ben 1-Nitro-4-(1-propyn-1-yl)benzene By scripts.iucr.org Published On :: 2019-11-29 The title compound, C9H7NO2, was prepared by alkynylation of 4-iodonitrobenzene with 1,3-dilithiopropyne in the presence of 1 equivalent of CuI and catalytic amounts of Pd(PPh3)2Cl2. The complete molecule is generated by crystallographic twofold symmetry with the C—N and C—C≡C—C units lying on the rotation axis. No directional interactions beyond normal van der Waals contacts could be identified in the packing. Full Article text
ben μ2-Methanol-κ2O:O-bis[(1,10-phenanthroline-κ2N,N')bis(2,3,4,5-tetrafluorobenzoato)-κO;κ2O,O'-copper(II)] By scripts.iucr.org Published On :: 2019-11-29 In the title compound, [Cu2(C7HF4O2)4(C12H8N2)2(CH3OH)], the molecule lies on a twofold rotation axis in space group C2/c. The Cu2+ ion exhibits a distorted octahedral sphere with two N atoms from the phenanthroline ligand, three O atoms from the 2,3,4,5-tetrafluorobenzoate ligands and one O atom from a methanol molecule. The distortion from an octahedral shape is a consequence of the Jahn–Teller effect of CuII and the small bite angle for the bidentate fluorobenzoate ligand [54.50 (11)°]. The methanol molecule bridges two symmetry-related CuII atoms to form the complete molecule. In the bidentate fluorobenzoate ligand, one F atom is disordered over two positions of equal occupancy. In the crystal structure, only weak intermolecular interactions are observed. Full Article text
ben Tetrakis(2,3,5,6-tetrafluorobenzenethiolato-κS)(triphenylphosphane-κP)osmium(IV): a monoclinic polymorph By scripts.iucr.org Published On :: 2019-12-06 The structure of the title compound, [Os(C6HF4S)4{P(C6H5)3}], has been previously reported [Arroyo et al. (1994). J. Chem. Soc. Dalton Trans. pp. 1819–1824], in the space group Poverline{1}. We have now obtained a monoclinic polymorph for this compound, crystallized from ethanol, while the previous form was obtained from a hexane/chloroform mixture. The molecular structure is based on a trigonal–bipyramidal OsIV coordination geometry, close to that observed previously in the triclinic form. Full Article text
ben 6,6'-[(3,3'-Di-tert-butyl-5,5'-dimethoxy-1,1'-biphenyl-2,2'-diyl)bis(oxy)]bis(dibenzo[d,f][1,3,2]dioxaphosphepine) benzene monosolvate By scripts.iucr.org Published On :: 2019-12-10 The crystal structure of the benzene monosolvate of the well known organic diphosphite ligand BIPHEPHOS, C46H44O8P2·C6H6, is reported for the first time. Single crystals of BIPHEPHOS were obtained from a benzene solution after layering with n-heptane at room temperature. One specific property of this type of diphosphite structure is the twisting of the biphenyl units. In the crystal, C—H⋯π contacts and π–π stacking interactions [centroid-to-centroid distance = 3.8941 (15) Å] are observed. Full Article text
ben Bis{2,6-bis[(E)-(4-fluorobenzylimino)methyl]pyridine}nickel(II) dinitrate dihydrate By scripts.iucr.org Published On :: 2019-12-20 In the title hydrated salt, [Ni(C21H17F2N3)2](NO3)2·2H2O, the central NiII ion is coordinated by six N atoms from two tridentate chelating 2,6-bis[(E)-(4-fluorobenzylimino)methyl]pyridine ligands. While the central NiII ion is six-coordinate, its environment is distorted from an octahedral structure because of the unequal Ni—N distances. The Ni—N bond lengths vary from 1.8642 (14) to 2.2131 (15) Å, while the N—Ni—N angles range from 79.98 (6) to 104.44 (6)°. Three coordinating sites of each chelating agent are almost coplanar with respect to the pyridine ring, and two pyridine moieties are perpendicular to each other. Two non-coordinating nitrate anions within the asymmetric unit balance the charges of the central metal ion, and are linked with two crystal water molecules, forming a water–nitrate cyclic tetrameric unit [O⋯O = 2.813 (2) to 3.062 (2) Å]. In an isolated molecule, the fluorophenyl rings of one ligand are stacked with the central ring of the other ligand via π–π interactions, with the closest centroid-to-plane distances being 3.359 (6), 3.408 (5), 3.757 (6) and 3.659 (5) Å. Full Article text
ben N'-(2-Hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide monohydrate By scripts.iucr.org Published On :: 2020-01-10 In the title hydrated Schiff base, C13H12N4O3·H2O, the dihedral angle between the aromatic rings is 5.06 (11)° and an intramolecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, Ow—H⋯O and Ow—H⋯N (w = water) hydrogen bonds link the components into centrosymmetric tetramers (two Schiff bases and two water molecules). Longer N—H⋯O hydrogen bonds link the tetramers into [010] chains. A weak C—H⋯O hydrogen bond and aromatic π–π stacking between the pyrazine and phenyl rings [centroid–centroid separations = 3.604 (2) and 3.715 (2) Å] are also observed. Full Article text
ben Dichloridobis[2-(pyridin-2-yl-κN)-1H-benzimidazole-κN3]nickel(II) monohydrate By scripts.iucr.org Published On :: 2020-01-28 In the title complex, [NiCl2(C12H9N3)2]·H2O, a divalent nickel atom is coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands in a slightly distorted octahedral environment defined by four N donors of two N,N'-chelating ligands, along with two cis-oriented anionic chloride donors. The title complex crystallized with a water molecule disordered over two positions. In the crystal, a combination of O—H⋯Cl, O—H.·O and N—H⋯Cl hydrogen bonds, together with C—H⋯O, C—H⋯Cl and C—H⋯π interactions, links the complex molecules and the water molecules to form a supramolecular three-dimensional framework. The title complex is isostructural with the cobalt(II) dichloride complex reported previously [Das et al. (2011). Org. Biomol. Chem. 9, 7097–7107]. Full Article text
ben Benzene-1,2-diaminium bis(4-methylbenzene-1-sulfonate) By scripts.iucr.org Published On :: 2020-01-31 The structure of the title salt, C6H10N22+·2C7H7O3S−, consists of a unique benzene-1,2-diaminium dication charge balanced by a pair of crystallographically independent 4-methylbenzene-1-sulfonate anions. The cations and anions are interlinked by several N—H⋯O hydrogen bonds. Full Article text
ben 3-(4-Iodophenyl)-2,3-dihydro-1H-benzo[f]chromen-1-one By scripts.iucr.org Published On :: 2020-01-31 In the title compound, C19H13IO2, the dihedral angle between the naphthyl ring system and the pendant iodophenyl ring is 72.48 (11)°. In the crystal, C—H⋯π interactions and I⋯O [3.293 (2) Å] halogen bonds are observed, which combine to generate a herringbone packing motif. Full Article text
ben 2-Aminoanilinium 4-methylbenzenesulfonate By scripts.iucr.org Published On :: 2020-02-21 In the extended structure of the title molecular salt, C6H9N2+·C7H7O3S−, the cations and anions are linked by N—H⋯O hydrogen bonds to generate [010] chains. Full Article text
ben [(1R*,3S*,4S*)-3-(2-Hydroxybenzoyl)-1,2,3,4-tetrahydro-1,4-epoxynaphthalen-1-yl]methyl 4-nitrobenzoate By scripts.iucr.org Published On :: 2020-02-28 The relative stereo- and regiochemistry of the racemic title compound, C25H19NO7, were established from the crystal structure. The fused benzene ring forms dihedral angles of 77.3 (1) and 60.3 (1)° with the hydroxy-substituted benzene ring and the nitro-substituted benzene ring, respectively. The dihedral angle between the hydroxy-substituted benzene ring and the nitro-substituted benzene ring is 76.4 (1)°. An intramolecular O—H⋯O hydrogen bond closes an S(6) ring. In the crystal, weak C—H⋯O hydrogen bonds connect the molecules, forming layers parallel to (100). Within these layers, there are weak π–π stacking interactions with a ring centroid–ring centroid distance of 3.555 (1) Å. Full Article text
ben Tris(1H-benzimidazol-2-ylmethyl)amine methanol trisolvate By scripts.iucr.org Published On :: 2020-03-05 The structure of the tertiary amine tris(1H-benzimidazol-2-ylmethyl)amine (C24H21N7, abbreviated ntb) has been previously reported twice as solvates, namely the monohydrate and the acetonitrile–methanol–water (1/0.5/1.5) solvate, both with the tripodal conformation formed via multiple hydrogen bonds. Now, we report the trimethanol adduct, ntb·3CH3OH, where the amine has the stair conformation featuring one benzimidazole group oriented in the opposite direction from the other two. The asymmetric unit contains one-half amine, completed through the mirror plane m in space group Pmn21 to form the ntb molecule, with the H atom for each imidazole moiety equally disordered between both N sites available in the imidazole ring. The asymmetric unit also contains one and a half methanol molecules, one being placed in general position with the hydroxy H atom disordered over two sites with occupancy ratio 1:1, while the other lies on the m mirror plane, and has thus its hydroxy H atom disordered by symmetry. As in the previously reported solvates, all imine and amine groups of the ntb molecules and the methanol molecules are involved in N—H⋯O and O—H⋯N hydrogen bonds. In the title compound, however, the involved H atom is systematically a disordered H atom provided by an imidazole group or a methanol molecule. Full Article text
ben 7-Chloro-3-(4-methylbenzenesulfonyl)pyrrolo[1,2-c]pyrimidine By scripts.iucr.org Published On :: 2020-03-27 In the title compound, C14H11ClN2O2S, the dihedral angle between the pyrrolo[1,2-c]pyrimidine ring system (r.m.s. deviation = 0.008 Å) and the benzene ring is 80.2 (9)°. In the crystal, inversion dimers linked by pairs of C—H⋯O interactions generate R22(16) loops. Several aromatic π–π stacking interactions between the pyrrolo[1,2-c]pyrimidine rings, as well as separately between the pyrrolo and pyrimidine groups [shortest centroid–centroid separation = 3.5758 (14) Å], help to consolidate the packing. Full Article text
ben Trimethyl 4,4',4''-(ethene-1,1,2-triyl)tribenzoate By scripts.iucr.org Published On :: 2020-03-31 The title compound, C26H22O6, is formed as the major product from the reaction between syn-1,2-bis(pinacolatoboron)-1,2-bis(4-methylcarboxyphenyl)ethene and excess methyl 4-iodobenzoate in basic DMSO using a palladium catalyst at 80°C via Suzuki coupling followed by protodeboronation. Crystals were grown by slow evaporation of a hexanes solution at room temperature. Full Article text
ben Diaquatetrakis(μ-3-methoxybenzoato-κ2O1:O1')dicopper(II) By scripts.iucr.org Published On :: 2020-04-07 The asymmetric unit of the binuclear title compound, [Cu2(C8H7O3)4(H2O)2], comprises two halves of diaquatetrakis(μ-3-methoxybenzoato-κ2O1:O1')dicopper(II) units. The paddle-wheel structure of each complex is completed by application of inversion symmetry, with the inversion centre situated at the midpoint between two CuII atoms in each dimer. The two CuII atoms of each centrosymmetric dimer are bridged by four 3-methoxybenzoate anions resulting in Cu⋯Cu separations of 2.5961 (11) and 2.6060 (12) Å, respectively. The square-pyramidal coordination sphere of each CuII atom is completed by an apical water molecule. Intermolecular O—H⋯O hydrogen bonds of weak nature link the complexes into layers parallel to (100). The three-dimensional network structure is accomplished by C—H⋯O hydrogen bonds interlinking adjacent layers. Full Article text
ben 2,3-Diethylbenzo[g]quinoxaline By scripts.iucr.org Published On :: 2020-04-07 The title compound, C16H16N2, was synthesized by dispersing 3,4-hexanedione in a methanol–water solution containing the acid catalyst NH4HF2, then adding 1,2-diaminonaphthalene. The fused-ring system of the title compound is close to planar (r.m.s. deviation = 0.028 Å); one of the pendant methyl C atoms lies close to the ring plane [deviation = 0.071 (2) Å; N—C—C—C = −0.27 (18)°] whereas the other is significantly displaced [–1.7136 (18) Å; 91.64 (16)°]. The molecules pack in space group Ioverline{4} in a distinctive criss-cross motif supported by numerous aromatic π–π stacking interactions [shortest centroid–centroid separation = 3.5805 (6) Å]. Full Article text
ben Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phenoxy]phthalonitrile dimethyl sulfoxide monosolvate By scripts.iucr.org Published On :: 2019-05-10 This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phenoxy]phthalonitrile, a phthalonitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent molecules are connected by pairs of weak intermolecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic molecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the intermolecular interactions in the crystalline state. Full Article text
ben Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-N'-(3-hydroxy-4-methoxybenzylidene)nicotinohydrazide monohydrate By scripts.iucr.org Published On :: 2019-05-14 The molecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features intermolecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding interactions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) interactions. The title compound has also been characterized by frontier molecular orbital analysis. Full Article text
ben Crystal structures and Hirshfeld surface analyses of 4,4'-{[1,3-phenylenebis(methylene)]bis(oxy)}bis(3-methoxybenzaldehyde) and 4,4'-{[(1,4-phenylenebis(methylene)]bis(oxy)}bis( By scripts.iucr.org Published On :: 2019-05-24 The title compounds, C24H22O6 (I) and C24H22O6 (II), each crystallize with half a molecule in the asymmetric unit. The whole molecule of compound (I) is generated by twofold rotation symmetry, the twofold axis bisecting the central benzene ring. The whole molecule of compound (II) is generated by inversion symmetry, the central benzene ring being located on an inversion center. In (I), the outer benzene rings are inclined to each other by 59.96 (10)° and by 36.74 (9)° to the central benzene ring. The corresponding dihedral angles in (II) are 0.0 and 89.87 (12)°. In the crystal of (I), molecules are linked by C—H⋯O hydrogen bonds and C—H⋯π interactions, forming ribbons propagating along the [10overline{1}] direction. In the crystal of (II), molecules are linked by C—H⋯O hydrogen bonds, forming a supramolecular framework. The Hirshfeld surface analyses indicate that for both compounds the H⋯H contacts are the most significant, followed by O⋯H/H⋯O and C⋯H/H⋯C contacts. Full Article text
ben Crystal structure of bis(μ-{2-[(5-bromo-2-oxidobenzylidene)amino]ethyl}sulfanido-κ3N,O,S){2,2'-[(3,4-dithiahexane-1,6-diyl)bis(nitrilomethanylylidene)]bis(4-bromophenolato)-κ4O,N,N',O By scripts.iucr.org Published On :: 2019-05-24 The title binuclear CoIII complex, [Co2(C9H8BrNOS)2(C18H16Br2N2O2S2)]·C3H7NO, with a Schiff base ligand formed in situ from cysteamine (2-aminoethanethiol) and 5-bromosalicylaldehyde crystallizes in the space group P21. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H2L' having an S—S bond. Thus, the asymmetric unit consists of one Co2(L)2(L') molecule and one DMF solvent molecule. Each CoIII ion has a slightly distorted octahedral S2N2O2 coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S⋯ Br, C⋯ Br, C—H⋯Br, short S⋯C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C—H⋯O hydrogen bonds. The crystal studied was refined as an inversion twin. Full Article text
ben Crystal structures of butyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate and 2-methoxyethyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate By scripts.iucr.org Published On :: 2019-05-24 The title benzofuran derivatives 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF1), C19H18N2O6, and 2-methoxyethyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF2), C18H16N2O7, recently attracted attention because of their promising antitumoral activity. BF1 crystallizes in the space group Poverline{1}. BF2 in the space group P21/c. The nitrophenyl group is inclined to benzofuran moiety with a dihedral angle between their mean planes of 69.2 (2)° in BF1 and 60.20 (6)° in BF2. A common feature in the molecular structures of BF1 and BF2 is the intramolecular N—H⋯Ocarbonyl hydrogen bond. In the crystal of BF1, the molecules are linked head-to-tail into a one-dimensional hydrogen-bonding pattern along the a-axis direction. In BF2, pairs of head-to-tail hydrogen-bonded chains of molecules along the b-axis direction are linked by O—H⋯Omethoxy hydrogen bonds. In BF1, the butyl group is disordered over two orientations with occupancies of 0.557 (13) and 0.443 (13). Full Article text
ben Crystal structure and Hirshfeld surface analysis of ethyl 2-[5-(3-chlorobenzyl)-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl]acetate By scripts.iucr.org Published On :: 2019-05-24 The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R22(10) and R22(24) ring motifs which are linked by C—H⋯O interactions, forming chains extending parallel to the c-axis direction. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts. Full Article text
ben Crystal structure of 210,220-bis(2,6-dichlorophenyl)-4,7,12,15-tetraoxa-2(5,15)-nickel(II)porpyhrina-1,3(1,2)-dibenzena-cycloheptadecaphane-9-yne dichloromethane monosolvate By scripts.iucr.org Published On :: 2019-05-31 The asymmetric unit of the title compound, [Ni(C52H34Cl4N4O4)]·CH2Cl2, consists of two discrete complexes, which show significant differences in the conformation of the side chain. Each NiII cation is coordinated by four nitrogen atoms of a porphyrin molecule within a square-planar coordination environment. Weak intramolecular C—H⋯Cl and C—H⋯O interactions stabilize the molecular conformation. In the crystal structure, discrete complexes are linked by C—H⋯Cl hydrogen-bonding interactions. In addition, the two unique dichloromethane solvate molecules (one being disordered) are hydrogen-bonded to the Cl atoms of the chlorophenyl groups of the porphyrin molecules, thus stabilizing the three-dimensional arrangement. The crystal exhibits pseudo-orthorhombic metrics, but structure refinements clearly show that the crystal system is monoclinic and that the crystal is twinned by pseudo-merohedry. Full Article text
ben Crystal structure of N-(diphenylphosphoryl)-2-methoxybenzamide By scripts.iucr.org Published On :: 2019-06-04 In the title compound, C20H18NO3P, the C=O and P=O groups of the carbacylamidophosphate (CAPh) fragments are located in a synclinal position relative to each other and are pre-organized for bidentate chelate coordination of metal ions. The N—H group is involved in the formation of an intramolecular hydrogen bond. In the crystal, molecules do not form strong intermolecular interactions but the molecules are linked via weak C—H⋯π interactions, forming chains along [001]. Full Article text
ben Crystal structure, synthesis and thermal properties of tetrakis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)iron(II) By scripts.iucr.org Published On :: 2019-05-31 The asymmetric unit of the title compound, [Fe(NCS)2(C12H9NO)4], consists of an FeII ion that is located on a centre of inversion, as well as two 4-benzoylpyridine ligands and one thiocyanate anion in general positions. The FeII ions are coordinated by two N-terminal-bonded thiocyanate anions and four 4-benzoylpyridine ligands into discrete complexes with a slightly distorted octahedral geometry. These complexes are further linked by weak C—H⋯O hydrogen bonds into chains running along the c-axis direction. Upon heating, this complex loses half of the 4-benzoylpyridine ligands and transforms into a compound with the composition Fe(NCS)2(4-benzoylpyridine)2, that might be isotypic to the corresponding MnII compound and for which the structure is unknown. Full Article text
ben Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium 4-vinylbenzenesulfonate By scripts.iucr.org Published On :: 2019-06-04 In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation and a 4-vinylbenzenesulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported. Full Article text
ben Crystal structure and DFT study of benzyl 1-benzyl-2-oxo-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-06-11 In the title quinoline derivative, C24H19NO3, the two benzyl rings are inclined to the quinoline ring mean plane by 74.09 (8) and 89.43 (7)°, and to each other by 63.97 (10)°. The carboxylate group is twisted from the quinoline ring mean plane by 32.2 (2)°. There is a short intramolecular C—H⋯O contact forming an S(6) ring motif. In the crystal, molecules are linked by bifurcated C—H,H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C—H⋯π interactions, forming a supramolecular three-dimensional structure. Full Article text
ben Crystal structure, DFT and MEP study of (E)-2-[(2-hydroxy-5-methoxybenzylidene)amino]benzonitrile By scripts.iucr.org Published On :: 2019-06-14 The asymmetric unit of the title compound, C15H12N2O2, contains two crystallographically independent molecules in which the dihedral angles between the benzene rings in each are 13.26 (5) and 7.87 (5)°. An intramolecular O—H⋯N hydrogen bonds results in the formation of an S(6) ring motif. In the crystal, molecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (011). In addition, π–π stacking interactions with centroid–centroid distances in the range 3.693 (2)–3.931 (2) Å complete the three-dimensional network. Full Article text
ben Two isomers of [1-benzyl-4-(pyridin-2-yl-κN)-1H-1,2,3-triazole-κN3]dichloridobis(dimethyl sulfoxide-κS)ruthenium(II) By scripts.iucr.org Published On :: 2019-07-04 The structures of two isomers of the title compound, [RuCl2(C14H12N4)(C2H6OS)2], 2 and 3, are reported. Isomers 2 and 3 are produced by reaction of the pyridyltriazole ligand 1-benzyl-4-(pyridin-2-yl)-1H-1,2,3-triazole (bpt) (1) with fac-[RuCl2(DMSO-S)3(DMSO-O)]. Reaction in acetone produces ca 95% 2, which is the OC-6-14 isomer, with cis DMSO and trans chlorido ligands, and 5% 3 (the OC-6-32 isomer, with cis DMSO and cis chlorido ligands, and the pyridyl moiety of bpt trans to DMSO). Reaction in refluxing toluene initially forms 2, which slowly isomerizes to 3. Full Article text
ben Crystal structures of trans-diaqua(3-R-1,3,5,8,12-pentaazacyclotetradecane)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl) By scripts.iucr.org Published On :: 2019-06-21 The asymmetric units of the title compounds, trans-diaqua(3-benzyl-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-diaqua[3-(pyridin-3-ylmethyl)-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12]copper(II) isophthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one diaqua macrocyclic cation, one dicarboxylate anion and uncoordinated water molecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water molecules in a tetragonally distorted octahedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding interactions between the N—H groups of the macrocycles and the O—H groups of coordinated water molecules as the proton donors and the O atoms of the carboxylate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water molecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively. Full Article text
ben Crystal structure and the DFT and MEP study of 4-benzyl-2-[2-(4-fluorophenyl)-2-oxoethyl]-6-phenylpyridazin-3(2H)-one By scripts.iucr.org Published On :: 2019-06-21 The title pyridazin-3(2H)-one derivative, C25H19FN2O2, crystallizes with two independent molecules (A and B) in the asymmetric unit. In molecule A, the 4-fluorophenyl ring, the benzyl ring and the phenyl ring are inclined to the central pyridazine ring by 86.54 (11), 3.70 (9) and 84.857 (13)°, respectively. In molecule B, the corresponding dihedral angles are 86.80 (9), 10.47 (8) and 82.01 (10)°, respectively. In the crystal, the A molecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers with an R22(28) ring motif. The dimers are linked by C—H⋯O hydrogen bonds and a C—H⋯π interaction, forming columns stacking along the a-axis direction. The B molecules are linked to each other in a similar manner and form columns separating the columns of A molecules. Full Article text
ben Crystal structure and Hirshfeld surface analysis of N-(2-chlorophenylcarbamothioyl)-4-fluorobenzamide and N-(4-bromophenylcarbamothioyl)-4-fluorobenzamide By scripts.iucr.org Published On :: 2019-06-21 The title compounds, C14H10ClFN2OS (1) and C14H10BrFN2OS (2), were synthesized by two-step reactions. The dihedral angles between the aromatic rings are 31.99 (3) and 9.17 (5)° for 1 and 2, respectively. Compound 1 features an intramolecular bifurcated N—H⋯(O,Cl) link due to the presence of the ortho-Cl atom on the benzene ring, whereas 2 features an intramolecular N—H⋯O hydrogen bond. In the crystal of 1, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops. The extended structure of 2 features the same motif but an additional weak C—H⋯S interaction links the inversion dimers into [100] double columns. Hirshfeld surface analyses indicate that the most important contributors towards the crystal packing are H⋯H (26.6%), S⋯H/H.·S (13.8%) and Cl⋯H/H⋯Cl (9.5%) contacts for 1 and H⋯H (19.7%), C⋯H/H⋯C (14.8%) and Br⋯H/H⋯Br (12.4%) contacts for 2. Full Article text
ben Molecular and crystal structure of 5,9-dimethyl-5H-pyrano[3,2-c:5,6-c']bis[2,1-benzothiazin]-7(9H)-one 6,6,8,8-tetroxide dimethylformamide monosolvate By scripts.iucr.org Published On :: 2019-06-28 The title molecule crystallizes as a dimethylformamide monosolvate, C19H14N2O6S2·C3H7NO. The molecule was expected to adopt mirror symmetry but slightly different conformational characteristics of the condensed benzothiazine ring lead to point group symmetry 1. In the crystal, molecules form two types of stacking dimers with distances of 3.464 (2) Å and 3.528 (2) Å between π-systems. As a result, columns extending parallel to [100] are formed, which are connected to intermediate dimethylformamide solvent molecules by C—H⋯O interactions. Full Article text
ben Crystal structure of two N'-(1-phenylbenzylidene)-2-(thiophen-3-yl)acetohydrazides By scripts.iucr.org Published On :: 2019-07-02 The synthesis, spectroscopic data, crystal and molecular structures of two N'-(1-phenylbenzylidene)-2-(thiophen-3-yl)acetohydrazides, namely N'-[1-(4-hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide, C13H10N2O2S, (3a), and N'-[1-(4-methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide, C14H14N2O2S, (3b), are described. Both compounds differ in the substituent at the para position of the phenyl ring: –OH for (3a) and –OCH3 for (3b). In (3a), the thiophene ring is disordered over two orientations with occupancies of 0.762 (3) and 0.238 (3). The configuration about the C=N bond is E. The thiophene and phenyl rings are inclined by 84.0 (3) and 87.0 (9)° for the major- and minor-occupancy disorder components in (3a), and by 85.89 (12)° in (3b). Although these dihedral angles are similar, the conformation of the linker between the two rings is different [the C—C—C—N torsion angle is −ac for (3a) and −sc for (3b), while the C6—C7—N9—N10 torsion angle is +ap for (3a) and −sp for (3b)]. A common feature in the crystal packing of (3a) and (3b) is the presence of N—H⋯O hydrogen bonds, resulting in the formation of chains of molecules running along the b-axis direction in the case of (3a), or inversion dimers for (3b). The most prominent contributions to the surface contacts are those in which H atoms are involved, as confirmed by an analysis of the Hirshfeld surface. Full Article text
ben Crystal structure of (E)-N-cyclohexyl-2-(2-hydroxy-3-methylbenzylidene)hydrazine-1-carbothioamide By scripts.iucr.org Published On :: 2019-06-28 The asymmetric unit of the title compound, C15H21N3OS, comprises of two crystallographically independent molecules (A and B). Each molecule consists of a cyclohexane ring and a 2-hydroxy-3-methylbenzylidene ring bridged by a hydrazinecarbothioamine unit. Both molecules exhibit an E configuration with respect to the azomethine C=N bond. There is an intramolecular O—H⋯N hydrogen bond in each molecule forming an S(6) ring motif. The cyclohexane ring in each molecule has a chair conformation. The benzene ring is inclined to the mean plane of the cyclohexane ring by 47.75 (9)° in molecule A and 66.99 (9)° in molecule B. The mean plane of the cyclohexane ring is inclined to the mean plane of the thiourea moiety [N—C(=S)—N] by 55.69 (9) and 58.50 (8)° in molecules A and B, respectively. In the crystal, the A and B molecules are linked by N—H⋯S hydrogen bonds, forming `dimers'. The A molecules are further linked by a C—H⋯π interaction, hence linking the A–B units to form ribbons propagating along the b-axis direction. The conformation of a number of related cyclohexanehydrazinecarbothioamides are compared to that of the title compound. Full Article text
ben N,N'-Bis(pyridin-4-ylmethyl)oxalamide benzene monosolvate: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2019-07-09 The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide molecule: N,N'-bis(pyridin-4-ylmethyl)ethanediamide], comprises a half molecule of each constituent as each is disposed about a centre of inversion. In the oxalamide molecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intramolecular amide-N—H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the molecule adopts an antiperiplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supramolecular layers parallel to (10overline{2}) are generated owing the formation of amide-N—H⋯N(pyridyl) hydrogen bonds. The layers stack encompassing benzene molecules which provide the links between layers via methylene-C—H⋯π(benzene) and benzene-C—H⋯π(pyridyl) interactions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol−1; electrostatic forces) is just over double that by the C—H⋯π contacts (dispersion forces). Full Article text
ben Crystal structure and Hirshfeld surface analysis of (E)-4-{[2,2-dichloro-1-(4-methoxyphenyl)ethenyl]diazenyl}benzonitrile By scripts.iucr.org Published On :: 2019-07-16 In the title compound, C16H11Cl2N3O, the 4-methoxy-substituted benzene ring makes a dihedral angle of 41.86 (9)° with the benzene ring of the benzonitrile group. In the crystal, molecules are linked into layers parallel to (020) by C—H⋯O contacts and face-to-face π–π stacking interactions [centroid–centroid distances = 3.9116 (14) and 3.9118 (14) Å] between symmetry-related aromatic rings along the a-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from Cl⋯H/H⋯Cl (22.8%), H⋯H (21.4%), N⋯H/H⋯N (16.1%), C⋯H/H⋯C (14.7%) and C⋯C (9.1%) interactions. Full Article text
ben Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2019-07-12 The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thiazolidine ring and the atom joining the thiazolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thiazolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide, C—H⋯π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the molecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) interactions. Full Article text
ben Crystal structure of (E)-N'-(3,4-dihydroxybenzylidene)-4-hydroxybenzohydrazide By scripts.iucr.org Published On :: 2019-07-28 In the title benzohydrazide derivative, C14H12N2O4, the azomethine C=N double bond has an E configuration. The hydrazide connecting bridge, (C=O)—(NH)—N=(CH), is nearly planar with C—C—N—N and C—N—N=C torsion angles of −177.33 (10) and −174.98 (12)°, respectively. The 4-hydroxyphenyl and 3,4-dihydroxyphenyl rings are slightly twisted, making a dihedral angle of 9.18 (6)°. In the crystal, molecules are connected by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network, while further consolidated via π–π interactions [centroid–centroid distances = 3.6480 (8) and 3.7607 (8) Å]. The conformation is compared to those of related benzylidene-4-hydroxybenzohydrazide derivatives. Full Article text
ben Crystal structure and Hirshfeld surface analysis of bis(benzoato-κ2O,O')[bis(pyridin-2-yl-κN)amine]nickel(II) By scripts.iucr.org Published On :: 2019-08-13 A new mononuclear NiII complex with bis(pyridin-2-yl)amine (dpyam) and benzoate (benz), [Ni(C7H5O2)2(C10H9N3)], crystallizes in the monoclinic space group P21/c. The NiII ion adopts a cis-distorted octahedral geometry with an [NiN2O4] chromophore. In the crystal, the complex molecules are linked together into a one-dimensional chain by symmetry-related π–π stacking interactions [centroid-to-centroid distance = 3.7257 (17) Å], along with N—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further stabilized by C—H⋯π interactions, which were investigated by Hirshfeld surface analysis. Full Article text
ben Absolute structure of (3aS,5S,7aS,7bS,9aR,10R,12aR,12bS)-7b-hydroxy-4,4,7a,9a,12a-pentamethyl-10-[(2'R)-6-methylheptan-2-yl]-2,8,9-trioxooctadecahydrobenzo[d]indeno[4,5-b]azepin-5-yl acetate from 62-year-old By scripts.iucr.org Published On :: 2019-08-23 The structure of the title compound, C32H51NO6, was determined from 62-year-old crystals at room temperature and refined with 100 K data in a monoclinic (C2) space group. This compound with a triterpenoid structure, now confirmed by this study, played an important role in the determination of the structure of lanosterol. The molecules pack in linear O—H⋯O hydrogen-bonded chains along the short axis (b), while parallel chains display weak van der Waals interactions that explain the needle-shaped crystal morphology. The structure exhibits disorder of the flexible methylheptane chain at one end of the main molecule with a small void around it. Crystals of the compounds were resistant to data collection for decades with the available cameras and Mo Kα radiation single-crystal diffractometer in our laboratory until a new instrument with Cu Kα radiation operating at 100 K allowed the structure to be solved and refined. Full Article text
ben Synthesis and crystal structure of tert-butyl 1-(2-iodobenzoyl)cyclopent-3-ene-1-carboxylate By scripts.iucr.org Published On :: 2019-08-30 1-(2-Iodobenzoyl)-cyclopent-3-ene-1-carboxylates are novel substrates to construct bicyclo[3.2.1]octanes with antibacterial and antithrombotic activities. In this context, tert-butyl 1-(2-iodobenzoyl)-cyclopent-3-ene-1-carboxylate, C17H19IO3, was synthesized and structurally characterized. The 2-iodobenzoyl group is attached to the tertiary C atom of the cyclopent-3-ene ring. The dihedral angle between the benzene ring and the mean plane of the envelope-type cyclopent-3-ene ring is 26.0 (3)°. In the crystal, pairs of C-H⋯O hydrogen bonds link the molecules to form inversion dimers. Full Article text
ben Crystal structure and Hirshfeld surface analysis of 4-(4-methylbenzyl)-6-phenylpyridazin-3(2H)-one By scripts.iucr.org Published On :: 2019-08-23 In this paper, we describe the synthesis of a new dihydro-2H-pyridazin-3-one derivative. The molecule, C18H16N2O, is not planar; the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.47 (2)°, and the toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°. The molecular conformation is stabilized by weak intramolecular C—H⋯N contacts. In the crystal, pairs of N—H⋯O hydrogen bonds link the molecules into inversion dimers with an R22(8) ring motif. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (56.6%), H⋯C/C⋯H (22.6%), O⋯H/H⋯O (10.0%) and N⋯C/C⋯N (3.5%) interactions. Full Article text
ben Crystal structures and Hirshfeld surface analyses of (E)-N'-benzylidene-2-oxo-2H-chromene-3-carbohydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide: lattice ene By scripts.iucr.org Published On :: 2019-09-03 The crystal structures of the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide, C20H18N2O6·0.5C2H6OS, and (E)-N'-benzylidene-2-oxo-2H-chromene-3-carbohydrazide, C17H12N2O3 (4: R = C6H5), are discussed. The non-hydrogen atoms in compound [4: R = (3,4,5-MeO)3C6H2)] exhibit a distinct curvature, while those in compound, (4: R = C6H5), are essential coplanar. In (4: R = C6H5), C—H⋯O and π–π intramolecular interactions combine to form a three-dimensional array. A three-dimensional array is also found for the hemi-DMSO solvate of [4: R = (3,4,5-MeO)3C6H2], in which the molecules of coumarin are linked by C—H⋯O and C—H⋯π interactions, and form tubes into which the DMSO molecules are cocooned. Hirshfeld surface analyses of both compounds are reported, as are the lattice energy and intermolecular interaction energy calculations of compound (4: R = C6H5). Full Article text
ben Crystal structure and Hirshfeld surface analysis of 2-hydroxy-7-methoxy-1,8-bis(2,4,6-trichlorobenzoyl)naphthalene By scripts.iucr.org Published On :: 2019-09-10 In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-trichlorobenzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C—(C=O)—C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intramolecular O—H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective intermolecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts. Full Article text
ben 2-{(1E)-[(E)-2-(2,6-Dichlorobenzylidene)hydrazin-1-ylidene]methyl}phenol: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2019-09-10 The title Schiff base compound, C14H10Cl2N2O, features an E configuration about each of the C=N imine bonds. Overall, the molecule is approximately planar with the dihedral angle between the central C2N2 residue (r.m.s. deviation = 0.0371 Å) and the peripheral hydroxybenzene and chlorobenzene rings being 4.9 (3) and 7.5 (3)°, respectively. Nevertheless, a small twist is evident about the central N—N bond [the C—N—N—C torsion angle = −172.7 (2)°]. An intramolecular hydroxy-O—H⋯N(imine) hydrogen bond closes an S(6) loop. In the crystal, π–π stacking interactions between hydroxy- and chlorobenzene rings [inter-centroid separation = 3.6939 (13) Å] lead to a helical supramolecular chain propagating along the b-axis direction; the chains pack without directional interactions between them. The calculated Hirshfeld surfaces point to the importance of H⋯H and Cl⋯H/H⋯Cl contacts to the overall surface, each contributing approximately 29% of all contacts. However, of these only Cl⋯H contacts occur at separations less than the sum of the van der Waals radii. The aforementioned π–π stacking interactions contribute 12.0% to the overall surface contacts. The calculation of the interaction energies in the crystal indicates significant contributions from the dispersion term. Full Article text
ben Crystal structure of bis[2-(1H-benzimidazol-2-yl-κN3)aniline-κN]bis(nitrato-κO)cadmium(II) By scripts.iucr.org Published On :: 2019-09-12 In the title compound, [Cd(NO3)2(C13H11N3)2], the CdII atom lies on a twofold rotation axis and is coordinated by four N atoms and two O atoms, provided by two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands, and two nitrato O atoms, forming a distorted octahedral geometry [range of bond angles around the Cd atom = 73.82 (2)–106.95 (8)°]. In the ligand, the dihedral angle between the aniline ring and the benzimidazole ring system is 30.43 (7)°. The discrete complex molecule is stabilized by an intramolecular N—H⋯O hydrogen bond. In the crystal, intermolecular N—H⋯O hydrogen bonds link the molecules, forming a three-dimensional network. Full Article text
ben 3,3-Bis(2-hydroxyethyl)-1-(4-methylbenzoyl)thiourea: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2019-09-12 In the title tri-substituted thiourea derivative, C13H18N2O3S, the thione-S and carbonyl-O atoms lie, to a first approximation, to the same side of the molecule [the S—C—N—C torsion angle is −49.3 (2)°]. The CN2S plane is almost planar (r.m.s. deviation = 0.018 Å) with the hydroxyethyl groups lying to either side of this plane. One hydroxyethyl group is orientated towards the thioamide functionality enabling the formation of an intramolecular N—H⋯O hydrogen bond leading to an S(7) loop. The dihedral angle [72.12 (9)°] between the planes through the CN2S atoms and the 4-tolyl ring indicates the molecule is twisted. The experimental molecular structure is close to the gas-phase, geometry-optimized structure calculated by DFT methods. In the molecular packing, hydroxyl-O—H⋯O(hydroxyl) and hydroxyl-O—H⋯S(thione) hydrogen bonds lead to the formation of a supramolecular layer in the ab plane; no directional interactions are found between layers. The influence of the specified supramolecular interactions is apparent in the calculated Hirshfeld surfaces and these are shown to be attractive in non-covalent interaction plots; the interaction energies point to the important stabilization provided by directional O—H⋯O hydrogen bonds. Full Article text
ben The crystal structure of ((cyclohexylamino){(Z)-2-[(E)-5-methoxy-3-nitro-2-oxidobenzylidene-κO]hydrazin-1-ylidene-κN2}methanethiolato-κS)(dimethyl sulfoxide-κS)platinum(II): a supramolecular two-dimens By scripts.iucr.org Published On :: 2019-09-12 The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thiosemicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, molecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π interactions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclohexylhydrazine-1-carbothioamide ligands are compared to that of the title compound. Full Article text
ben Crystal structures of 3-chloro-2-nitrobenzoic acid with quinoline derivatives: 3-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), 3-chloro-2-nitrobenzoic acid–6-nitroquinoline (1/1) and 8-hydroxyquinolinium 3-ch By scripts.iucr.org Published On :: 2019-09-27 The structures of three compounds of 3-chloro-2-nitrobenzoic acid with 5-nitroquinoline, (I), 6-nitroquinoline, (II), and 8-hydroxyquinoline, (III), have been determined at 190 K. In each of the two isomeric compounds, (I) and (II), C7H4ClNO4·C9H6N2O2, the acid and base molecules are held together by O—H⋯N and C—H⋯O hydrogen bonds. In compound (III), C9H8NO+·C7H3ClNO4−, an acid–base interaction involving H-atom transfer occurs and the H atom is located at the N site of the base molecule. In the crystal of (I), the hydrogen-bonded acid–base units are linked by C—H⋯O hydrogen bonds, forming a tape structure along the b-axis direction. Adjacent tapes, which are related by a twofold rotation axis, are linked by a third C—H⋯O hydrogen bond, forming wide ribbons parallel to the (overline{1}03) plane. These ribbons are stacked via π–π interactions between the quinoline ring systems [centroid–centroid distances = 3.4935 (5)–3.7721 (6) Å], forming layers parallel to the ab plane. In the crystal of (II), the hydrogen-bonded acid–base units are also linked into a tape structure along the b-axis direction via C—H⋯O hydrogen bonds. Inversion-related tapes are linked by further C—H⋯O hydrogen bonds to form wide ribbons parallel to the (overline{3}08) plane. The ribbons are linked by weak π–π interactions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], forming a three-dimensional structure. In the crystal of (III), the cations and the anions are alternately linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a 21 helix running along the b-axis direction. The cations and the anions are further stacked alternately in columns along the a-axis direction via π–π interactions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], and the molecular chains are linked into layers parallel to the ab plane through these interactions. Full Article text