box

Lunchboxes of Love♡ with the Korea Legacy Committee


Mike Kim, founder of Korea Legacy Committee, brought super good vibes for this week's Good Vibes Only! Mike shared the activities of the nonprofit organization dedicated to combating the national...

[more...]




box

2,4-Di­chloro-6-{N-[2-(tri­fluoro­meth­yl)phen­yl]carboximido­yl}phenol

The title compound was synthesized by the condensation between tri­fluoro­methyl­aniline and di­chloro­salicyl­aldehyde by nucleophilic addition, forming a hemiaminal, followed by a dehydration to generate an imine. The compound crystallizes in an ortho­rhom­bic Pbca (Z = 8) space group with a dihedral angle of 44.70 (5)° between the two aromatic rings. In the crystal, the mol­ecules pack together to form a zigzag pattern along the c axis.




box

Ethyl (2RS,3SR,4RS)-1-ethyl-2-(furan-2-yl)-4-hy­droxy-5-oxopyrrolidine-3-carboxyl­ate

The crystal structure of a pyrrolidine analogue obtained from the stereoselective reduction of the enolic form of 4-hy­droxy-2-furyl-pyrrole­carboxyl­ate is described.




box

The role of carboxyl­ate ligand orbitals in the breathing dynamics of a metal-organic framework by resonant X-ray emission spectroscopy

Metal-organic frameworks (MOFs) exhibit structural flexibility induced by temperature and guest adsorption, as demonstrated in the structural breathing transition in certain MOFs between narrow-pore and large-pore phases. Soft modes were suggested to entropically drive such pore breathing through enhanced vibrational dynamics at high temperatures. In this work, oxygen K-edge resonant X-ray emission spectroscopy of the MIL-53(Al) MOF was performed to selectively probe the electronic perturbation accompanying pore breathing dynamics at the ligand carboxyl­ate site for metal–ligand interaction. It was observed that the temperature-induced vibrational dynamics involves switching occupancy between antisymmetric and symmetric configurations of the carboxyl­ate oxygen lone pair orbitals, through which electron density around carboxyl­ate oxygen sites is redistributed and metal–ligand interactions are tuned. In turn, water adsorption involves an additional perturbation of π orbitals not observed in the structural change solely induced by temperature.




box

Methyl 1-(4-fluoro­benz­yl)-1H-indazole-3-carboxyl­ate

The title compound, C16H13FN2O2, was synthesized by nucleophilic substitution of the indazole N—H hydrogen atom of methyl 1H-indazole-3-carboxyl­ate with 1-(bromo­meth­yl)-4-fluoro­benzene. In the crystal, some hydrogen-bond-like inter­actions are observed.




box

mer-Bis(quinoline-2-carboxaldehyde 4-ethyl­thio­semicarbazonato)nickel(II) methanol 0.33-solvate 0.67-hydrate

In the title compound, [Ni(C13H13N4S)2]·0.33CH3OH·0.67H2O, the NiII atom is coordinated by two tridentate quinoline-2-carboxaldehyde 4-ethyl­thio­semi­car­ba­zonate ligands in a distorted octa­hedral shape. At 100 K, the crystal symmetry is monoclinic (space group P21/n). A mixture of water and methanol crystallizes with the title complex, and one of the ethyl groups in the coordinating ligands is disordered over two positions, with an occupancy ratio of 58:42. There is inter­molecular hydrogen bonding between the solvent mol­ecules and the amine and thiol­ate groups in the ligands. No other significant inter­actions are present in the crystal packing.




box

Poly[[{μ2-5-[(di­methyl­amino)(thioxo)meth­oxy]benzene-1,3-di­carboxyl­ato-κ4O1,O1':O3,O3'}(μ2-4,4'-di­pyridyl­amine-κ2N4:N4')cobalt(II)] di­methyl­formamide hemisolvate monohydrate]

In the crystal structure of the title compound, {[Co(C11H9NSO5)(C10H9N3)]0.5C3H7NO·H2O}n or {[Co(dmtb)(dpa)]·0.5DMF·H2O}n (dmtb2– = 5-[(di­meth­yl­amino)­thioxometh­oxy]-1,3-benzene­dicarboxyl­ate and dpa = 4,4'-di­pyridyl­amine), an assembly of periodic [Co(C11H9NSO5)(C10H9N3)]n layers extending parallel to the bc plane is present. Each layer is constituted by distorted [CoO4N2] octa­hedra, which are connected through the μ2-coordination modes of both dmtb2– and dpa ligands. Occupationally disordered water and di­meth­yl­formamide (DMF) solvent mol­ecules are located in the voids of the network to which they are connected through hydrogen-bonding inter­actions.




box

Chlorido­[5,10,15,20-tetra­kis­(quinoline-7-carboxamido)­porphinato]iron(III)

The title compound, [Fe(C84H52N12O4)Cl], crystallizes in space group C2/c. The central FeIII cation (site symmetry 2) is coordinated in a fivefold manner, with four pyrrole N atoms of the porphyrin core in the basal sites and one Cl atom (site symmetry 2) in the apical position, which completes a slightly distorted square-pyramidal environment. The porphyrin macrocycle shows a characteristic ruffled-shape distortion and the iron atom is displaced out of the porphyrin plane by 0.42 Å with the average Fe—N distance being 2.054 (4) Å; the Fe—Cl bond length is 2.2042 (7) Å. Inter­molecular C—H⋯N and C—H⋯O hydrogen bonds occur in the crystal structure.




box

(2,5-Di­methyl­imidazole){N,N',N'',N'''-[porphyrin-5,10,15,20-tetra­yltetra­(2,1-phenyl­ene)]tetra­kis(pyridine-3-carboxamide)}manganese(II) chloro­benzene disolvate

In the title compound, [Mn(C68H44N12O4)(C5H8N2)]·2C6H5Cl, the central MnII ion is coordinated by four pyrrole N atoms of the porphyrin core in the basal sites and one N atom of the 2,5-di­methyl­imidazole ligand in the apical site. Two chloro­benzene solvent mol­ecules are also present in the asymmetric unit. Due to the apical imidazole ligand, the Mn atom is displaced out of the 24-atom porphyrin mean plane by 0.66 Å. The average Mn—Np (p = porphyrin) bond length is 2.143 (8) Å, and the axial Mn—NIm (Im = 2,5-di­methyl­imidazole) bond length is 2.171 (8) Å. The structure displays inter­molecular and intra­molecular N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonding. The crystal studied was refined as a two-component inversion twin.




box

Supra­molecular hy­dro­gen-bonded networks formed from copper(II) car­box­yl­ate dimers

The well-known copper car­box­yl­ate dimer, with four car­box­yl­ate ligands ex­ten­ding outwards towards the corners of a square, has been employed to generate a series of crystalline com­pounds. In particular, this work centres on the use of the 4-hy­droxy­benzoate anion (Hhba−) and its deprotonated phe­nol­ate form 4-oxidobenzoate (hba2−) to obtain complexes with the general formula [Cu2(Hhba)4–x(hba)xL2–y]x−, where L is an axial coligand (including solvent mol­ecules), x = 0, 1 or 2, and y = 0 or 1. In some cases, short hy­dro­gen bonds result in complexes which may be represented as [Cu2(Hhba)2(H0.5hba)2L2]−. The main focus of the investigation is on the formation of a variety of extended networks through hy­dro­gen bonding and, in some crystals, coordinate bonds when bridging coligands (L) are employed. Crystals of [Cu2(Hhba)4(di­ox­ane)2]·4(di­ox­ane) consist of the expected Cu dimer with the Hhba− anions forming hy­dro­gen bonds to 1,4-di­ox­ane mol­ecules which block network formation. In the case of crystals of com­position [Et4N][Cu2(Hhba)2(H0.5hba)2(CH3OH)(H2O)]·2(di­ox­ane), Li[Cu2(Hhba)2(H0.5hba)2(H2O)2]·3(di­ox­ane)·4H2O and [Cu2(Hhba)2(H0.5hba)2(H0.5DABCO)2]·3CH3OH (DABCO is 1,4-di­aza­bicyclo­[2.2.2]octa­ne), square-grid hy­dro­gen-bonded networks are generated in which the complex serves as one type of 4-con­necting node, whilst a second 4-con­necting node is a hy­dro­gen-bonding motif assembled from four phenol/phenolate groups. Another two-dimensional (2D) network based upon a related square-grid structure is formed in the case of [Et4N]2[Cu2(Hhba)2(hba)2(di­ox­ane)2][Cu2(Hhba)4(di­ox­ane)(H2O)]·CH3OH. In [Cu2(Hhba)4(H2O)2]·2(Et4NNO3), a square-grid structure is again apparent, but, in this case, a pair of nitrate anions, along with four phenolic groups and a pair of water mol­ecules, combine to form a second type of 4-con­necting node. When 1,8-bis­(di­methyl­amino)­naphthalene (bdn, `proton sponge') is used as a base, another square-grid network is generated, i.e. [Hbdn]2[Cu2(Hhba)2(hba)2(H2O)2]·3(di­ox­ane)·H2O, but with only the copper dimer complex serving as a 4-con­necting node. Complex three-dimensional networks are formed in [Cu2(Hhba)4(O-bipy)]·H2O and [Cu2(Hhba)4(O-bipy)2]·2(di­ox­ane), where the potentially bridging 4,4'-bi­pyridine N,N'-dioxide (O-bipy) ligand is employed. Rare cases of mixed car­box­yl­ate copper dimer complexes were obtained in the cases of [Cu2(Hhba)3(OAc)(di­ox­ane)]·3.5(di­ox­ane) and [Cu2(Hhba)2(OAc)2(DABCO)2]·10(di­ox­ane), with each structure possessing a 2D network structure. The final com­pound re­por­ted is a simple hy­dro­gen-bonded chain of com­position (H0.5DABCO)(H1.5hba), formed from the reaction of H2hba and DABCO.




box

New copper carboxyl­ate pyrene dimers: synthesis, crystal structure, Hirshfeld surface analysis and electrochemical characterization

Two new copper dimers, namely, bis­(dimethyl sulfoxide)­tetra­kis­(μ-pyrene-1-carboxyl­ato)dicopper(Cu—Cu), [Cu2(C17H9O2)4(C2H6OS)2] or [Cu2(pyr-COO−)4(DMSO)2] (1), and bis­(di­methyl­formamide)­tetra­kis­(μ-pyrene-1-carboxyl­ato)dicopper(Cu—Cu), [Cu2(C17H9O2)4(C3H7NO)2] or [Cu2(pyr-COO−)4(DMF)2] (2) (pyr = pyrene), were synthesized from the reaction of pyrene-1-carb­oxy­lic acid, copper(II) nitrate and tri­ethyl­amine from solvents DMSO and DMF, respectively. While 1 crystallized in the space group Poverline{1}, the crystal structure of 2 is in space group P21/n. The Cu atoms have octa­hedral geometries, with four oxygen atoms from carboxyl­ate pyrene ligands occupying the equatorial positions, a solvent mol­ecule coordinating at one of the axial positions, and a Cu⋯Cu contact in the opposite position. The packing in the crystal structures exhibits π–π stacking inter­actions and short contacts through the solvent mol­ecules. The Hirshfeld surfaces and two-dimensional fingerprint plots were generated for both compounds to better understand the inter­molecular inter­actions and the contribution of heteroatoms from the solvent ligands to the crystal packing. In addition, a Cu2+/Cu1+ quasi-reversible redox process was identified for compound 2 using cyclic voltammetry that accounts for a diffusion-controlled electron-donation process to the Cu dimer.




box

The synthesis and structural properties of a chlorido­bis­{N-[(4-meth­oxy­phen­yl)imino]­pyrrolidine-1-carboxamide}­zinc(II) (aceto­nitrile)­trichlorido­zincate coordination complex

The title complex, [ZnCl(C12H15N3O2)2][ZnCl3(CH3CN)], was synthesized and its structure was fully characterized through single-crystal X-ray diffraction analysis. The complex crystallizes in the ortho­rhom­bic system, space group Pbca (61), with a central zinc atom coordinating one chlorine atom and two pyrrolidinyl-4-meth­oxy­phenyl azoformamide ligands in a bidentate manner, utilizing both the nitro­gen and oxygen atoms in a 1,3-heterodiene (N=N—C=O) motif for coordinative bonding, yielding an overall positively (+1) charged complex. The complex is accompanied by a [(CH3CN)ZnCl3]− counter-ion. The crystal data show that the harder oxygen atoms in the heterodiene zinc chelate form bonding inter­actions with distances of 2.002 (3) and 2.012 (3) Å, while nitro­gen atoms are coordinated by the central zinc cation with bond lengths of 2.207 (3) and 2.211 (3) Å. To gain further insight into the inter­molecular inter­actions within the crystal, Hirshfeld surface analysis was performed, along with the calculation of two-dimensional fingerprint plots. This analysis revealed that H⋯H (39.9%), Cl⋯H/H⋯Cl (28.2%) and C⋯H/H⋯C (7.2%) inter­actions are dominant. This unique crystal structure sheds light on arrangement and bonding inter­actions with azo­formamide ligands, and their unique qualities over similar semicarbazone and azo­thio­formamide structures.




box

Crystal structure and Hirshfeld-surface analysis of di­aqua­bis­(5-methyl-1H-1,2,4-triazole-3-carboxyl­ato)copper(II)

The title compound, [Cu(HL)2(H2O)2] or [Cu(C4H4N3O2)2(H2O)2], is a mononuclear octa­hedral CuII complex based on 5-methyl-1H-1,2,4-triazole-3-carb­oxy­lic acid (H2L). [Cu(HL)2(H2O)2] was synthesized by reaction of H2L with copper(II) nitrate hexa­hydrate (2:1 stoichiometric ratio) in water under ambient conditions to produce clear light-blue crystals. The central Cu atom exhibits an N2O4 coordination environment in an elongated octa­hedral geometry provided by two bidentate HL− anions in the equatorial plane and two water mol­ecules in the axial positions. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯O/O⋯H (33.1%), H⋯H (29.5%) and H⋯N/N⋯H (19.3%) inter­actions.




box

Crystal structure and Hirshfeld surface analysis of dimethyl 4-hy­droxy-5,4'-dimethyl-2'-(toluene-4-sulfonyl­amino)­biphenyl-2,3-di­carboxyl­ate

In the title compound, C25H25NO7S, the mol­ecular conformation is stabilized by intra­molecular O—H⋯O and N—H⋯O hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. The mol­ecules are bent at the S atom with a C—SO2—NH—C torsion angle of −70.86 (11)°. In the crystal, mol­ecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming mol­ecular layers parallel to the (100) plane. C—H⋯π inter­actions are observed between these layers.




box

Crystal structure and Hirshfeld surface analysis of dieth­yl (3aS,3a1R,4S,5S,6R,6aS,7R,9aS)-3a1,5,6,6a-tetra­hydro-1H,3H,4H,7H-3a,6:7,9a-di­epoxy­benzo[de]isochromene-4,5-di­carboxyl­ate

In the title compound, C18H22O7, two hexane rings and an oxane ring are fused together. The two hexane rings tend toward a distorted boat conformation, while the tetra­hydro­furan and di­hydro­furan rings adopt envelope conformations. The oxane ring is puckered. The crystal structure features C—H⋯O hydrogen bonds, which link the mol­ecules into a three-dimensional network. According to a Hirshfeld surface study, H⋯H (60.3%) and O⋯H/H⋯O (35.3%) inter­actions are the most significant contributors to the crystal packing.




box

Crystal structure of di­ethyl­ammonium dioxido{Z)-N-[(pyri­din-2-yl)car­bon­yl­azan­idyl]pyri­dine-2-car­box­imid­ato}vana­date(1−) monohydrate

The title compound, (C4H12N)[V(C12H8N4O2)O2]·H2O, was synthesized via aerial oxidation on refluxing picolinohydrazide with ethyl picolinate followed by addition of VIVO(acac)2 and di­ethyl­amine in methanol. It crystallizes in the triclinic crystal system in space group Poverline{1}. In the complex anion, the dioxidovanadium(V) moiety exhibits a distorted square-pyramidal geometry. In the crystal, extensive hydrogen bonding links the water mol­ecule to two complex anions and one di­ethyl­ammonium ion. One of the CH2 groups in the di­ethyl­amine is disordered over two sets of sites in a 0.7:0.3 ratio.




box

Syntheses, characterizations, crystal structures and Hirshfeld surface analyses of methyl 4-[4-(di­fluorometh­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, isopropyl 4-[4-(di­fluoro&

The crystal structures and Hirshfeld surface analyses of three similar compounds are reported. Methyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C21H23F2NO4), (I), crystallizes in the monoclinic space group C2/c with Z = 8, while isopropyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­oxyl­ate, (C23H27F2NO4), (II) and tert-butyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, (C24H29F2NO4), (III) crystallize in the ortho­rhom­bic space group Pbca with Z = 8. In the crystal structure of (I), mol­ecules are linked by N—H⋯O and C—H⋯O inter­actions, forming a tri-periodic network, while mol­ecules of (II) and (III) are linked by N—H⋯O, C—H⋯F and C—H⋯π inter­actions, forming layers parallel to (002). The cohesion of the mol­ecular packing is ensured by van der Waals forces between these layers. In (I), the atoms of the 4-di­fluoro­meth­oxy­phenyl group are disordered over two sets of sites in a 0.647 (3): 0.353 (3) ratio. In (III), the atoms of the dimethyl group attached to the cyclo­hexane ring, and the two carbon atoms of the cyclo­hexane ring are disordered over two sets of sites in a 0.646 (3):0.354 (3) ratio.




box

Synthesis and crystal structure of tetra­methyl (E)-4,4'-(ethene-1,2-di­yl)bis­(5-nitro­benzene-1,2-di­carboxyl­ate)

The title compound, C22H18N2O12, was obtained as a by-product during the planned synthesis of 1,2-bis­(2-nitro-4,5-dimethyl phthalate)ethane by oxidative dimerization starting from dimethyl-4-methyl-5-nitro phthalate. To identify this compound unambiguously, a single-crystal structure analysis was performed. The asymmetric unit consists of half a mol­ecule that is located at a centre of inversion. As a result of symmetry restrictions, the mol­ecule shows an E configuration around the double bond. Both phenyl rings are coplanar, whereas the nitro and the two methyl ester groups are rotated out of the ring plane by 32.6 (1), 56.5 (2) and 49.5 (2)°, respectively. In the crystal, mol­ecules are connected into chains extending parallel to the a axis by pairs of C—H⋯O hydrogen bonds that are connected into a tri-periodic network by additional C—H⋯O hydrogen-bonding inter­actions.




box

Crystal structure and Hirshfeld surface analysis of dimethyl 4'-bromo-3-oxo-5-(thio­phen-2-yl)-3,4,5,6-tetra­hydro-[1,1'-biphen­yl]-2,4-di­carboxyl­ate

In the title compound, C20H17BrO5S, mol­ecules are connected by inter­molecular C—H⋯S hydrogen bonds with R22(10) ring motifs, forming ribbons along the b-axis direction. C—H⋯π inter­actions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure. According to a Hirshfeld surface analysis, H⋯H (40.5%), O⋯H/H⋯O (27.0%), C⋯H/H⋯C (13.9%) and Br⋯H/H⋯Br (11.7%) inter­actions are the most significant contributors to the crystal packing. The thio­phene ring and its adjacent di­carboxyl­ate group and the three adjacent carbon atoms of the central hexene ring to which they are attached were refined as disordered over two sets of sites having occupancies of 0.8378 (15) and 0.1622 (15). The thio­phene group is disordered by a rotation of 180° around one bond.




box

Crystal structure and Hirshfeld surface analysis of dimethyl 2-oxo-4-(pyridin-2-yl)-6-(thio­phen-2-yl)cyclo­hex-3-ene-1,3-di­carboxyl­ate

In the title compound, C19H17NO5S, the cyclo­hexene ring adopts nearly an envelope conformation. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions connect the mol­ecules by forming layers parallel to the (010) plane. According to the Hirshfeld surface analysis, H⋯H (36.9%), O⋯H/H⋯O (31.0%), C⋯H/H⋯C (18.9%) and S⋯H/H⋯S (7.9%) inter­actions are the most significant contributors to the crystal packing.




box

Crystal structure of N,N',N''-tri­cyclo­prop­ylbenzene-1,3,5-tricarboxamide

The title compound, C18H21N3O3, was prepared from 1,3,5-benzene­tricarbonyl trichloride and cyclo­propyl­amine. Its crystal structure was solved in the monoclinic space group P21/c. In the crystal, the three amide groups of the mol­ecule are inclined at angles of 26.5 (1), 36.9 (1) and 37.8 (1)° with respect to the plane of the benzene ring. The mol­ecules are linked by N—H⋯O hydrogen bonds, forming two-dimensional supra­molecular aggregates that extend parallel to the crystallographic ab plane and are further connected by C—H⋯O contacts. As a result of the supra­molecular inter­actions, a propeller-like conformation of the title mol­ecule can be observed.




box

Crystal structure of catena-poly[[di­aqua­di­imida­zole­cobalt(II)]-μ2-2,3,5,6-tetra­bromo­benzene-1,4-di­carboxyl­ato]

The asymmetric unit of the title compound, [Co(C8Br4O4)(C3H4N2)2(H2O)2]n or [Co(Br4bdc)(im)2(H2O)2]n, comprises half of CoII ion, tetra­bromo­benzene­dicarboxylate (Br4bdc2−), imidazole (im) and a water mol­ecule. The CoII ion exhibits a six-coordinated octa­hedral geometry with two oxygen atoms of the Br4bdc2− ligand, two oxygen atoms of the water mol­ecules, and two nitro­gen atoms of the im ligands. The carboxyl­ate group is nearly perpendicular to the benzene ring and shows monodentate coordination to the CoII ion. The CoII ions are bridged by the Br4bdc2− ligand, forming a one-dimensional chain. The carboxyl­ate group acts as an inter­molecular hydrogen-bond acceptor toward the im ligand and a coordinated water mol­ecule. The chains are connected by inter­chain N—H⋯O(carboxyl­ate) and O—H(water)⋯O(carboxyl­ate) hydrogen-bonding inter­actions and are not arranged in parallel but cross each other via inter­chain hydrogen bonding and π–π inter­actions, yielding a three-dimensional network.




box

Boxo and Nium launch white-label remittance platform for apps

Boxo has partnered with global payments infrastructure firm



box

Sheriff�s Office to assist in Operation Pill Stoppers drop box program.

The Catawba County Sheriff�s Office, in conjunction with The Cognitive Connection and The Foothills Coalition, is sponsoring an Operation Pill Stoppers program that now provides fixed locations for citizens to properly dispose of their unused and unwanted medications.




box

Grain diversity helps build a bigger toolbox for bakers

It has never been a better time to be in artisan baking. We are living in a time of heirloom wheat rediscovery and renewed appreciation for ancient grains.




box

Jack in the Box relaunches Spicy Chicken Strips, French Toast Sticks

Back by popular demand, these new offerings are available now for a limited time.




box

Thinking outside of the pizza box

To pizza and flatbread manufacturers, the secret to a great product goes way beyond the sauce. So what are the trends?




box

Sugar Plum rereleases Halloween Boo Box

The box includes chocolate-covered confections like pretzels, cookies, graham crackers, caramel popcorn, pretzel balls, and more.




box

Baker debuts seasonal macaron box

The selection features eight flavors that capture the essence of autumn, per the brand.




box

Fun Friday: HI-CHEW and Menchie's collab, Oprah's Favorite Things pound cake, Pinkbox monthly doughnut

This week's Fun Friday includes a Menchie's and HI-CHEW partnership, Oprah's Favorite Things pound cake, Pinkbox Doughnuts' treat of the month, a Haribo and Adidas sneaker collab, and IT'SUGAR's "Chews-Your-Mix" candy experience.




box

Wildgrain to launch Gluten-Free Box

Wildgrain partners with local artisanal bakers to bring fresh sourdough breads, pastries, and pastas directly to consumers' doors.




box

Milwaukee Tool toolbox attachments




box

Metsä Board’s Ultralight Pizza Box Concept Wins 2024 WorldStar Award

The awarded pizza box uses considerably less material than traditional solutions without compromising rigidity, function or print quality.




box

How On-Demand Boxes Can Address E-Commerce and Sustainable Packaging Challenges

Right-sized, on-demand packaging solutions empower companies to optimize their processes, reducing waste and minimizing their carbon footprint.




box

Metsä Board Decides Against Investing in the Kaskinen Folding Boxboard Mill

Metsä Board will write down the costs of the pre-engineering, in total approximately EUR 8 million, treated as an investment, as an item affecting comparability in the January-March 2024 operating result.




box

Box Manufacturer Crushes Cardboard’s Carbon Footprint with Reusable Containers

PACT has developed a specially designed, corrugated crate that some customers have been able to use over one hundred times.




box

TAPPI and AICC Now Accepting Entries for Box Manufacturing Olympics

Industry-wide competition celebrates greatest achievements and innovations at SuperCorrExpo.




box

Express Boxes Unveils Innovative "Build Your Own Box" Tool

The Build Your Own Box tool offers an unprecedented level of customization, ensuring that businesses can create packaging that perfectly aligns with their product dimensions and brand aesthetics.




box

Carton, pouches and bag-in-box answer calls for sustainability

As sustainability trends and consumer preference continue to drive market demand for sustainable packaging solutions, experts highlight how cartons, pouches and bag-in-box packaging are answering the call.




box

FreeCast Pairs Its Apps with HD HomeRun Boxes for Whole-Home OTT/OTA Solution

While the company will sell SiliconDust's HD HomeRun boxes pre-loaded with FreeCast Home, current device owners will be able to download the software as well.




box

Bitcoin Rodney To Referee Celebrity Boxing Match in Miami, FL

With former heavy-weight champ Riddick Bowe and 2x NBA Champ & reality Star Lamar Odom




box

Eiichi Jumawan Teaches the Sweet Science of Boxing at Pearlside Boxing Inc.

A renowned boxing champion, Mr. Eiichi Jumawan utilizes his talents to train young athletes and the next generation of trainers




box

Professional Boxer-Turned-Podcaster and Life Coach Harold Sconiers Has Developed the Secret to "Immortality"

Deontay Wilder's former nemesis has unlocked the key to a better life.




box

Kazakhstan intends to take away all world boxing titles

KBF President Kenes Rakishev considers this ambitious goal achievable.




box

Collision of Influencer Culture and Pro Boxing: Hype Boxing's Tampa Bay Event Set to Electrify All Audiences!

Celebrity Influencers Like M2THAK Step into the Ring alongside Pro Boxers Like Hasim Rahman Jr. for a Night of Thrilling Entertainment and Unforgettable Showdowns.




box

SwifDoo PDF Releases New Updates to Enable Documents Uploaded to Google Drive & Dropbox

SwifDoo PDF has recently unveiled a new feature, allowing users to seamlessly share their documents to Google Drive & Dropbox.




box

Turns Out Boxing Is The Perfect Pandemic Workout - Try It At Home With The Heavy Bag Pro App

The Heavy Bag Pro app, now available for iOS and Android, gives users at-home punching bag boxing workouts that are highly effective at burning calories and nurturing mental health.




box

Renowned Boxing Coach Adam Booth Weighs in on Jake Paul vs Anderson Silva

Boxing fans around the world have been looking forward to the much-anticipated upcoming match between Jake Paul and Anderson Silva. We sat down with renowned boxing coach Adam Booth to ask for his opinion about the upcoming match.




box

iDenfy's new partnership: IboxPay implements AML Screening and Monitoring

The cash-in payment network chooses iDenfy's AML services to ensure global compliance




box

Drip Shop Live Breaks Rare $50,000 Pokemon Booster Box, Giving $10,000 in Prizes Away

Rocket's Returns EX Booster Box was last opened over 2 years ago on Pokerev's Youtube Channel