3-Mercaptopyruvate sulfur transferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate (3-MP) and transfers sulfane sulfur from an enzyme-bound persulfide intermediate to thiophilic acceptors such as thioredoxin and cysteine. Hydrogen sulfide (H2S), a signaling molecule implicated in many physiological processes, can be released from the persulfide product of the MPST reaction. Two splice variants of MPST, differing by 20 amino acids at the N terminus, give rise to the cytosolic MPST1 and mitochondrial MPST2 isoforms. Here, we characterized the poorly-studied MPST1 variant and demonstrated that substitutions in its Ser–His–Asp triad, proposed to serve a general acid–base role, minimally affect catalytic activity. We estimated the 3-MP concentration in murine liver, kidney, and brain tissues, finding that it ranges from 0.4 μmol·kg−1 in brain to 1.4 μmol·kg−1 in kidney. We also show that N-acetylcysteine, a widely-used antioxidant, is a poor substrate for MPST and is unlikely to function as a thiophilic acceptor. Thioredoxin exhibits substrate inhibition, increasing the KM for 3-MP ∼15-fold compared with other sulfur acceptors. Kinetic simulations at physiologically-relevant substrate concentrations predicted that the proportion of sulfur transfer to thioredoxin increases ∼3.5-fold as its concentration decreases from 10 to 1 μm, whereas the total MPST reaction rate increases ∼7-fold. The simulations also predicted that cysteine is a quantitatively-significant sulfane sulfur acceptor, revealing MPST's potential to generate low-molecular-weight persulfides. We conclude that the MPST1 and MPST2 isoforms are kinetically indistinguishable and that thioredoxin modulates the MPST-catalyzed reaction in a physiologically-relevant concentration range.




z

A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis [Enzymology]

Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery.




z

The institutionalization of the Indo-Pacific: problems and prospects

8 January 2020 , Volume 96, Number 1

Kai He and Huiyun Feng

Although the term ‘Indo-Pacific’ has become popular in the foreign policy discourse of some countries, we have yet to see any significant institution-building in the Indo-Pacific region. Borrowing insights from functional institutionalism and political leadership studies of international regimes, we introduce a ‘leadership–institution’ model to explore the problems and prospects of institutionalizing the Indo-Pacific. Through a comparative case study of the institutionalization of the Asia–Pacific vs the Indo-Pacific, we argue that two crucial factors contributed to the slow institutionalization of the Indo-Pacific as a regional system in world politics: the lack of ideational leadership from an epistemic community and the weak executive leadership from a powerful state. While ideational leaders can help states identify and expand common interests in cooperation, executive leadership will facilitate states to overcome operational obstacles in cooperation, such as the ‘collective action’ problem and the ‘relative gains’ concern. The future of institution-building in the Indo-Pacific will depend on whether and how these two leadership roles are played by scholars and states in the region. In the conclusion, we discuss the challenges of institutionalizing the Indo-Pacific and highlight China as a wild card in the future of Indo-Pacific regionalism.




z

Webinar: Does COVID-19 Spell the End of America's Interest in Globalization?

Research Event

19 May 2020 - 2:00pm to 3:00pm
Add to Calendar
Dr Anne-Marie Slaughter, CEO, New America
Professor Stephen Walt, Robert and Renee Belfer Professor of International Affairs, Harvard Kennedy School
Chair: Dr Leslie Vinjamuri, Director, US and Americas Programme, Chatham House
This  event is  part of the US and Americas Programme Inaugural Virtual Roundtable Series on the US and the State of the World and will take place virtually only.
 
Please note this event is taking place between 2pm to 3pm BST.

US and Americas Programme

Department/project




z

Webinar: Coronavirus, Globalization and Global Supply Chains

Corporate Members Event Webinar

2 June 2020 - 1:00pm to 2:00pm
Add to Calendar

Professor Ian Goldin, Professor of Globalisation and Development, University of Oxford; Director, Oxford Martin Programme on Technological and Economic Change

Further speakers to be announced.

The COVID-19 pandemic has exacerbated the implications of pre-existing global trends such as rising protectionism and mounting trade tensions for the future of economic globalization. The global health crisis has since led to widespread lockdowns, paralysed supply chains and interrupted shipments of medical equipment between trade partners thereby further exposing the vulnerabilities of an integrated global economy

Against this backdrop, the panellists will assess the impact of the coronavirus on economic globalization and global supply chains. To what extent might the health emergency encourage a re-evaluation of economic integration? How should governments and industries prepare for a resumption of activities under the auspices of a ‘new normal’ where ‘just-in-time’ methods of production may not be resilient enough to systemic shocks and challenges? Can a globalized supply and demand system become more resilient to shocks? And with China beginning to recover from the crisis, what might be the role of Chinese industry in rebooting global supply chains?

This event is part of a fortnightly series of 'Business in Focus' webinars reflecting on the impact of COVID-19 on areas of particular professional interest for our corporate members and giving circles.

Not a corporate member? Find out more.




z

Virtual Roundtable: Land Reform in Ukraine: Is Zelenskyy's Government Getting it Right?

Invitation Only Research Event

14 May 2020 - 12:00pm to 1:30pm
Add to Calendar
Ihor Petrashko, Minister of Economic Development and Trade, Ukraine
Andriy Dykun, Chair, Ukrainian Agricultural Council
Vadim Tolpeco, Ukrlandfarming Plc
Chair: Orysia Lutsevych, Research Fellow and Manager, Ukraine Forum, Chatham House
Ukraine is known as the ‘breadbasket of Europe’ thanks to its grain exports. On 31 March 2020, the Ukrainian parliament passed a landmark law ending a 19-year ban on the sale of privately owned agricultural land. Due to come into force in July 2021, the law applies to 41.5 million hectares of farmland and economists predict substantial economic gains from this liberalization.
 
This event will discuss the impact of the law on Ukraine’s agricultural sector and food security. How can the government best implement this reform and ensure that small and medium-sized agricultural companies increase their productivity? What does this change mean for Ukraine’s capacity to export grain? Can the country’s food supply withstand crises such as the COVID-19 pandemic? What role could foreign direct investors play in boosting production?
 
This event will be held on the record.

Anna Morgan

Administrator, Ukraine Forum
+44 (0)20 7389 3274




z

Kazakhstan's Foreign Policy Priorities

Research Event

21 November 2013 - 2:00pm to 3:00pm

Chatham House, London

Event participants

Erlan Idrissov, Minister of Foreign Affairs, Kazakhstan

Kazakhstan has attracted international attention due to its energy resources, its relative openness to foreign investment and its proximity to Afghanistan, all of which influence its foreign policy. The withdrawal of ISAF forces from the region in 2014 and Kazakhstan's participation in a number of regional and international initiatives are also likely to play a role in shaping the country's foreign policy in the short to medium term.

Mr Idrissov will outline the main items on Astana's foreign policy agenda for approximately 15 minutes, followed by 45 minutes for questions and discussion.

Attendance is by invitation only. 




z

Turkey-Armenia Relations in 2015: Thaw or Freeze?

Invitation Only Research Event

26 June 2014 - 4:00pm to 5:30pm

Chatham House, London

Event participants

Tunç Aybak, Programme Leader, International Politics and Law, Middlesex University
Thomas de Waal, Senior Associate, Russia and Eurasia Program, Carnegie Endowment for International Peace
Hratch Tchilingirian, Associate Faculty Member, Faculty of Oriental Studies, University of Oxford

The mass killings of Armenians in the Ottoman Empire during the First World War continue to be a divisive and highly politicized issue. The mixed reactions to Prime Minister Recep Tayyip Erdoğan's message of condolence on 23 April highlighted the obstacles standing in the way of normalization of relations between Turkey and Armenia. This event will explore whether the upcoming centenary of the genocide represents an opportunity for improvement. The speakers will offer initial remarks for approximately 10 minutes each, followed by an hour for questions and discussion.

Attendance at this event is by invitation only.

Lubica Pollakova

+44 (0)20 7314 2775




z

Abkhazia: Developments in the Domestic and Regional Context

Invitation Only Research Event

14 October 2014 - 10:00am to 11:30am

Chatham House, London

Event participants

Viacheslav Chirikba, de facto Minister of Foreign Affairs, Abkhazia

Viacheslav Chirikba will offer his perspective on the situation in Abkhazia following the recent presidential elections, and the developments in Abkhazia's relations with other regional players. 

Attendance at this event is by invitation only.

Lubica Pollakova

+44 (0)20 7314 2775




z

Thematic Review Series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis

Chi-Liang Eric Yen
Nov 1, 2008; 49:2283-2301
Thematic Reviews




z

Thematic review series: The Pathogenesis of Atherosclerosis The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL

Mohamad Navab
Jun 1, 2004; 45:993-1007
Thematic Reviews




z

Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3

Mohamad Navab
Sep 1, 2000; 41:1495-1508
Articles




z

Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1

Mohamad Navab
Sep 1, 2000; 41:1481-1494
Articles




z

Thematic review series: Adipocyte Biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis

Dawn L. Brasaemle
Dec 1, 2007; 48:2547-2559
Thematic Reviews




z

Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans

Saverio Cinti
Nov 1, 2005; 46:2347-2355
Research Articles




z

Elena Lazarou

Associate Fellow, US and the Americas Programme (based in Brussels)

Biography

Elena Lazarou is an associate fellow in the US and the Americas Programme, providing insights on themes relates to Brazilian politics and foreign policy and EU relations with Latin America. Her research focuses on EU relations with Brazil and Latin America, regionalism, and foreign policy analysis.

Dr Lazarou is assistant professor of international relations at the Getulio Vargas Foundation (FGV) in Brazil. Between 2012 and 2015 she was head of FGV’s Centre of International Relations. She is currently on extended leave, working as a policy analyst at the European Parliament’s Research Service since 2015.

Dr. Lazarou is a frequent panellist at conferences and events on international affairs and Latin America. She received her MPhil and PhD from the University of Cambridge and has held post-doctoral research positions at the University of Cambridge and the LSE.

Areas of expertise

  • Brazilian foreign policy
  • Brazilian politics
  • Latin America
  • EU foreign policy
  • Global governance

Past experience

2015 - presentPolicy analyst, European Parliamentary Research Service 
2012-15Head, Centre of International Relations, FGV Brazil 
2010 - presentAssistant professor of International Relations, FGV Brazil 




z

The UK, US and Mauritius: Decolonization, Security, Chagos and the ICJ

Invitation Only Research Event

30 January 2020 - 8:15am to 9:15am

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Professor Philippe Sands QC, Professor of Law, UCL 
Richard Burt, Managing Partner, McLarty Associates
Chair: Dr Leslie Vinjamuri, Director, US and Americas Programme; Dean, Queen Elizabeth II Academy, Chatham House

The Chagos archipelago in the Indian Ocean has garnered media attention recently after the UK failed to abide by a UN deadline to return the islands to Mauritius. The US has landed in the middle of the dispute as a 1965 agreement with the UK has allowed the US to establish a military base on one of the islands, Diego Garcia, which has since become instrumental in US missions in the Asia-Pacific and the Middle East. 

In February 2019, an Advisory Opinion of the International Court of Justice (ICJ) found that the Chagos archipelago was unlawfully dismembered from Mauritius, in violation of the right to self-determination and that the United Kingdom is under an obligation to end its administration of the Chagos archipelago ‘as rapidly as possible’. The UN General Assembly subsequently voted overwhelmingly in favour of the UK leaving the islands by the end of November 2019 and the right of the former residents who were removed by the UK to return. The UK does not accept the ICJ and UN rulings and argues that the islands are needed to protect Britain from security threats while Mauritius has made clear the base can remain.

Professor Philippe Sands QC, professor of law at University College London and lead counsel for Mauritius on the ICJ case on Legal Consequences of the Separation of the Chagos archipelago from Mauritius in 1965, will be joining Ambassador Richard Burt, US chief negotiator in the Strategic Arms Reduction Talks with the former Soviet Union for a discussion on the fate of the archipelago including the future of the military base and the right of return of former residents.  

Attendance at this event is by invitation only. 

Event attributes

Chatham House Rule

Department/project

US and Americas Programme




z

Implications of AMLO and Bolsonaro for Mexican and Brazilian Foreign Policy

Invitation Only Research Event

26 February 2020 - 12:15pm to 1:15pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Ambassador Andrés Rozental, Senior Adviser, Chatham House; Founding President, Mexican Council on Foreign Relations
Dr Elena Lazarou, Associate Fellow, US and the Americas Programme, Chatham House
Chair: Dr Christopher Sabatini, Senior Research Fellow for Latin America, US and the Americas Programme, Chatham House

The end of 2018 was a monumental year for Latin America’s two biggest economies. In December 2018, Andrés Manuel López Obrador (AMLO) was inaugurated as Mexico’s 58th president. The following month saw another political shift further south, as Jair Bolsonaro became Brazil’s 38th president. While sitting on opposite ends of the political spectrum, both AMLO and Bolsonaro were considered to be political outsiders and have upended the status quo through their election to office. 

To what extent does the election of AMLO in Mexico and Bolsonaro in Brazil represent a shift in those countries’ definitions of national interest and foreign policy priorities? How will this affect these states’ policies regarding international commitments and cooperation on issues such as human rights, environment and climate change, migration, and trade? To what extent do possible shifts reflect changing domestic opinions?  Will any changes represent a long-term shift in state priorities and policies past these administrations?

US and Americas Programme




z

Webinar: Venezuela's Energy Crisis

Members Event Webinar

24 March 2020 - 3:00pm to 3:30pm

Event participants

Francisco Monaldi, Fellow in Latin American Energy Policy; Interim Director, Latin America Initiative, Rice University’s Baker Institute for Public Policy

Contributing Chair: Dr Christopher Sabatini, Senior Research Fellow for Latin America, US and the Americas Programme, Chatham House

For decades, Venezuela has struggled to appropriately maintain production, redistribute profits and sustain investment in its nationalized oil industry to support its sagging economy. 

Compounded by recent political instability, corruption, US sanctions and the increased flow of human capital out of the country, Venezuela’s energy sector continues to spiral downward. But to what extent can Venezuela’s energy crisis be attributed to domestic politics, national mismanagement and a lack of investment and infrastructure? And how can the international community support the renewal of energy production in Venezuela especially with an eye toward lowering the country’s carbon footprint?
 
This webinar explores the challenges Venezuela currently faces in rebuilding its energy sector. Why did the Venezuelan oil industry collapse and how can it be recovered? How are trends in the Latin American energy sector, from the emergence of new players to the rise of renewables, impacting Venezuela’s oil industry? 

And with global crude prices in fluctuation due partly to the COVID-19 outbreak, how will Venezuela’s oil industry fare against global trends?

 




z

Webinar: Does COVID-19 Spell the End of America's Interest in Globalization?

Research Event

19 May 2020 - 2:00pm to 3:00pm
Add to Calendar
Dr Anne-Marie Slaughter, CEO, New America
Professor Stephen Walt, Robert and Renee Belfer Professor of International Affairs, Harvard Kennedy School
Chair: Dr Leslie Vinjamuri, Director, US and Americas Programme, Chatham House
This  event is  part of the US and Americas Programme Inaugural Virtual Roundtable Series on the US and the State of the World and will take place virtually only.
 
Please note this event is taking place between 2pm to 3pm BST.

US and Americas Programme

Department/project




z

A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice [Neurobiology]

Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse primary hippocampal neuronal cultures from both sexes and using structured illumination microscopic imaging of these neurons, we observed that brain-derived neurotrophic factor (BDNF) enhances co-localization of dendritic ZBP1 and PAT1 within granules that also contain kinesin-I. PAT1 is essential for BDNF-stimulated neuronal growth cone development and dendritic protrusion formation, and we noted that ZBP1 and PAT1 co-locate along with β-actin mRNA in actively transported granules in living neurons. Acute disruption of the PAT1–ZBP1 interaction in neurons with PAT1 siRNA or a dominant-negative ZBP1 construct diminished localization of β-actin mRNA but not of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) mRNA in dendrites. The aberrant β-actin mRNA localization resulted in abnormal dendritic protrusions and growth cone dynamics. These results suggest a critical role for PAT1 in BDNF-induced β-actin mRNA transport during postnatal development and reveal a new molecular mechanism for mRNA localization in vertebrates.




z

Reactive dicarbonyl compounds cause Calcitonin Gene-Related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum [Molecular Bases of Disease]

The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene–Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease.




z

COVID-19 Crisis – Business as Usual for Gaza?

6 May 2020

Mohammed Abdalfatah

Asfari Foundation Academy Fellow
The COVID-19 pandemic has brought unprecedented challenges, economic collapse and strict lockdowns in many parts of the world. For the people of Gaza, this reality is nothing new.

2020-05-06-covid-19-gaza.jpg

Palestinians light fireworks above the rubble during the Muslim holy month of Ramadan amid concerns about the spread of the coronavirus disease (COVID-19), in Gaza City , 30 April 2020. Photo by Majdi Fathi/NurPhoto via Getty Images.

In August 2012, when the UN released its report Gaza in 2020: A liveable place?, they could not have imagined what the world would look like in 2020: cities under lockdown, restrictions on movement, border closures, widespread unemployment, economic collapse, fear and anxiety and, above all, uncertainty about what the future holds.

For Gaza’s population of 2 million people this reality is nothing new. The conditions that the rest of the world are currently experiencing as a result of the COVID-19 pandemic is similar to the tight blockade Gaza has been living under ever since Hamas took over in 2007. Israel has imposed severe restrictions on the movement of people and goods, youth unemployment has reached 60 per cent, and over 80 per cent of Gaza’s population are now dependent on international aid.

The people of Gaza are having to face the COVID-19 crisis already at a disadvantage, with poor infrastructure, limited resources and a shortage of the most basic services, such as water and power supply. It also has a fragile health system, with hospitals lacking essential medical supplies and equipment, as well as the capacity to deal with the outbreak as there are only 84 ICU beds and ventilators available.

 

Meanwhile, intra-Palestinian divisions have persisted and were evident in the initial reaction to the pandemic. When President Mahmoud Abbas announced a state of emergency, it took two days for the Hamas-led government in Gaza to follow suit and shut down schools and universities. They later made a separate emergency appeal to address the crisis and prepare for a COVID-19 response in Gaza. This lack of coordination is typical of the way the Palestinian Authority and Hamas approach crisis situations.

After the initial uncoordinated response, Hamas, as the de-facto ruler of Gaza, has asserted its ability to control Gaza’s borders by putting in place quarantine measures for everyone who enters the strip, whether through the Erez checkpoint with Israel or the Rafah border with Egypt. They have also assigned 21 hospitals, hotels, and schools as compulsory quarantine centres for all arrivals from abroad, who have to stay in quarantine for 21 days. In comparison, there are 20 quarantine centres in the West Bank.  These strict measures have prevented the spread of the virus in the community and confined it to the quarantine centres, with only 20 confirmed cases of COVID-19 as of 6 May. Gaza’s de-facto authorities have also been able to monitor markets and prices to ensure the availability of essential goods.

Faced with a major crisis, Al-Qassam Brigades – the armed wing of Hamas – have tried to play the role of a national army by participating in efforts to fight the pandemic. They have relatively good logistical capacity and have contributed to the construction of two quarantine facilities with a total capacity of 1,000 units to prepare for more arrivals into Gaza. At the local level, municipalities have been disinfecting public spaces and facilities in addition to disseminating information about the virus and related preventative and protective measures. Other precautionary measures put in place include closing the weekly open markets, and restricting social gatherings like weddings and funerals.

Despite COVID-19, it’s business as usual when it comes to international dealings with Gaza. The key parties in the conflict – Israel, Hamas and the Palestinian Authority – along with the main external actors – Egypt, the United Nations and Qatar – have continued to stick to their policies aimed at keeping the security situation under control and preventing further escalation. Although Israel has allowed entry of pharmaceutical supplies and medical equipment into Gaza during the pandemic, it has kept its restrictions on the movement of goods and people in place, while keeping a close eye on the development of the COVID-19 outbreak in Gaza – a major outbreak here would be a nightmare scenario for Israel.

Meanwhile, Qatar has continued to address the humanitarian and economic needs of Gaza in an attempt to ease the pressure and prevent further escalation. It has pledged $150 million over the next six months to help families in Gaza from poorer backgrounds. Gaza has also been discussed by the Middle East Quartet, as Nickolay Mladenov, the UN special coordinator for the Middle East Peace Process, expressed his concern about the risk of a disease outbreak in Gaza during a call with the members of the Quartet.

Amid the pandemic, threats are still being exchanged between Israel and Hamas. The Israeli defence minister, Naftali Bennett, requested that in return for providing humanitarian aid to Gaza, Hamas agrees to return the remains of two Israeli soldiers killed in the 2014 war. While openly rejecting Bennett's statement, the leader of Hamas in Gaza, Yahya Sinwar, has offered to move forward with a prisoner swap deal if Israel agrees to release elderly prisoners and detainees in addition to detained women and children. Though dealing with its own COVID-19 outbreak, Egypt has started to mediate between the two parties in an attempt to stabilize the situation and reach a prisoner swap deal.

In the wake of this pandemic, lessons should be learned and policies should be examined, by all parties. Firstly, Israel should re-evaluate its security measures towards Gaza by easing restrictions on movement and trade which would have a positive impact on living conditions for Gaza’s population. The current measures have proven to be unsustainable and have contributed to the endless cycle of violence. Secondly, the intra-Palestinian division should end, to save Palestinians from contradictory policies and insufficient capacity on both sides. In fact, all previous attempts have failed to end this self-destructive division and this is due to the absence of political will on both sides. Elections seem to be the only viable path towards unity. Finally, efforts by the international community should go beyond stabilizing the security situation and ongoing crisis inside Gaza, where disruption of normal life is the norm.

While the world has reacted to this pandemic with a whole host of new policies and emergency measures, it has remained business as usual when dealing with Gaza. Should COVID-19 spread in Gaza, its people – who have already paid the price of a continuous blockade and intra-Palestinian division for 13 years – will pay a heavy price yet again. However, this time it is not a crisis that they alone will have to face.




z

Webinar: Coronavirus, Globalization and Global Supply Chains

Corporate Members Event Webinar

2 June 2020 - 1:00pm to 2:00pm
Add to Calendar

Professor Ian Goldin, Professor of Globalisation and Development, University of Oxford; Director, Oxford Martin Programme on Technological and Economic Change

Further speakers to be announced.

The COVID-19 pandemic has exacerbated the implications of pre-existing global trends such as rising protectionism and mounting trade tensions for the future of economic globalization. The global health crisis has since led to widespread lockdowns, paralysed supply chains and interrupted shipments of medical equipment between trade partners thereby further exposing the vulnerabilities of an integrated global economy

Against this backdrop, the panellists will assess the impact of the coronavirus on economic globalization and global supply chains. To what extent might the health emergency encourage a re-evaluation of economic integration? How should governments and industries prepare for a resumption of activities under the auspices of a ‘new normal’ where ‘just-in-time’ methods of production may not be resilient enough to systemic shocks and challenges? Can a globalized supply and demand system become more resilient to shocks? And with China beginning to recover from the crisis, what might be the role of Chinese industry in rebooting global supply chains?

This event is part of a fortnightly series of 'Business in Focus' webinars reflecting on the impact of COVID-19 on areas of particular professional interest for our corporate members and giving circles.

Not a corporate member? Find out more.




z

Virtual Roundtable: Land Reform in Ukraine: Is Zelenskyy's Government Getting it Right?

Invitation Only Research Event

14 May 2020 - 12:00pm to 1:30pm
Add to Calendar
Ihor Petrashko, Minister of Economic Development and Trade, Ukraine
Andriy Dykun, Chair, Ukrainian Agricultural Council
Vadim Tolpeco, Ukrlandfarming Plc
Chair: Orysia Lutsevych, Research Fellow and Manager, Ukraine Forum, Chatham House
Ukraine is known as the ‘breadbasket of Europe’ thanks to its grain exports. On 31 March 2020, the Ukrainian parliament passed a landmark law ending a 19-year ban on the sale of privately owned agricultural land. Due to come into force in July 2021, the law applies to 41.5 million hectares of farmland and economists predict substantial economic gains from this liberalization.
 
This event will discuss the impact of the law on Ukraine’s agricultural sector and food security. How can the government best implement this reform and ensure that small and medium-sized agricultural companies increase their productivity? What does this change mean for Ukraine’s capacity to export grain? Can the country’s food supply withstand crises such as the COVID-19 pandemic? What role could foreign direct investors play in boosting production?
 
This event will be held on the record.

Anna Morgan

Administrator, Ukraine Forum
+44 (0)20 7389 3274




z

Can Entrepreneurship Help Stabilize Conflict Zones?




z

Drugs and Organized Crime: The Challenges Facing Southeast Asia




z

Frozen Conflict: The Transnistrian Dispute