base 5-MeO-DALT: the freebase of N,N-diallyl-5-methoxytryptamine By scripts.iucr.org Published On :: 2020-04-17 The title compound {systematic name: N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-N-(prop-2-en-1-yl)prop-2-en-1-amine), C17H22N2O, has a single tryptamine molecule in the asymmetric unit. The molecules are linked by strong N—H⋯N hydrogen bonds into zigzag chains with graph-set notation C(7) along the [010] direction. Full Article text
base Crystal structures of an imidazo[1,5-a]pyridinium-based ligand and its (C13H12N3)2[CdI4] hybrid salt By scripts.iucr.org Published On :: 2019-07-19 The monocation product of the oxidative condensation–cyclization between two molecules of pyridine-2-carbaldehyde and one molecule of CH3NH2·HCl in methanol, 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium, was isolated in the presence of metal ions as bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate, (C13H12N3)2[CdI4], (I), and the mixed chloride/nitrate salt, bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate, 2C13H12N3+·1.5Cl−·0.5NO3−·3H2O, (II). Hybrid salt (I) crystallizes in the space group P21/n with two [L]2[CdI4] molecules in the asymmetric unit related by pseudosymmetry. In the crystal of (I), layers of organic cations and of tetrahalometallate anions are stacked parallel to the ab plane. Antiparallel L+ cations disposed in a herring-bone pattern form π-bonded chains through aromatic stacking. In the inorganic layer, adjacent tetrahedral CdI4 units have no connectivity but demonstrate close packing of iodide anions. In the crystal lattice of (II), the cations are arranged in stacks propagating along the a axis; the one-dimensional hydrogen-bonded polymer built of chloride ions and water molecules runs parallel to a column of stacked cations. Full Article text
base Synthesis and structure of push–pull merocyanines based on barbituric and thiobarbituric acid By scripts.iucr.org Published On :: 2019-08-16 Two compounds, 1,3-diethyl-5-{(2E,4E)-6-[(E)-1,3,3-trimethylindolin-2-ylidene]hexa-2,4-dien-1-ylidene}pyrimidine-2,4,6(1H,3H,5H)-trione or TMI, C25H29N3O3, and 1,3-diethyl-2-sulfanylidene-5-[2-(1,3,3-trimethylindolin-2-ylidene)ethylidene]dihydropyrimidine-4,6(1H,5H)-dione or DTB, C21H25N3O2S, have been crystallized and studied. These compounds contain the same indole derivative donor group and differ in their acceptor groups (in TMI it contains oxygen in the para position, and in DTB sulfur) and the length of the π-bridge. In both materials, molecules are packed in a herringbone manner with differences in the twist and fold angles. In both structures, the molecules are connected by weak C—H⋯O and/or C—H⋯S bonds. Full Article text
base Tetra-n-butylammonium orotate monohydrate: knowledge-based comparison of the results of accurate and lower-resolution analyses and a non-routine disorder refinement By scripts.iucr.org Published On :: 2019-10-08 The title hydrated molecular salt (systematic name: tetra-n-butylammonium 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate monohydrate), C16H36N+·C5H3N2O4−·H2O, crystallizes with N—H⋯O and O—H⋯O hydrogen-bonded double-stranded antiparallel ribbons consisting of the hydrophilic orotate monoanions and water molecules, separated by the bulky hydrophobic cations. The hydrophobic and hydrophilic regions of the structure are joined by weaker non-classical C—H⋯O hydrogen bonds. An accurate structure analysis conducted at T = 100 K is compared to a lower-resolution less accurate determination using data measured at T = 295 K. The results of both analyses are evaluated using a knowledge-based approach, and it is found that the less accurate room-temperature structure analysis provides geometric data that are similar to those derived from the accurate low-temperature analysis, with both sets of results consistent with previously analyzed structures. A minor disorder of one methyl group in the cation at low temperature was found to be slightly more complex at room temperature; while still involving a minor fraction of the structure, the disorder at room temperature was found to require a non-routine treatment, which is described in detail. Full Article text
base Structure refinement of (NH4)3Al2(PO4)3 prepared by ionothermal synthesis in phosphonium based ionic liquids – a redetermination By scripts.iucr.org Published On :: 2019-11-19 After crystallization during ionothermal syntheses in phosphonium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [triammonium dialuminum tris(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004). Nature, 430, 1012–1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms. Full Article text
base Crystal structure of imidazo[1,5-a]pyridinium-based hybrid salt (C13H12N3)2[MnCl4] By scripts.iucr.org Published On :: 2020-02-06 A new organic–inorganic hybrid salt [L]2[MnCl4] (I) where L+ is the 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, is built of discrete organic cations and tetrachloridomanganate(II) anions. The L+ cation was formed in situ in the oxidative cyclocondensation of 2-pyridinecarbaldehyde and CH3NH2·HCl in methanol. The structure was refined as a two-component twin using PLATON (Spek, 2020) to de-twin the data. The twin law (−1 0 0 0 − 1 0 0.5 0 1) was applied in the refinement where the twin component fraction refined to 0.155 (1). The compound crystallizes in the space group P21/c with two crystallographically non-equivalent cations in the asymmetric unit, which possess similar structural conformations. The fused pyridinium and imidazolium rings of the cations are virtually coplanar [dihedral angles are 0.89 (18) and 0.78 (17)°]; the pendant pyridyl rings are twisted by 36.83 (14) and 36.14 (13)° with respect to the planes of the remaining atoms of the cations. The tetrahedral MnCl42– anion is slightly distorted with the Mn—Cl distances falling in the range 2.3469 (10)–2.3941 (9) Å. The distortion value of 0.044 relative to the ideal tetrahedron was obtained by continuous shape measurement (CShM) analysis. In the crystal, the cations and anions form separate stacks propagating along the a-axis direction. The organic cations display weak π–π stacking. The anions, which are stacked identically one above the other, demonstrate loose packing; the minimum Mn⋯Mn separation in the cation stack is approximately 7.49 Å. The investigation of the fluorescent properties of a powdered sample of (I) showed no emission. X-band EPR data for (I) at 293 and 77 K revealed broad fine structure signals, indicating moderate zero-field splitting. Full Article text
base A binuclear CuII/CaII thiocyanate complex with a Schiff base ligand derived from o-vanillin and ammonia By scripts.iucr.org Published On :: 2020-02-21 The new heterometallic complex, aqua-1κO-bis(μ2-2-iminomethyl-6-methoxyphenolato-1κ2O1,O6:2κ2O1,N)bis(thiocyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thiocyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear molecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and pentagonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water molecules and thiocyanate groups form a supramolecular chain with a zigzag-shaped calcium skeleton. Full Article text
base Whole-molecule disorder of the Schiff base compound 4-chloro-N-(4-nitrobenzylidene)aniline: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-02-18 In the crystal of the title Schiff base compound, C13H9ClN2O2, [CNBA; systematic name: (E)-N-(4-chlorophenyl)-1-(4-nitrophenyl)methanimine], the CNBA molecule shows whole-molecule disorder (occupancy ratio 0.65:0.35), with the disorder components related by a twofold rotation about the shorter axis of the molecule. The aromatic rings are inclined to each other by 39.3 (5)° in the major component and by 35.7 (9)° in the minor component. In the crystal, C—H⋯O hydrogen bonds predominate in linking the major components, while weak C—H⋯Cl interactions predominate in linking the minor components. The result is the formation of corrugated layers lying parallel to the ac plane. The crystal packing was analysed using Hirshfeld surface analysis and compared with related structures. Full Article text
base Norpsilocin: freebase and fumarate salt By scripts.iucr.org Published On :: 2020-03-27 The solid-state structures of the naturally occurring psychoactive tryptamine norpsilocin {4-hydroxy-N-methyltryptamine (4-HO-NMT); systematic name: 3-[2-(methylamino)ethyl]-1H-indol-4-ol}, C11H14N2O, and its fumarate salt (4-hydroxy-N-methyltryptammonium fumarate; systematic name: bis{[2-(4-hydroxy-1H-indol-3-yl)ethyl]methylazanium} but-2-enedioate), C11H15N2O+·0.5C4H2O42−, are reported. The freebase of 4-HO-NMT has a single molecule in the asymmetric unit joined together by N—H⋯O and O—H⋯O hydrogen bonds in a two-dimensional network parallel to the (100) plane. The ethylamine arm of the tryptamine is modeled as a two-component disorder with a 0.895 (3) to 0.105 (3) occupancy ratio. The fumarate salt of 4-HO-NMT crystallizes with a tryptammonium cation and one half of a fumarate dianion in the asymmetric unit. The ions are joined together by N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional framework, as well as π–π stacking between the six-membered rings of inversion-related indoles (symmetry operation: 2 − x, 1 − y, 2 – z). Full Article text
base Calculation of total scattering from a crystalline structural model based on experimental optics parameters By scripts.iucr.org Published On :: 2020-05-05 Total scattering measurements enable understanding of the structural disorder in crystalline materials by Fourier transformation of the total structure factor, S(Q), where Q is the magnitude of the scattering vector. In this work, the direct calculation of total scattering from a crystalline structural model is proposed. To calculate the total scattering intensity, a suitable Q-broadening function for the diffraction profile is needed because the intensity and the width depend on the optical parameters of the diffraction apparatus, such as the X-ray energy resolution and divergence, and the intrinsic parameters. X-ray total scattering measurements for CeO2 powder were performed at beamline BL04B2 of the SPring-8 synchrotron radiation facility in Japan for comparison with the calculated S(Q) under various optical conditions. The evaluated Q-broadening function was comparable to the full width at half-maximum of the Bragg peaks in the experimental total scattering pattern. The proposed calculation method correctly accounts for parameters with Q dependence such as the atomic form factor and resolution function, enables estimation of the total scattering factor, and facilitates determination of the reduced pair distribution function for both crystalline and amorphous materials. Full Article text
base Screening topological materials with a CsCl-type structure in crystallographic databases By scripts.iucr.org Published On :: 2019-06-13 CsCl-type materials have many outstanding characteristics, i.e. simple in structure, ease of synthesis and good stability at room temperature, thus are an excellent choice for designing functional materials. Using high-throughput first-principles calculations, a large number of topological semimetals/metals (TMs) were designed from CsCl-type materials found in crystallographic databases and their crystal and electronic structures have been studied. The CsCl-type TMs in this work show rich topological character, ranging from triple nodal points, type-I nodal lines and critical-type nodal lines, to hybrid nodal lines. The TMs identified show clean topological band structures near the Fermi level, which are suitable for experimental investigations and future applications. This work provides a rich data set of TMs with a CsCl-type structure. Full Article text
base DeepRes: a new deep-learning- and aspect-based local resolution method for electron-microscopy maps By scripts.iucr.org Published On :: 2019-09-18 In this article, a method is presented to estimate a new local quality measure for 3D cryoEM maps that adopts the form of a `local resolution' type of information. The algorithm (DeepRes) is based on deep-learning 3D feature detection. DeepRes is fully automatic and parameter-free, and avoids the issues of most current methods, such as their insensitivity to enhancements owing to B-factor sharpening (unless the 3D mask is changed), among others, which is an issue that has been virtually neglected in the cryoEM field until now. In this way, DeepRes can be applied to any map, detecting subtle changes in local quality after applying enhancement processes such as isotropic filters or substantially more complex procedures, such as model-based local sharpening, non-model-based methods or denoising, that may be very difficult to follow using current methods. It performs as a human observer expects. The comparison with traditional local resolution indicators is also addressed. Full Article text
base Toward G protein-coupled receptor structure-based drug design using X-ray lasers By scripts.iucr.org Published On :: 2019-10-24 Rational structure-based drug design (SBDD) relies on the availability of a large number of co-crystal structures to map the ligand-binding pocket of the target protein and use this information for lead-compound optimization via an iterative process. While SBDD has proven successful for many drug-discovery projects, its application to G protein-coupled receptors (GPCRs) has been limited owing to extreme difficulties with their crystallization. Here, a method is presented for the rapid determination of multiple co-crystal structures for a target GPCR in complex with various ligands, taking advantage of the serial femtosecond crystallography approach, which obviates the need for large crystals and requires only submilligram quantities of purified protein. The method was applied to the human β2-adrenergic receptor, resulting in eight room-temperature co-crystal structures with six different ligands, including previously unreported structures with carvedilol and propranolol. The generality of the proposed method was tested with three other receptors. This approach has the potential to enable SBDD for GPCRs and other difficult-to-crystallize membrane proteins. Full Article text
base Structure-based mechanism of cysteine-switch latency and of catalysis by pappalysin-family metallopeptidases By scripts.iucr.org Published On :: 2020-01-01 Tannerella forsythia is an oral dysbiotic periodontopathogen involved in severe human periodontal disease. As part of its virulence factor armamentarium, at the site of colonization it secretes mirolysin, a metallopeptidase of the unicellular pappalysin family, as a zymogen that is proteolytically auto-activated extracellularly at the Ser54–Arg55 bond. Crystal structures of the catalytically impaired promirolysin point mutant E225A at 1.4 and 1.6 Å revealed that latency is exerted by an N-terminal 34-residue pro-segment that shields the front surface of the 274-residue catalytic domain, thus preventing substrate access. The catalytic domain conforms to the metzincin clan of metallopeptidases and contains a double calcium site, which acts as a calcium switch for activity. The pro-segment traverses the active-site cleft in the opposite direction to the substrate, which precludes its cleavage. It is anchored to the mature enzyme through residue Arg21, which intrudes into the specificity pocket in cleft sub-site S1'. Moreover, residue Cys23 within a conserved cysteine–glycine motif blocks the catalytic zinc ion by a cysteine-switch mechanism, first described for mammalian matrix metallopeptidases. In addition, a 1.5 Å structure was obtained for a complex of mature mirolysin and a tetradecapeptide, which filled the cleft from sub-site S1' to S6'. A citrate molecule in S1 completed a product-complex mimic that unveiled the mechanism of substrate binding and cleavage by mirolysin, the catalytic domain of which was already preformed in the zymogen. These results, including a preference for cleavage before basic residues, are likely to be valid for other unicellular pappalysins derived from archaea, bacteria, cyanobacteria, algae and fungi, including archetypal ulilysin from Methanosarcina acetivorans. They may further apply, at least in part, to the multi-domain orthologues of higher organisms. Full Article text
base Prediction of models for ordered solvent in macromolecular structures by a classifier based upon resolution-independent projections of local feature data By scripts.iucr.org Published On :: 2019-07-30 Current software tools for the automated building of models for macromolecular X-ray crystal structures are capable of assembling high-quality models for ordered macromolecule and small-molecule scattering components with minimal or no user supervision. Many of these tools also incorporate robust functionality for modelling the ordered water molecules that are found in nearly all macromolecular crystal structures. However, no current tools focus on differentiating these ubiquitous water molecules from other frequently occurring multi-atom solvent species, such as sulfate, or the automated building of models for such species. PeakProbe has been developed specifically to address the need for such a tool. PeakProbe predicts likely solvent models for a given point (termed a `peak') in a structure based on analysis (`probing') of its local electron density and chemical environment. PeakProbe maps a total of 19 resolution-dependent features associated with electron density and two associated with the local chemical environment to a two-dimensional score space that is independent of resolution. Peaks are classified based on the relative frequencies with which four different classes of solvent (including water) are observed within a given region of this score space as determined by large-scale sampling of solvent models in the Protein Data Bank. Designed to classify peaks generated from difference density maxima, PeakProbe also incorporates functionality for identifying peaks associated with model errors or clusters of peaks likely to correspond to multi-atom solvent, and for the validation of existing solvent models using solvent-omit electron-density maps. When tasked with classifying peaks into one of four distinct solvent classes, PeakProbe achieves greater than 99% accuracy for both peaks derived directly from the atomic coordinates of existing solvent models and those based on difference density maxima. While the program is still under development, a fully functional version is publicly available. PeakProbe makes extensive use of cctbx libraries, and requires a PHENIX licence and an up-to-date phenix.python environment for execution. Full Article text
base Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments By scripts.iucr.org Published On :: 2019-10-01 Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory. Full Article text
base Molecular replacement using structure predictions from databases By scripts.iucr.org Published On :: 2019-11-19 Molecular replacement (MR) is the predominant route to solution of the phase problem in macromolecular crystallography. Where the lack of a suitable homologue precludes conventional MR, one option is to predict the target structure using bioinformatics. Such modelling, in the absence of homologous templates, is called ab initio or de novo modelling. Recently, the accuracy of such models has improved significantly as a result of the availability, in many cases, of residue-contact predictions derived from evolutionary covariance analysis. Covariance-assisted ab initio models representing structurally uncharacterized Pfam families are now available on a large scale in databases, potentially representing a valuable and easily accessible supplement to the PDB as a source of search models. Here, the unconventional MR pipeline AMPLE is employed to explore the value of structure predictions in the GREMLIN and PconsFam databases. It was tested whether these deposited predictions, processed in various ways, could solve the structures of PDB entries that were subsequently deposited. The results were encouraging: nine of 27 GREMLIN cases were solved, covering target lengths of 109–355 residues and a resolution range of 1.4–2.9 Å, and with target–model shared sequence identity as low as 20%. The cluster-and-truncate approach in AMPLE proved to be essential for most successes. For the overall lower quality structure predictions in the PconsFam database, remodelling with Rosetta within the AMPLE pipeline proved to be the best approach, generating ensemble search models from single-structure deposits. Finally, it is shown that the AMPLE-obtained search models deriving from GREMLIN deposits are of sufficiently high quality to be selected by the sequence-independent MR pipeline SIMBAD. Overall, the results help to point the way towards the optimal use of the expanding databases of ab initio structure predictions. Full Article text
base ALIXE: a phase-combination tool for fragment-based molecular replacement By scripts.iucr.org Published On :: 2020-02-25 Fragment-based molecular replacement exploits the use of very accurate yet incomplete search models. In the case of the ARCIMBOLDO programs, consistent phase sets produced from the placement and refinement of fragments with Phaser can be combined in order to increase their signal before proceeding to the step of density modification and autotracing with SHELXE. The program ALIXE compares multiple phase sets, evaluating mean phase differences to determine their common origin, and subsequently produces sets of combined phases that group consistent solutions. In this work, its use on different scenarios of very partial molecular-replacement solutions and its performance after the development of a much-optimized set of algorithms are described. The program is available both standalone and integrated within the ARCIMBOLDO programs. ALIXE has been analysed to identify its rate-limiting steps while exploring the best parameterization to improve its performance and make this software efficient enough to work on modest hardware. The algorithm has been parallelized and redesigned to meet the typical landscape of solutions. Analysis of pairwise correlation between the phase sets has also been explored to test whether this would provide additional insight. ALIXE can be used to exhaustively analyse all partial solutions produced or to complement those already selected for expansion, and also to reduce the number of redundant solutions, which is particularly relevant to the case of coiled coils, or to combine partial solutions from different programs. In each case parallelization and optimization to provide speedup makes its use amenable to typical hardware found in crystallography. ARCIMBOLDO_BORGES and ARCIMBOLDO_SHREDDER now call on ALIXE by default. Full Article text
base ALEPH: a network-oriented approach for the generation of fragment-based libraries and for structure interpretation By scripts.iucr.org Published On :: 2020-02-26 The analysis of large structural databases reveals general features and relationships among proteins, providing useful insight. A different approach is required to characterize ubiquitous secondary-structure elements, where flexibility is essential in order to capture small local differences. The ALEPH software is optimized for the analysis and the extraction of small protein folds by relying on their geometry rather than on their sequence. The annotation of the structural variability of a given fold provides valuable information for fragment-based molecular-replacement methods, in which testing alternative model hypotheses can succeed in solving difficult structures when no homology models are available or are successful. ARCIMBOLDO_BORGES combines the use of composite secondary-structure elements as a search model with density modification and tracing to reveal the rest of the structure when both steps are successful. This phasing method relies on general fold libraries describing variations around a given pattern of β-sheets and helices extracted using ALEPH. The program introduces characteristic vectors defined from the main-chain atoms as a way to describe the geometrical properties of the structure. ALEPH encodes structural properties in a graph network, the exploration of which allows secondary-structure annotation, decomposition of a structure into small compact folds, generation of libraries of models representing a variation of a given fold and finally superposition of these folds onto a target structure. These functions are available through a graphical interface designed to interactively show the results of structure manipulation, annotation, fold decomposition, clustering and library generation. ALEPH can produce pictures of the graphs, structures and folds for publication purposes. Full Article text
base Shack–Hartmann wavefront sensors based on 2D refractive lens arrays and super-resolution multi-contrast X-ray imaging By scripts.iucr.org Published On :: 2020-04-22 Different approaches of 2D lens arrays as Shack–Hartmann sensors for hard X-rays are compared. For the first time, a combination of Shack–Hartmann sensors for hard X-rays (SHSX) with a super-resolution imaging approach to perform multi-contrast imaging is demonstrated. A diamond lens is employed as a well known test object. The interleaving approach has great potential to overcome the 2D lens array limitation given by the two-photon polymerization lithography. Finally, the radiation damage induced by continuous exposure of an SHSX prototype with a white beam was studied showing a good performance of several hours. The shape modification and influence in the final image quality are presented. Full Article text
base Linearly polarized X-ray fluorescence computed tomography based on a Thomson scattering light source: a Monte Carlo study By scripts.iucr.org Published On :: 2020-04-06 A Thomson scattering X-ray source can provide quasi-monochromatic, continuously energy-tunable, polarization-controllable and high-brightness X-rays, which makes it an excellent tool for X-ray fluorescence computed tomography (XFCT). In this paper, we examined the suppression of Compton scattering background in XFCT using the linearly polarized X-rays and the implementation feasibility of linearly polarized XFCT based on this type of light source, concerning the influence of phantom attenuation and the sampling strategy, its advantage over K-edge subtraction computed tomography (CT), the imaging time, and the potential pulse pile-up effect by Monte Carlo simulations. A fan beam and pinhole collimator geometry were adopted in the simulation and the phantom was a polymethyl methacrylate cylinder inside which were gadolinium (Gd)-loaded water solutions with Gd concentrations ranging from 0.2 to 4.0 wt%. Compared with the case of vertical polarization, Compton scattering was suppressed by about 1.6 times using horizontal polarization. An accurate image of the Gd-containing phantom was successfully reconstructed with both spatial and quantitative identification, and good linearity between the reconstructed value and the Gd concentration was verified. When the attenuation effect cannot be neglected, one full cycle (360°) sampling and the attenuation correction became necessary. Compared with the results of K-edge subtraction CT, the contrast-to-noise ratio values of XFCT were improved by 2.03 and 1.04 times at low Gd concentrations of 0.2 and 0.5 wt%, respectively. When the flux of a Thomson scattering light source reaches 1013 photons s−1, it is possible to finish the data acquisition of XFCT at the minute or second level without introducing pulse pile-up effects. Full Article text
base Solid/liquid-interface-dependent synthesis and immobilization of copper-based particles nucleated by X-ray-radiolysis-induced photochemical reaction By journals.iucr.org Published On :: Full Article text
base ClickX: a visualization-based program for preprocessing of serial crystallography data By scripts.iucr.org Published On :: 2019-05-28 Serial crystallography is a powerful technique in structure determination using many small crystals at X-ray free-electron laser or synchrotron radiation facilities. The large diffraction data volumes require high-throughput software to preprocess the raw images for subsequent analysis. ClickX is a program designated for serial crystallography data preprocessing, capable of rapid data sorting for online feedback and peak-finding refinement by parameter optimization. The graphical user interface (GUI) provides convenient access to various operations such as pattern visualization, statistics plotting and parameter tuning. A batch job module is implemented to facilitate large-data-volume processing. A two-step geometry calibration for single-panel detectors is also integrated into the GUI, where the beam center and detector tilting angles are optimized using an ellipse center shifting method first, then all six parameters, including the photon energy and detector distance, are refined together using a residual minimization method. Implemented in Python, ClickX has good portability and extensibility, so that it can be installed, configured and used on any computing platform that provides a Python interface or common data file format. ClickX has been tested in online analysis at the Pohang Accelerator Laboratory X-ray Free-Electron Laser, Korea, and the Linac Coherent Light Source, USA. It has also been applied in post-experimental data analysis. The source code is available via https://github.com/LiuLab-CSRC/ClickX under a GNU General Public License. Full Article text
base Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features By scripts.iucr.org Published On :: 2019-09-23 The Inorganic Crystal Structure Database (ICSD) is the world's largest database of fully evaluated and published crystal structure data, mostly obtained from experimental results. However, the purely experimental approach is no longer the only route to discover new compounds and structures. In the past few decades, numerous computational methods for simulating and predicting structures of inorganic solids have emerged, creating large numbers of theoretical crystal data. In order to take account of these new developments the scope of the ICSD was extended in 2017 to include theoretical structures which are published in peer-reviewed journals. Each theoretical structure has been carefully evaluated, and the resulting CIF has been extended and standardized. Furthermore, a first classification of theoretical data in the ICSD is presented, including additional categories used for comparison of experimental and theoretical information. Full Article text
base Diffraction-based determination of single-crystal elastic constants of polycrystalline titanium alloys By scripts.iucr.org Published On :: 2019-09-20 Single-crystal elastic constants have been derived by lattice strain measurements using neutron diffraction on polycrystalline Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo and Ti-3Al-8V-6Cr-4Zr-4Mo alloy samples. A variety of model approximations for the grain-to-grain interactions, namely approaches by Voigt, Reuss, Hill, Kroener, de Wit and Matthies, including texture weightings, have been applied and compared. A load-transfer approach for multiphase alloys was also implemented and the results are compared with single-phase data. For the materials under investigation, the results for multiphase alloys agree well with the results for single-phase materials in the corresponding phases. In this respect, all eight elastic constants in the dual-phase Ti-6Al-2Sn-4Zr-6Mo alloy have been derived for the first time. Full Article text
base FXD-CSD-GUI: a graphical user interface for the X-ray-diffraction-based determination of crystallite size distributions By scripts.iucr.org Published On :: 2019-10-22 Bragg intensities can be used to analyse crystal size distributions in a method called FXD-CSD, which is based on the fast measurement of many Bragg spots using two-dimensional detectors. This work presents the Python-based software and its graphical user interface FXD-CSD-GUI. The GUI enables user-friendly data handling and processing and provides both graphical and numerical crystal size distribution results. Full Article text
base Optimized reconstruction of the crystallographic orientation density function based on a reduced set of orientations By scripts.iucr.org Published On :: 2020-02-01 Crystallographic textures, as they develop for example during cold forming, can have a significant influence on the mechanical properties of metals, such as plastic anisotropy. Textures are typically characterized by a non-uniform distribution of crystallographic orientations that can be measured by diffraction experiments like electron backscatter diffraction (EBSD). Such experimental data usually contain a large number of data points, which must be significantly reduced to be used for numerical modeling. However, the challenge in such data reduction is to preserve the important characteristics of the experimental data, while reducing the volume and preserving the computational efficiency of the numerical model. For example, in micromechanical modeling, representative volume elements (RVEs) of the real microstructure are generated and the mechanical properties of these RVEs are studied by the crystal plasticity finite element method. In this work, a new method is developed for extracting a reduced set of orientations from EBSD data containing a large number of orientations. This approach is based on the established integer approximation method and it minimizes its shortcomings. Furthermore, the L1 norm is applied as an error function; this is commonly used in texture analysis for quantitative assessment of the degree of approximation and can be used to control the convergence behavior. The method is tested on four experimental data sets to demonstrate its capabilities. This new method for the purposeful reduction of a set of orientations into equally weighted orientations is not only suitable for numerical simulation but also shows improvement in results in comparison with other available methods. Full Article text
base ACMS: a database of alternate conformations found in the atoms of main and side chains of protein structures By journals.iucr.org Published On :: An online knowledge base on the alternate conformations adopted by main-chain and side-chain atoms in protein structures solved by X-ray crystallography is described. Full Article text
base The competition between cocrystallization and separated crystallization based on crystallization from solution By journals.iucr.org Published On :: Because researchers do not understand the formation mechanism of cocrystals, the preparation of cocrystals is mostly done by trial and error. This study focuses on the cocrystal formation mechanism to improve the efficiency of cocrystal preparation. Full Article text
base Calculation of total scattering from a crystalline structural model based on experimental optics parameters By journals.iucr.org Published On :: A calculation procedure for X-ray total scattering and the pair distribution function from a crystalline structural model is presented. It allows one to easily and precisely deal with diffraction-angle-dependent parameters such as the atomic form factor and the resolution of the optics. Full Article text
base Crystallization of chiral molecular compounds: what can be learned from the Cambridge Structural Database? By scripts.iucr.org Published On :: 2020-04-10 A detailed study on chiral compound structures found in the Cambridge Structural Database (CSD) is presented. Solvates, salts and co-crystals have intentionally been excluded, in order to focus on the most basic structures of single enantiomers, scalemates and racemates. Similarity between the latter and structures of achiral monomolecular compounds has been established and utilized to arrive at important conclusions about crystallization of chiral compounds. For example, the fundamental phenomenon of conglomerate formation and, in particular, their frequency of occurrence is addressed. In addition, rarely occurring kryptoracemates and scalemic compounds (anomalous racemates) are discussed. Finally, an extended search of enantiomer solid solutions in the CSD is performed to show that there are up to 1800 instances most probably hiding among the deposited crystal structures, while only a couple of dozen have been previously known and studied. Full Article text
base Crystallization of chiral molecular compounds: what can be learned from the Cambridge Structural Database? By journals.iucr.org Published On :: A study on chiral monomolecular compound structures found in the Cambridge Structural Database is presented. Full Article text
base AMi: a GUI-based, open-source system for imaging samples in multi-well plates By scripts.iucr.org Published On :: 2019-08-06 Described here are instructions for building and using an inexpensive automated microscope (AMi) that has been specifically designed for viewing and imaging the contents of multi-well plates. The X, Y, Z translation stage is controlled through dedicated software (AMiGUI) that is being made freely available. Movements are controlled by an Arduino-based board running grbl, and the graphical user interface and image acquisition are controlled via a Raspberry Pi microcomputer running Python. Images can be written to the Raspberry Pi or to a remote disk. Plates with multiple sample wells at each row/column position are supported, and a script file for automated z-stack depth-of-field enhancement is written along with the images. The graphical user interface and real-time imaging also make it easy to manually inspect and capture images of individual samples. Full Article text
base Very Large Baseline Array telescope is helping Smithsonian astronomers remap Milky Way and Andromeda galaxies By insider.si.edu Published On :: Wed, 23 Feb 2011 20:15:46 +0000 Recent work has added dozens of new measurements to star-forming regions in the Milky Way. These measurements have changed the map of the Milky Way, indicating our galaxy has four spiral arms, not two, as previously thought. The post Very Large Baseline Array telescope is helping Smithsonian astronomers remap Milky Way and Andromeda galaxies appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian galaxies Milky Way Smithsonian Astrophysical Observatory
base New “cloud-based” storage initiative to make vertebrate research collections available worldwide By insider.si.edu Published On :: Thu, 25 Aug 2011 15:09:12 +0000 What Google is attempting for books, the University of California, Berkeley, plans to do for the world's vertebrate specimens: store them in "the cloud." The post New “cloud-based” storage initiative to make vertebrate research collections available worldwide appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature Ecuador National Museum of Natural History South America technology
base A first: Ground-based telescope detects super-earth transit By insider.si.edu Published On :: Mon, 01 Dec 2014 19:32:26 +0000 Astronomers have measured the passing of a super-Earth in front of a bright, nearby Sun-like star using a ground-based telescope for the first time. The […] The post A first: Ground-based telescope detects super-earth transit appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory
base Smithsonian scientist creating DNA database to track Caribbean conch and lobster By insider.si.edu Published On :: Thu, 24 Mar 2016 21:24:15 +0000 Smothered in tartar sauce and cheese it’s difficult to know just what species of fish lurks beneath the breaded surface of a fast-food fish sandwich. […] The post Smithsonian scientist creating DNA database to track Caribbean conch and lobster appeared first on Smithsonian Insider. Full Article Animals Marine Science Q & A Research News Science & Nature biodiversity conservation biology endangered species fishes National Museum of Natural History
base The atomic structure of the Bergman-type icosahedral quasicrystal based on the Ammann–Kramer–Neri tiling By scripts.iucr.org Published On :: 2020-02-11 In this study, the atomic structure of the ternary icosahedral ZnMgTm quasicrystal (QC) is investigated by means of single-crystal X-ray diffraction. The structure is found to be a member of the Bergman QC family, frequently found in Zn–Mg–rare-earth systems. The ab initio structure solution was obtained by the use of the Superflip software. The infinite structure model was founded on the atomic decoration of two golden rhombohedra, with an edge length of 21.7 Å, constituting the Ammann–Kramer–Neri tiling. The refined structure converged well with the experimental diffraction diagram, with the crystallographic R factor equal to 9.8%. The Bergman clusters were found to be bonded by four possible linkages. Only two linkages, b and c, are detected in approximant crystals and are employed to model the icosahedral QCs in the cluster approach known for the CdYb Tsai-type QC. Additional short b and a linkages are found in this study. Short interatomic distances are not generated by those linkages due to the systematic absence of atoms and the formation of split atomic positions. The presence of four linkages allows the structure to be pictured as a complete covering by rhombic triacontahedral clusters and consequently there is no need to define the interstitial part of the structure (i.e. that outside the cluster). The 6D embedding of the solved structure is discussed for the final verification of the model. Full Article text
base Tropical Research Institute entomologist David Roubik talks about his life as a scientist based in Panama By insider.si.edu Published On :: Wed, 20 Apr 2011 18:53:52 +0000 "I'm getting paid to do what I like doing," says entomologist David Roubik. He loved nature and being outdoors when he was a kid, and now he does fieldwork in the tropical forests of Panama. He loves to travel, and his research takes him around the world. Can his work, then, be called a job? The post Tropical Research Institute entomologist David Roubik talks about his life as a scientist based in Panama appeared first on Smithsonian Insider. Full Article Meet Our People Video insects Tropical Research Institute
base Online initiative makes massive database of herbarium specimens accessible worldwide By insider.si.edu Published On :: Wed, 12 Jan 2011 13:15:26 +0000 Now the Global Plants Initiativeis catapulting biodiversity research to a new level by sharing these historic plant collections in a massive online database of high-resolution scans. The post Online initiative makes massive database of herbarium specimens accessible worldwide appeared first on Smithsonian Insider. Full Article Plants Research News Science & Nature biodiversity digitization Ecuador South America technology Tropical Research Institute
base New invasive species database allows public to ID marine invaders with a home computer By insider.si.edu Published On :: Mon, 12 Mar 2012 14:53:42 +0000 The Smithsonian Environmental Research Center has created NEMESIS--National Estuarine and Marine Exotic Species Information System--an online public database that provides key information about the non-native marine species throughout the United States. The post New invasive species database allows public to ID marine invaders with a home computer appeared first on Smithsonian Insider. Full Article Marine Science Plants Science & Nature climate change conservation biology endangered species invasive species new species Smithsonian Environmental Research Center technology
base Standalone physical firewall vs software based one By www.bleepingcomputer.com Published On :: 2020-05-08T04:43:08-05:00 Full Article
base 7-Iodo-5-aza-7-deazaguanine ribonucleoside: crystal structure, physical properties, base-pair stability and functionalization By scripts.iucr.org Published On :: 2020-04-29 The positional change of nitrogen-7 of the RNA constituent guanosine to the bridgehead position-5 leads to the base-modified nucleoside 5-aza-7-deazaguanosine. Contrary to guanosine, this molecule cannot form Hoogsteen base pairs and the Watson–Crick proton donor site N3—H becomes a proton-acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all-purine' DNA and DNA with silver-mediated base pairs. The present work reports the single-crystal X-ray structure of 7-iodo-5-aza-7-deazaguanosine, C10H12IN5O5 (1). The iodinated nucleoside shows an anti conformation at the glycosylic bond and an N conformation (O4'-endo) for the ribose moiety, with an antiperiplanar orientation of the 5'-hydroxy group. Crystal packing is controlled by interactions between nucleobase and sugar moieties. The 7-iodo substituent forms a contact to oxygen-2' of the ribose moiety. Self-pairing of the nucleobases does not take place. A Hirshfeld surface analysis of 1 highlights the contacts of the nucleobase and sugar moiety (O—H⋯O and N—H⋯O). The concept of pK-value differences to evaluate base-pair stability was applied to purine–purine base pairing and stable base pairs were predicted for the construction of `all-purine' RNA. Furthermore, the 7-iodo substituent of 1 was functionalized with benzofuran to detect motional constraints by fluorescence spectroscopy. Full Article text
base The quaternion-based spatial coordinate- and orientation-frame alignment problems By journals.iucr.org Published On :: Quaternion methods for obtaining solutions to the problem of finding global rotations that optimally align pairs of corresponding lists of 3D spatial and/or orientation data are critically studied. The existence of multiple literatures and historical contexts is pointed out, and the algebraic solutions of the quaternion approach to the classic 3D spatial problem are emphasized. The treatment is extended to novel quaternion-based solutions to the alignment problems for 4D translation and orientation data. Full Article text
base Domain formation and phase transitions in the wurtzite-based heterovalent ternaries: a Landau theory analysis By journals.iucr.org Published On :: A Landau theory for the wurtzite-based heterovalent ternary semiconductor ZnSnN2 is developed and a first-order reconstructive phase transition is proposed as the cause of observed crystal structure disorder. The model infers that the phase transition is paraelectric to antiferroelectric. Full Article text
base Canada-based Symend secures USD 52 mln funding to help at-risk customers By feedproxy.google.com Published On :: Fri, 08 May 2020 13:49:00 +0200 Symend, a Canada-based digital engagement platform, has raised USD 52 million to identify customers... Full Article
base unwanted app found in database, how to remove it? By www.bleepingcomputer.com Published On :: 2015-01-11T13:00:30-05:00 Full Article
base Windows based tablet By www.bleepingcomputer.com Published On :: 2018-12-11T11:37:43-05:00 Full Article
base Japan-based payment methods Konbini, Pay-easy join PPRO payments platform By feedproxy.google.com Published On :: Wed, 06 May 2020 15:10:00 +0200 PPRO has entered the Japanese ecommerce market, as two... Full Article
base Science-Based, Unified Approach Needed To Safeguard the Nations Food Supply By feedproxy.google.com Published On :: Thu, 20 Aug 1998 05:00:00 GMT Outdated food safety laws and a fragmented federal structure serve as barriers to improving protection of the nations food supply from contamination or other hazards, according to Ensuring Safe Food From Production to Consumption. Full Article