two The crystal structure of ((cyclohexylamino){(Z)-2-[(E)-5-methoxy-3-nitro-2-oxidobenzylidene-κO]hydrazin-1-ylidene-κN2}methanethiolato-κS)(dimethyl sulfoxide-κS)platinum(II): a supramolecular two-dimens By scripts.iucr.org Published On :: 2019-09-12 The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thiosemicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, molecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π interactions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclohexylhydrazine-1-carbothioamide ligands are compared to that of the title compound. Full Article text
two Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions: supramolecular assembly in one, two and three dimensions By scripts.iucr.org Published On :: 2019-09-20 Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluorobenzoate, 4-chlorobenzoate and 4-bromobenzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-methoxyphenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hydroxybenzoate, pyridine-3-carboxylate and 2-hydroxy-3,5-dinitrobenzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) interactions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the trichloroacetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds. Full Article text
two Crystal structures of two charge–transfer complexes of benzo[1,2-c:3,4-c':5,6-c'']trithiophene (D3h-BTT) By scripts.iucr.org Published On :: 2019-09-30 Benzo[1,2-c:3,4-c':5,6-c'']trithiophene (D3h-BTT) is an easily prepared electron donor that readily forms charge–transfer complexes with organic acceptors. We report here two crystal structures of its charge–transfer complexes with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and buckminsterfullerene (C60). The D3h-BTT·TCNQ complex, C12H6S3·C12H4N4, crystallizes with mixed layers of donors and acceptors, with an estimated degree of charge transfer at 0.09 e. In the D3h-BTT·C60·toluene complex, C12H6S3·C60·C7H8, the central ring of BTT is `squeezed' by the C60 molecules from both faces. However, the degree of charge transfer is low. The C60 unit is disordered over two sites in a 0.766 (3):0.234 (3) ratio and was refined as a two-component inversion twin. Full Article text
two Crystal structures of two 4H-chromene derivatives: 2-amino-3-cyano-4-(3,4-dichlorophenyl)-7-hydroxy-4H-benzo[1,2-b]pyran 1,4-dioxane monosolvate and 2-amino-3-cyano-4-(2,6-dichlorophenyl)-7-hydroxy-4H-benzo[ By scripts.iucr.org Published On :: 2019-09-27 In the title compounds, C16H9Cl2N2O2·C4H8O2 and C16H9Cl2N2O2, the bicyclic 4H-chromene cores are nearly planar with maximum deviations of 0.081 (2) and 0.087 (2) Å. In both structures, the chromene derivative molecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, forming R22(16) motifs. These dimers are further linked in the 3,4-dichlorophenyl derivative by N—H⋯N hydrogen bonds into double layers parallel to (100) and in the 2,6-dichlorophenyl derivative by O—H⋯N hydrogen bonds into ribbons along the [1overline{1}0] direction. In the 3,4-dichlorophenyl derivative, the 1,4-dioxane solvent molecules are connected to the chromene molecules via O—H⋯O hydrogen bonds. Full Article text
two Crystal structures, syntheses, and spectroscopic and electrochemical measurements of two push–pull chromophores: 2-[4-(dimethylamino)benzylidene]-1H-indene-1,3(2H)-dione and (E)-2-{3-[4-(dimethylamino)phenyl By scripts.iucr.org Published On :: 2019-10-03 The title pull–push chromophores, 2-[4-(dimethylamino)benzylidene]-1H-indene-1,3(2H)-dione, C18H15NO2 (ID[1]) and (E)-2-{3-[4-(dimethylamino)phenyl]allylidene}-1H-indene-1,3(2H)-dione, C20H17NO2 (ID[2]), have donor–π-bridge–acceptor structures. The molecule with the short π-bridge, ID[1], is almost planar while for the molecule with a longer bridge, ID[2], is less planar. The benzene ring is inclined to the mean plane of the 2,3-dihydro-1H-indene unit by 3.19 (4)° in ID[1] and 13.06 (8)° in ID[2]. The structures of three polymorphs of compound ID[1] have been reported: the α-polymorph [space group P21/c; Magomedova & Zvonkova (1978). Kristallografiya, 23, 281–288], the β-polymorph [space group P21/c; Magomedova & Zvonkova (1980). Kristallografiya, 25 1183–1187] and the γ-polymorph [space group Pna21; Magomedova, Neigauz, Zvonkova & Novakovskaya (1980). Kristallografiya, 25, 400–402]. The molecular packing in ID[1] studied here is centrosymmetric (space group P21/c) and corresponds to the β-polymorph structure. The molecular packing in ID[2] is non-centrosymmetric (space group P21), which suggests potential NLO properties for this crystalline material. In both compounds, there is short intramolecular C—H⋯O contact present, enclosing an S(7) ring motif. In the crystal of ID[1], molecules are linked by C—H⋯O hydrogen bonds and C—H⋯π interactions, forming layers parallel to the bc plane. In the crystal of ID[2], molecules are liked by C—H⋯O hydrogen bonds to form 21 helices propagating along the b-axis direction. The molecules in the helix are linked by offset π–π interactions with, for example, a centroid–centroid distance of 3.9664 (13) Å (= b axis) separating the indene rings, and an offset of 1.869 Å. Spectroscopic and electrochemical measurements show the ability of these compounds to easily transfer electrons through the π-conjugated chain. Full Article text
two The crystal structures of two novel polymorphs of bis(oxonium) ethane-1,2-disulfonate By scripts.iucr.org Published On :: 2019-10-03 Two novel crystal forms of bis(oxonium) ethane-1,2-disulfonate, 2H3O−·C2H4O6S22−, are reported. Polymorph II has monoclinic (P21/n) symmetry, while the symmetry of form III is triclinic (Poverline{1}). Both structures display extensive networks of O—H⋯O hydrogen bonds. While this network in Form II is similar to that observed for the previously reported Form I [Mootz & Wunderlich (1970). Acta Cryst. B26, 1820–1825; Sartori et al. (1994). Z. Naturforsch. 49, 1467–1472] and extends in all directions, in Form III it differs significantly, forming layers parallel to the ab plane. The sulfonate molecule in all three forms adopts a nearly identical geometry. The other observed differences between the forms, apart from the hydrogen-bonding network, are observed in the crystal density and packing index. Full Article text
two Crystal structures of two solvated 2-aryl-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-ones By scripts.iucr.org Published On :: 2019-10-22 The synthesis and crystal structures of 2-(4-fluorophenyl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one toluene hemisolvate (1), C19H13FN2OS·0.5C7H8, and 2-(4-nitrophenyl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one isopropanol 0.25-solvate 0.0625-hydrate (2), C19H13N3O3S·0.25C3H7O·0.0625H2O, are reported. Both are racemic mixtures (centrosymmetric crystal structures) of the individual compounds and incorporate solvent molecules in their structures. Compound 2 has four thiazine molecules in the asymmetric unit. All the thiazine rings in this study show an envelope pucker, with the C atom bearing the substituted phenyl ring displaced from the other atoms. The phenyl and aryl rings in each of the molecules are roughly orthogonal to each other, with dihedral angles of about 75°. The extended structures of 1 and 2 are consolidated by C—H⋯O and C—H⋯N(π), as well as T-type (C—H⋯π) interactions. Parallel aromatic ring interactions (π–π stacking) are observed only in 2. Full Article text
two Crystal structures of the two isomeric hydrogen-bonded cocrystals 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1) and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) By scripts.iucr.org Published On :: 2019-10-22 The structures of two isomeric compounds of 5-nitroquinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1), (I), and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each compound, the acid and base molecules are held together by an O—H⋯N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond, forming a tape structure along [1overline{2}0]. The tapes are stacked into a layer parallel to the ab plane via N—O⋯π interactions between the nitro group of the base molecule and the quinoline ring system. The layers are further linked by other C—H⋯O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1overline{1}0] via C—H⋯O hydrogen bonds. The ribbons are further linked via another C—H⋯O hydrogen bond, forming a layer parallel to (110). Weak π–π interactions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitroquinoline molecules of the two compounds mapped over shape index and dnorm were generated to visualize the weak intermolecular interactions. Full Article text
two Crystal structures of two dimeric nickel diphenylacetate complexes By scripts.iucr.org Published On :: 2019-10-29 In the crystal structures of the title compounds, namely μ-aqua-κ2O:O-di-μ-diphenylacetato-κ4O:O'-bis[(diphenylacetato-κO)bis(pyridine-κN)nickel(II)], [Ni2(C14H11O2)4(C5H5N)4(H2O)] (1) and μ-aqua-κ2O:O-di-μ-diphenylacetato-κ4O:O'-bis[(2,2'-bipyridine-κ2N,N')(diphenylacetato-κO)nickel(II)]–acetonitrile–diphenylacetic acid (1/2.5/1), [Ni2(C14H11O2)4(C10H8N2)2(H2O)]·2.5CH3CN·C14H12O2 (2), the complex units are stabilized by a variety of intra- and intermolecular hydrogen bonds, as well as C—H⋯π and π–π contacts between the aromatic systems of the pyridine, dipyridyl and diphenylacetate ligands. Despite the fact that the diphenylacetate ligand is sterically bulky, this does not interfere with the formation of the described aqua-bridged dimeric core, even with a 2,2'-bipyridine ligand, which has a strong chelating effect. Full Article text
two Crystal structure of a two-dimensional coordination polymer of formula [Zn(NDC)(DEF)] (H2NDC is naphthalene-2,6-dicarboxylic acid and DEF is N,N-diethylformamide) By scripts.iucr.org Published On :: 2019-10-29 A zinc metal–organic framework, namely poly[bis(N,N-diethylformamide)(μ4-naphthalene-2,6-dicarboxylato)(μ2-naphthalene-2,6-dicarboxylato)dizinc(II)], [Zn(C12H6O4)(C15H11NO)]n, built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-dicarboxylic acid and zinc(II) acetate as the metal source in N,N-diethylformamide containing small amounts of formic acid. Full Article text
two Crystal structures of two coordination isomers of copper(II) 4-sulfobenzoic acid hexahydrate and two mixed silver/potassium 4-sulfobenzoic acid salts By scripts.iucr.org Published On :: 2019-10-31 A reaction of copper(II) carbonate and potassium 4-sulfobenzoic acid in water acidified with hydrochloric acid yielded two crystalline products. Tetraaquabis(4-carboxybenzenesulfonato)copper(II) dihydrate, [Cu(O3SC6H4CO2H)2(H2O)4]·2H2O, (I), crystallizes in the triclinic space group Poverline{1} with the Cu2+ ions located on centers of inversion. Each copper ion is coordinated to four water molecules in a square plane with two sulfonate O atoms in the apical positions of a Jahn–Teller-distorted octahedron. The carboxylate group is protonated and not involved in coordination to the metal ions. The complexes pack so as to create a layered structure with alternating inorganic and organic domains. The packing is reinforced by several O—H⋯O hydrogen bonds involving coordinated and non-coordinated water molecules, the carboxylic acid group and the sulfonate group. Hexaaquacopper(II) 4-carboxybenzenesulfonate, [Cu(H2O)6](O3SC6H4CO2H)2, (II), also crystallizes in the triclinic space group Poverline{1} with Jahn–Teller-distorted octahedral copper(II) aqua complexes on the centers of inversion. As in (I), the carboxylate group on the anion is protonated and the structure consists of alternating layers of inorganic cations and organic anions linked by O—H⋯O hydrogen bonds. A reaction of silver nitrate and potassium 4-sulfobenzoic acid in water also resulted in two distinct products that have been structurally characterized. An anhydrous silver potassium 4-carboxybenzenesulfonate salt, [Ag0.69K0.31](O3SC6H4CO2H), (III), crystallizes in the monoclinic space group C2/c. There are two independent metal sites, one fully occupied by silver ions and the other showing a 62% K+/38% Ag+ (fixed) ratio, refined in two slightly different positions. The coordination environments of the metal ions are composed primarily of sulfonate O atoms, with some participation by the non-protonated carboxylate O atoms in the disordered site. As in the copper compounds, the cations and anions cleanly segregate into alternating layers. A hydrated mixed silver potassium 4-carboxybenzenesulfonate salt dihydrate, [Ag0.20K0.80](O3SC6H4CO2H)·2H2O, (IV), crystallizes in the monoclinic space group P21/c with the Ag+ and K+ ions sharing one unique metal site coordinated by two water molecules and six sulfonate O atoms. The packing in (IV) follows the dominant motif of alternating inorganic and organic layers. The protonated carboxylate groups do not interact with the cations directly, but do participate in hydrogen bonds with the coordinated water molecules. (IV) is isostructural with pure potassium 4-sulfobenzoic acid dihydrate. Full Article text
two Crystal structure and Hirshfeld surface analysis of poly[tris(μ4-benzene-1,4-dicarboxylato)tetrakis(dimethylformamide)trinickel(II)]: a two-dimensional coordination network By scripts.iucr.org Published On :: 2019-11-08 The crystal structure of the title compound, [Ni3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-dicarboxylate and DMF = dimethylformamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides interactions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF molecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C interactions between DMF molecules, as shown by Hirshfeld surface analysis. Full Article text
two Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrob By scripts.iucr.org Published On :: 2019-11-08 The title compound, C9H7.5NO·C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto–enol tautomerization in the base molecule. The co-crystal is 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1), C7H4ClNO4·C9H7NO, and the salt is 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate, C9H8NO+·C7H3ClNO4−. In the compound, the acid and base molecules are held together by a short hydrogen bond [O⋯O = 2.4393 (15) Å], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid–base units are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via π–π interactions [centroid–centroid distances = 3.5504 (8)–3.9010 (11) Å]. The layers are further linked by another C—H⋯O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and dnorm were generated to visualize the intermolecular interactions. Full Article text
two Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)manganese(II)]-μ4-pentathiodiantimonato] tetrahydrate] showing a 1D MnSbS network By scripts.iucr.org Published On :: 2020-01-01 The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water molecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by intermolecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed. Full Article text
two Two isostructural 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-ones: disorder and supramolecular assembly By scripts.iucr.org Published On :: 2020-01-01 Two new chalcones containing both pyrazole and thiophene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one, C23H18N2O2S (I), and 3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thiophen-2-yl)prop-2-en-1-one, C24H20N2O2S (II), are isomorphous as well as isostructural, and in each the thiophene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the molecules are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds. Comparisons are made with some related compounds. Full Article text
two Synthesis and crystal structures of a bis(3-hydroxy-cyclohex-2-en-1-one) and two hexahydroquinoline derivatives By scripts.iucr.org Published On :: 2020-01-03 The title compound I, 2,2'-[(2-nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone), C23H27NO6, features a 1,3-ketone–enol conformation which is stabilized by two intramolecular hydrogen bonds. The most prominent intermolecular interactions in compound I are C—H⋯O hydrogen bonds, which link molecules into a two-dimensional network parallel to the (001) plane and a chain perpendicular to (1overline{1}1). Both title compounds II, ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C23H29NO6, and III, ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C29H29NO3, share the same structural features, such as a shallow boat conformation of the dihydropyridine group and an orthogonal aryl group attached to the dihydropyridine. Intermolecular N—H⋯O bonding is present in the crystal packing of both compound II and III. Full Article text
two Crystal structure of a nickel compound comprising two nickel(II) complexes with different ligand environments: [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2 By scripts.iucr.org Published On :: 2020-02-06 The title compound, diaqua[tris(2-aminoethyl)amine]nickel(II) hexaaquanickel(II) bis(sulfate), [Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2 or [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2, consists of two octahedral nickel complexes within the same unit cell. These metal complexes are formed from the reaction of [Ni(H2O)6](SO4) and the ligand tris(2-aminoethyl)amine (tren). The crystals of the title compound are purple, different from those of the starting complex [Ni(H2O)6](SO4), which are turquoise. The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the co-precipitation of the two types of crystals. The asymmetric unit of the title compound, which crystallizes in the space group Pnma, consists of two half NiII complexes and a sulfate counter-anion. The mononuclear cationic complex [Ni(tren)(H2O)2]2+ comprises an Ni ion, the tren ligand and two water molecules, while the mononuclear complex [Ni(H2O)6]2+ consists of another Ni ion surrounded by six coordinated water molecules. The [Ni(tren)(H2O)2] and [Ni(H2O)6] subunits are connected to the SO42− counter-anions through hydrogen bonding, thus consolidating the crystal structure. Full Article text
two Conversion of diarylchalcones into 4,5-dihydropyrazole-1-carbothioamides: molecular and supramolecular structures of two precursors and three products By scripts.iucr.org Published On :: 2020-02-14 Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-dihydropyrazole-1-carbothioamides using a cyclocondensation reaction with thiosemicarbazide. The chalcones 1-(4-chlorophenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromophenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their molecules are linked into sheets by two independent C—H⋯π(arene) interactions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chlorophenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C19H16ClN3OS, (IV), (RS)-3-(4-bromophenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C19H16BrN3OS, (V), and (RS)-3-(4-methoxyphenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-ynyloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their molecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The molecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds. Full Article text
two Crystal structure of a two-dimensional metal–organic framework assembled from lithium(I) and γ-cyclodextrin By scripts.iucr.org Published On :: 2020-02-14 The crystal structure of the polymeric title compound, catena-poly[[[diaqualithium]-μ-γ-cyclodextrin(1−)-[aqualithium]-μ-γ-cyclodextrin(1−)] pentadecahydrate], {[Li2(C48H79O40)2(H2O)3]·15H2O}n, consists of deprotonated γ-cyclodextrin (CD) molecules assembled by lithium ions into metal–organic ribbons that are cross-linked by multiple O—H⋯O hydrogen bonds into sheets extending parallel to (0overline11). Within a ribbon, one Li+ ion is coordinated by one deprotonated hydroxyl group of the first γ-CD torus and by one hydroxyl group of the second γ-CD torus as well as by two water molecules. The other Li+ ion is coordinated by one deprotonated hydroxyl and by one hydroxyl group of the second γ-CD torus, by one hydroxyl group of the first γ-CD torus as well as by one water molecule. The coordination spheres of both Li+ cations are distorted tetrahedral. The packing of the structure constitute channels along the a axis. Parts of the hydroxymethyl groups in cyclodextrin molecules as well as water molecules show two-component disorder. Electron density associated with additional disordered solvent molecules inside the cavities was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON. These solvent molecules are not considered in the given chemical formula and other crystal data. Five out of the sixteen hydroxymethyl groups and one water molecule are disordered over two sets of sites. Full Article text
two Crystal structures and Hirshfeld surface analyses of two new tetrakis-substituted pyrazines and a degredation product By scripts.iucr.org Published On :: 2020-02-18 The two new tetrakis-substituted pyrazines, 1,1',1'',1'''-(pyrazine-2,3,5,6-tetrayl) tetrakis(N,N-dimethylmethanamine), C16H32N6, (I) and N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline), C36H40N6, (II), both crystallize with half a molecule in the asymmetric unit; the whole molecules are generated by inversion symmetry. There are weak intramolecular C—H⋯N hydrogen bonds present in both molecules and in (II) the pendant N-methylaniline rings are linked by a C—H⋯π interaction. The degredation product, N,N'-[(6-phenyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine-2,3-diyl)bis(methylene)]bis(N-methylaniline), C28H29N5, (III), was obtained several times by reacting (II) with different metal salts. Here, the 6-phenyl ring is almost coplanar with the planar pyrrolo[3,4-b]pyrazine unit (r.m.s. deviation = 0.029 Å), with a dihedral angle of 4.41 (10)° between them. The two N-methylaniline rings are inclined to the planar pyrrolo[3,4-b]pyrazine unit by 88.26 (10) and 89.71 (10)°, and to each other by 72.56 (13)°. There are also weak intramolecular C—H⋯N hydrogen bonds present involving the pyrazine ring and the two N-methylaniline groups. In the crystal of (I), there are no significant intermolecular contacts present, while in (II) molecules are linked by a pair of C—H⋯π interactions, forming chains along the c-axis direction. In the crystal of (III), molecules are linked by two pairs of C—H⋯π interactions, forming inversion dimers, which in turn are linked by offset π–π interactions [intercentroid distance = 3.8492 (19) Å], forming ribbons along the b-axis direction. Full Article text
two Structural and luminescent properties of co-crystals of tetraiodoethylene with two azaphenanthrenes By scripts.iucr.org Published On :: 2020-02-25 Two new co-crystals, tetraiodoethylene–phenanthridine (1/2), 0.5C2I4·C13H9N (1) and tetraiodoethylene–benzo[f]quinoline (1/2), 0.5C2I4·C13H9N (2), were obtained from tetraiodoethylene and azaphenanthrenes, and characterized by IR and fluorescence spectroscopy, elemental analysis and X-ray crystallography. In the crystal structures, C—I⋯π and C—I⋯N halogen bonds link the independent molecules into one-dimensional chains and two-dimensional networks with subloops. In addition, the planar azaphenanthrenes lend themselves to π–π stacking and C—H⋯π interactions, leading to a diversity of supramolecular three-dimensional structural motifs being formed by these interactions. Luminescence studies show that co-crystals 1 and 2 exhibit distinctly different luminescence properties in the solid state at room temperature. Full Article text
two Polymorphism of 2-(5-benzyl-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl)acetic acid with two monoclinic modifications: crystal structures and Hirshfeld surface analyses By scripts.iucr.org Published On :: 2020-02-25 Two polymorphs of the title compound, C19H16N2O3, were obtained from ethanolic (polymorph I) and methanolic solutions (polymorph II), respectively. Both polymorphs crystallize in the monoclinic system with four formula units per cell and a complete molecule in the asymmetric unit. The main difference between the molecules of (I) and (II) is the reversed position of the hydroxy group of the carboxylic function. All other conformational features are found to be similar in the two molecules. The different orientation of the OH group results in different hydrogen-bonding schemes in the crystal structures of (I) and (II). Whereas in (I) intermolecular O—H⋯O hydrogen bonds with the pyridazinone carbonyl O atom as acceptor generate chains with a C(7) motif extending parallel to the b-axis direction, in the crystal of (II) pairs of inversion-related O—H⋯O hydrogen bonds with an R22(8) ring motif between two carboxylic functions are found. The intermolecular interactions in both crystal structures were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots. Full Article text
two Silver(I) nitrate two-dimensional coordination polymers of two new pyrazinethiophane ligands: 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e By scripts.iucr.org Published On :: 2020-03-13 The two new pyrazineophanes, 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine, C8H8N2S2, L1, and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine, C12H16N2S4, L2, both crystallize with half a molecule in the asymmetric unit; the whole molecules are generated by inversion symmetry. The molecule of L1, which is planar (r.m.s. deviation = 0.008 Å), consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methylenepyrazine unit, forming planar five-membered rings. The molecule of L2 is step-shaped and consists of two S–CH2–CH2–S chains linked by the central rigid tetra-2,3,5,6-methylenepyrazine unit, forming eight-membered rings that have twist-boat-chair configurations. In the crystals of both compounds, there are no significant intermolecular interactions present. The reaction of L1 with silver nitrate leads to the formation of a two-dimensional coordination polymer, poly[(μ-5,7-dihydro-1H,3H-dithieno[3,4-b;3',4'-e]pyrazine-κ2S:S')(μ-nitrato-κ2O:O')silver(I)], [Ag(NO3)(C8H8N2S2)]n, (I), with the nitrato anion bridging two equivalent silver atoms. The central pyrazine ring is situated about an inversion center and the silver atom lies on a twofold rotation axis that bisects the nitrato anion. The silver atom has a fourfold AgO2S2 coordination sphere with a distorted shape. The reaction of L2 with silver nitrate also leads to the formation of a two-dimensional coordination polymer, poly[[μ33,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b;6',7'-e]pyrazine-κ3S:S':S''](nitrato-κO)silver(I)], [Ag(NO3)(C12H16N2S4)]n, (II), with the nitrate anion coordinating in a monodentate manner to the silver atom. The silver atom has a fourfold AgOS3 coordination sphere with a distorted shape. In the crystals of both complexes, the networks are linked by C—H⋯O hydrogen bonds, forming supramolecular frameworks. There are additional C—H⋯S contacts present in the supramolecular framework of II. Full Article text
two Synthesis and crystal structures of two 1,3-di(alkyloxy)-2-(methylsulfanyl)imidazolium tetrafluoridoborates By scripts.iucr.org Published On :: 2020-03-17 Two salts were prepared by methylation of the respective imidazoline-2-thione at the sulfur atom, using Meerwein's salt (trimethyloxonium tetrafluoridoborate) in CH2Cl2. 1,3-Dimethoxy-2-(methylsulfanyl)imidazolium tetrafluoridoborate (1), C6H11N2O2S+·BF4−, displays a syn conformation of its two methoxy groups relative to each other whereas the two benzyloxy groups present in 1,3-dibenzyloxy-2-(methylsulfanyl)imidazolium tetrafluoridoborate (2), C18H19N2O2S+·BF4−, adopt an anti conformation. In the molecules of 1 and 2, the methylsulfanyl group is rotated out of the plane of the respective heterocyclic ring. In both crystal structures, intermolecular interactions are dominated by C—H⋯F—B contacts, leading to three-dimensional networks. The tetrafluoridoborate counter-ion of 2 is disordered over three orientations (occupancy ratio 0.42:0.34:0.24), which are related by rotation about one of the B—F bonds. Full Article text
two Syntheses and crystal structures of two piperine derivatives By scripts.iucr.org Published On :: 2020-04-09 The title compounds, 5-(2H-1,3-benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide, C18H21NO3 (I), and 5-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one C16H17NO3 (II), are derivatives of piperine, which is known as a pungent component of pepper. Their geometrical parameters are similar to those of the three polymorphs of piperine, which indicate conjugation of electrons over the length of the molecules. The extended structure of (I) features N—H⋯O amide hydrogen bonds, which generate C(4) [010] chains. The crystal of (II) features aromatic π–π stacking, as for two of three known piperine polymorphs. Full Article text
two Structural changes during water-mediated amorphization of semiconducting two-dimensional thiostannates By scripts.iucr.org Published On :: 2019-07-05 Owing to their combined open-framework structures and semiconducting properties, two-dimensional thiostannates show great potential for catalytic and sensing applications. One such class of crystalline materials consists of porous polymeric [Sn3S72−]n sheets with molecular cations embedded in-between. The compounds are denoted R-SnS-1, where R is the cation. Dependent on the cation, some R-SnS-1 thiostannates transition into amorphous phases upon dispersion in water. Knowledge about the fundamental chemical properties of the thiostannates, including their water stability and the nature of the amorphous products, has not yet been established. This paper presents a time-resolved study of the transition from the crystalline to the amorphous phase of two violet-light absorbing thiostannates, i.e. AEPz-SnS-1 [AEPz = 1-(2-aminoethyl)piperazine] and trenH-SnS-1 [tren = tris(2-aminoethyl)amine]. X-ray total scattering data and pair distribution function analysis reveal no change in the local intralayer coordination during the amorphization. However, a rapid decrease in the crystalline domain sizes upon suspension in water is demonstrated. Although scanning electron microscopy shows no significant decrease of the micrometre-sized particles, transmission electron microscopy reveals the formation of small particles (∼200–400 nm) in addition to the larger particles. The amorphization is associated with disorder of the thiostannate nanosheet stacking. For example, an average decrease in the interlayer distance (from 19.0 to 15.6 Å) is connected to the substantial loss of the organic components as shown by elemental analysis and X-ray photoelectron spectroscopy. Despite the structural changes, the light absorption properties of the amorphisized R-SnS-1 compounds remain intact, which is encouraging for future water-based applications of such materials. Full Article text
two Why is interoperability between the two fields of chemical crystallography and protein crystallography so difficult? By scripts.iucr.org Published On :: 2019-08-13 The interoperability of chemical and biological crystallographic data is a key challenge to research and its application to pharmaceutical design. Research attempting to combine data from the two disciplines, small-molecule or chemical crystallography (CX) and macromolecular crystallography (MX), will face unique challenges including variations in terminology, software development, file format and databases which differ significantly from CX to MX. This perspective overview spans the two disciplines and originated from the investigation of protein binding to model radiopharmaceuticals. The opportunities of interlinked research while utilizing the two databases of the CSD (Cambridge Structural Database) and the PDB (Protein Data Bank) will be highlighted. The advantages of software that can handle multiple file formats and the circuitous route to convert organometallic small-molecule structural data for use in protein refinement software will be discussed. In addition some pointers to avoid being shipwrecked will be shared, such as the care which must be taken when interpreting data precision involving small molecules versus proteins. Full Article text
two Cascading transitions toward unconventional charge density wave states in the quasi-two-dimensional monophosphate tungsten bronze P4W16O56 By scripts.iucr.org Published On :: 2020-01-16 Single crystals of the m = 8 member of the low-dimensional monophosphate tungsten bronzes (PO2)4(WO3)2m family were grown by chemical vapour transport technique and the high crystalline quality obtained allowed a reinvestigation of the physical and structural properties. Resistivity measurements revealed three anomalies at TC1 = 258 K, TC2 = 245 K and TC3 = 140 K, never observed until now. Parallel X-ray diffraction investigations showed a specific signature associated with three structural transitions, i.e. the appearance of different sets of satellite reflections below TC1, TC2 and TC3. Several harmonics of intense satellite reflections were observed, reflecting the non-sinusoidal nature of the structural modulations and a strong electron–phonon coupling in the material. These transitions could be associated with the formation of three successive unconventional charge density wave states. Full Article text
two ALEPH: a network-oriented approach for the generation of fragment-based libraries and for structure interpretation By scripts.iucr.org Published On :: 2020-02-26 The analysis of large structural databases reveals general features and relationships among proteins, providing useful insight. A different approach is required to characterize ubiquitous secondary-structure elements, where flexibility is essential in order to capture small local differences. The ALEPH software is optimized for the analysis and the extraction of small protein folds by relying on their geometry rather than on their sequence. The annotation of the structural variability of a given fold provides valuable information for fragment-based molecular-replacement methods, in which testing alternative model hypotheses can succeed in solving difficult structures when no homology models are available or are successful. ARCIMBOLDO_BORGES combines the use of composite secondary-structure elements as a search model with density modification and tracing to reveal the rest of the structure when both steps are successful. This phasing method relies on general fold libraries describing variations around a given pattern of β-sheets and helices extracted using ALEPH. The program introduces characteristic vectors defined from the main-chain atoms as a way to describe the geometrical properties of the structure. ALEPH encodes structural properties in a graph network, the exploration of which allows secondary-structure annotation, decomposition of a structure into small compact folds, generation of libraries of models representing a variation of a given fold and finally superposition of these folds onto a target structure. These functions are available through a graphical interface designed to interactively show the results of structure manipulation, annotation, fold decomposition, clustering and library generation. ALEPH can produce pictures of the graphs, structures and folds for publication purposes. Full Article text
two Structural elucidation of triclinic and monoclinic SFCA-III – killing two birds with one stone By scripts.iucr.org Published On :: 2019-11-20 A part of the system CaO-SiO2–Al2O3–Fe2O3–MgO which is of relevance to iron-ore sintering has been studied in detail. For a bulk composition corresponding to 10.45 wt% CaO, 5.49 wt% MgO, 69.15 wt% Fe2O3, 13.37 wt% Al2O3 and 1.55 wt% SiO2 synthesis runs have been performed in air in the range between 1100 and 1300°C. Products have been characterized using reflected-light microscopy, electron microprobe analysis and diffraction techniques. At 1250°C, an almost phase-pure material with composition Ca2.99Mg2.67Fe3+14.58Fe2+0.77Al4.56Si0.43O36 has been obtained. The compound corresponds to the first Si-containing representative of the M14+6nO20+8n polysomatic series of so-called SFCA phases (Silico-Ferrites of Calcium and Aluminum) with n = 2 and is denoted as SFCA-III. Single-crystal diffraction investigations using synchrotron radiation at the X06DA beamline of the Swiss Light Source revealed that the chemically homogenous sample contained both a triclinic and monoclinic polytype. Basic crystallographic data are as follows: triclinic form: a = 10.3279 (2) Å, b = 10.4340 (2) Å, c = 14.3794 (2) Å, α = 93.4888 (12)°, β = 107.3209 (14)° and γ = 109.6626 (14)°, V = 1370.49 (5) Å3, Z = 2, space group P{overline 1}; monoclinic form: a = 10.3277 (2) Å, b = 27.0134 (4) Å, c = 10.4344 (2) Å, β = 109.668 (2)°, V = 2741.22 (9) Å3, Z = 4, space group P21/n. Structure determination of both modifications was successful using diffraction data from the same allotwinned crystal. A description of the observed polytypism within the framework of OD-theory is presented. Triclinic and monoclinic SFCA-III actually correspond to the two possible maximum degree of order structures based on OD-layers containing three spinel (S) and one pyroxene (P) modules (〈S3P〉). The existence of SFCA-III in industrial iron-ore sinters has yet to be confirmed. Polytypism is likely to occur in other SFCA-members (SFCA, SFCA-I) relevant to sintering as well, but has so far been neglected in the characterization of industrial samples. Our results shed light on this phenomenon and may therefore be also helpful for better interpretation of the powder diffraction patterns that are used for phase analysis of iron-ore sinters. Full Article text
two Classification of grazing-incidence small-angle X-ray scattering patterns by convolutional neural network By journals.iucr.org Published On :: Convolutional neural networks are useful for classifying grazing-incidence small-angle X-ray scattering patterns. They are also useful for classifying real experimental data. Full Article text
two Fast fitting of reflectivity data of growing thin films using neural networks By scripts.iucr.org Published On :: 2019-11-08 X-ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. This study shows how a simple artificial neural network model can be used to determine the thickness, roughness and density of thin films of different organic semiconductors [diindenoperylene, copper(II) phthalocyanine and α-sexithiophene] on silica from their XRR data with millisecond computation time and with minimal user input or a priori knowledge. For a large experimental data set of 372 XRR curves, it is shown that a simple fully connected model can provide good results with a mean absolute percentage error of 8–18% when compared with the results obtained by a genetic least mean squares fit using the classical Parratt formalism. Furthermore, current drawbacks and prospects for improvement are discussed. Full Article text
two Shape-fitting analyses of two-dimensional X-ray diffraction spots for strain-distribution evaluation in a β-FeSi2 nanofilm By journals.iucr.org Published On :: New fitting analyses of two-dimensional diffraction-spot shapes are demonstrated to evaluate strain, strain distribution and domain size in a crystalline ultra-thin film. The evaluations are displayed as residual and population maps as a function of strain or domain size. Full Article text
two Crystal structures of two furazidin polymorphs revealed by a joint effort of crystal structure prediction and NMR crystallography By scripts.iucr.org Published On :: 2020-04-16 This work presents the crystal structure determination of two elusive polymorphs of furazidin, an antibacterial agent, employing a combination of crystal structure prediction (CSP) calculations and an NMR crystallography approach. Two previously uncharacterized neat crystal forms, one of which has two symmetry-independent molecules (form I), whereas the other one is a Z' = 1 polymorph (form II), crystallize in P21/c and P1 space groups, respectively, and both are built by different conformers, displaying different intermolecular interactions. It is demonstrated that the usage of either CSP or NMR crystallography alone is insufficient to successfully elucidate the above-mentioned crystal structures, especially in the case of the Z' = 2 polymorph. In addition, cases of serendipitous agreement in terms of 1H or 13C NMR data obtained for the CSP-generated crystal structures different from the ones observed in the laboratory (false-positive matches) are analyzed and described. While for the majority of analyzed crystal structures the obtained agreement with the NMR experiment is indicative of some structural features in common with the experimental structure, the mentioned serendipity observed in exceptional cases points to the necessity of caution when using an NMR crystallography approach in crystal structure determination. Full Article text
two Smithsonian Scientist Discovers Two New Bat Species Hiding in Museum Collections for More Than 150 Years By insider.si.edu Published On :: Wed, 29 Jul 2009 14:15:17 +0000 While studying bats recently at the Academy of Natural Sciences in Philadelphia, Smithsonian mammalogist Kristofer Helgen discovered a new species of flying fox bat from […] The post Smithsonian Scientist Discovers Two New Bat Species Hiding in Museum Collections for More Than 150 Years appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature bats collections extinction National Museum of Natural History new species
two Two new frog species discovered in Panama’s fungal war zone By insider.si.edu Published On :: Mon, 24 May 2010 13:19:40 +0000 “We are working as hard as we can to find and identify frogs before the disease reaches them, and to learn more about a disease that has the power to ravage an entire group of organisms,” said Roberto Ibanez, research scientist at STRI and local director of the Panama Amphibian Rescue and Conservation Project. The post Two new frog species discovered in Panama’s fungal war zone appeared first on Smithsonian Insider. Full Article Research News Science & Nature chytrid fungus Colombia extinction frogs new species South America
two National Zoo scientists successfully grow two species of anemones in aquarium tanks By insider.si.edu Published On :: Tue, 24 Aug 2010 11:45:18 +0000 The anemones—both of which are commonly called Tealia red anemones under the species of Urticina—spawned in late April and early May, just days apart. Henley collected the eggs and sperm from the more than 2,000-gallon tank and put them together in smaller tanks to increase the chances of fertilization. After fertilization, the larvae settled and metamorphosed into a polyp. The post National Zoo scientists successfully grow two species of anemones in aquarium tanks appeared first on Smithsonian Insider. Full Article Animals Marine Science Research News Science & Nature biodiversity collections conservation conservation biology endangered species ocean acidification Smithsonian's National Zoo
two Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals By insider.si.edu Published On :: Mon, 24 Jan 2011 17:43:02 +0000 A recent experiment by scientists at the Smithsonian Tropical Research Institute in Panama has revealed just how rising atmospheric carbon dioxide will deliver a one-two […] The post Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals appeared first on Smithsonian Insider. Full Article Marine Science Research News Science & Nature biodiversity carbon dioxide climate change coral reefs ocean acidification Tropical Research Institute
two Two dying stars to be reborn as one…in a few million years By insider.si.edu Published On :: Wed, 06 Apr 2011 18:18:09 +0000 Astronomers have just discovered an amazing pair of white dwarfs whirling around each other once every 39 minutes. This is the shortest-period pair of white dwarfs now known. Moreover, in a few million years they will collide and merge to create a single star. The post Two dying stars to be reborn as one…in a few million years appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory supernova
two Damai, a two-and-a-half-year-old female Sumatran tiger, makes her debut at the National Zoo By insider.si.edu Published On :: Thu, 02 Jun 2011 12:09:05 +0000 The National Zoo’s great cat program recently expanded with the arrival of two-and-a-half-year-old female Sumatran tiger, Damai, who is now out of quarantine and spending time outside in her exhibit where visitors can see her. The post Damai, a two-and-a-half-year-old female Sumatran tiger, makes her debut at the National Zoo appeared first on Smithsonian Insider. Full Article Animals Science & Nature captive breeding conservation conservation biology endangered species mammals new acquisitions Smithsonian's National Zoo veterinary medicine
two Scientists turn to social networking and citizen scientists to help keep track of amphibians By insider.si.edu Published On :: Wed, 08 Jun 2011 19:47:10 +0000 Any adventurer, hiker or backyard naturalist with a camera can help scientists survey and hopefully save the world’s amphibians thanks to a new social networking site that links “citizen scientists” with researchers tracking the decline of amphibians around the globe. The post Scientists turn to social networking and citizen scientists to help keep track of amphibians appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature amphibian biodiversity citizen science conservation biology endangered species extinction Smithsonian's National Zoo
two Bone fragment is only Ice Age artwork from America to show a “proboscidean” By insider.si.edu Published On :: Wed, 22 Jun 2011 14:00:19 +0000 Researchers from the Smithsonian Institution and the University of Florida have announced the discovery of a bone fragment, approximately 13,000 years old, in Florida with an incised image of a mammoth or mastodon. The post Bone fragment is only Ice Age artwork from America to show a “proboscidean” appeared first on Smithsonian Insider. Full Article Anthropology Research News Science & Nature mammals National Museum of Natural History
two New study reveals desert tortoise is actually two distinct species By insider.si.edu Published On :: Thu, 30 Jun 2011 12:00:27 +0000 A new study shows that the desert tortoise, thought to be a single species for the last 150 years, is in fact two separate and distinct species, based on DNA evidence and biological and geographical distinctions. The post New study reveals desert tortoise is actually two distinct species appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity collections conservation conservation biology endangered species National Museum of Natural History new species reptiles
two Astronomers find two white-dwarf stars locked in death spiral By insider.si.edu Published On :: Thu, 14 Jul 2011 16:43:31 +0000 "I nearly fell out of my chair at the telescope when I saw one star change its speed by a staggering 750 miles per second in just a few minutes," said Smithsonian astronomer Warren Brown, lead author of the paper reporting the find. The post Astronomers find two white-dwarf stars locked in death spiral appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory supernova
two Zoo celebrates birth of two Micronesian kingfishers, a species extinct in the wild By insider.si.edu Published On :: Wed, 07 Sep 2011 15:32:41 +0000 The Zoo’s Smithsonian Conservation Biology Institute in Front Royal, Va., is celebrating the recent hatching of two Micronesian kingfisher (Todiramphus c. cinnamominus) chicks, a female and male, born July 25 and Aug. 20, respectively. The post Zoo celebrates birth of two Micronesian kingfishers, a species extinct in the wild appeared first on Smithsonian Insider. Full Article Science & Nature biodiversity birds conservation conservation biology endangered species extinction Smithsonian's National Zoo
two Two closely related bee species discovered far apart in Panama and northern Colombia By insider.si.edu Published On :: Thu, 20 Oct 2011 14:34:20 +0000 Our studies of the genetic relationships between these bees tells us that they originated in the Amazon about 22 million years ago and that they moved north into Central America before 3 million years ago. The post Two closely related bee species discovered far apart in Panama and northern Colombia appeared first on Smithsonian Insider. Full Article Animals Science & Nature bees Colombia South America
two Two Earth-sized planets discovered orbiting a distant Sun-like star By insider.si.edu Published On :: Thu, 22 Dec 2011 12:42:04 +0000 Astronomers using NASA's Kepler mission have detected two Earth-sized planets orbiting a distant star. This discovery marks a milestone in the hunt for alien worlds, since it brings scientists one step closer to their ultimate goal of finding a twin Earth. The post Two Earth-sized planets discovered orbiting a distant Sun-like star appeared first on Smithsonian Insider. Full Article Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian planets Smithsonian Astrophysical Observatory
two Two new species of extinct camels discovered in Panama Canal excavations By insider.si.edu Published On :: Wed, 29 Feb 2012 14:25:21 +0000 The discovery of two new extinct camel species by scientists from the University of Florida and the Smithsonian is casting new light on the history of the tropics, a region containing more than half the world's biodiversity and some of its most important ecosystems. The post Two new species of extinct camels discovered in Panama Canal excavations appeared first on Smithsonian Insider. Full Article Dinosaurs & Fossils Science & Nature new species
two Fancy footwork and non-stick leg coating helps spiders not stick to their own webs By insider.si.edu Published On :: Thu, 01 Mar 2012 13:21:19 +0000 Researchers at the Smithsonian Tropical Research Institute and University of Costa Rica studying why spiders do not stick to their own sticky webs have discovered that a spider's legs are protected by a covering of branching hairs and by a non-stick chemical coating. Their results are published online in the journal, Naturwissenschaften. The post Fancy footwork and non-stick leg coating helps spiders not stick to their own webs appeared first on Smithsonian Insider. Full Article Animals Science & Nature biodiversity insects spiders Tropical Research Institute
two One supernova type, two different sources By insider.si.edu Published On :: Mon, 07 May 2012 18:31:42 +0000 Two very different models explain the possible origin of Type Ia supernovae, and different studies support each model. New evidence shows that both models are correct - some of these supernovae are created one way and some the other. The post One supernova type, two different sources appeared first on Smithsonian Insider. Full Article Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory supernova