au Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm. By www.catalog.slsa.sa.gov.au Published On :: Fuhlbohm (Family) Full Article
au Slow tain to Auschwitz : memoirs of a life in war and peace / Peter Kraus. By www.catalog.slsa.sa.gov.au Published On :: Kraus, Peter -- Biography. Full Article
au From alms house to first nation : a story of my ancestors in South Australia : a Sherwell family story / by Pamela Coad (nee Sherwell). By www.catalog.slsa.sa.gov.au Published On :: Sherwell (Family) Full Article
au Austin-Area District Looks for Digital/Blended Learning Program; Baltimore Seeks High School Literacy Program By marketbrief.edweek.org Published On :: Tue, 05 May 2020 22:14:33 +0000 The Round Rock Independent School District in Texas is looking for a digital curriculum and blended learning program. Baltimore is looking for a comprehensive high school literacy program. The post Austin-Area District Looks for Digital/Blended Learning Program; Baltimore Seeks High School Literacy Program appeared first on Market Brief. Full Article Purchasing Alert Curriculum / Digital Curriculum Educational Technology/Ed-Tech Learning Management / Student Information Systems Procurement / Purchasing / RFPs
au Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services By marketbrief.edweek.org Published On :: Fri, 08 May 2020 13:52:21 +0000 Saint Paul schools are in the market for a vendor to provide background checks, while the Education Technology Joint Powers Authority is seeking media repositories. A Texas district wants quotes on technology for new campuses. The post Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services appeared first on Market Brief. Full Article Purchasing Alert Background Checks Media Repository Procurement / Purchasing / RFPs Software / Hardware
au Item 02: William Hilton Saunders WWI diary, 1 January 1917 - 24 October 1917 By feedproxy.google.com Published On :: 19/03/2015 3:09:51 PM Full Article
au Item 04: William Hilton Saunders WWI diary, 18 February 1919 - 8 July 1919 By feedproxy.google.com Published On :: 19/03/2015 3:10:34 PM Full Article
au Item 03: William Hilton Saunders WWI diary, 1 January 1918 - 31 December 1918 By feedproxy.google.com Published On :: 19/03/2015 3:10:53 PM Full Article
au Item 01: William Hilton Saunders WWI diary, February 1916 - 2 January 1917 By feedproxy.google.com Published On :: 19/03/2015 3:11:14 PM Full Article
au Item 05: William Hilton Saunders WWI 1916-1919 address book with poetry By feedproxy.google.com Published On :: 19/03/2015 3:11:33 PM Full Article
au Arthur Leeman Fulton WWI diary, 1 January - 6 August 1916 By feedproxy.google.com Published On :: 23/03/2015 3:24:21 PM Full Article
au Item 04: Notebook of Colonel Alfred Hobart Sturdee, 8 August 1914 to 25 February 1918 By feedproxy.google.com Published On :: 24/03/2015 9:04:00 AM Full Article
au Item 08: A Logg [Log] Book of the proceedings on Board His Majesty's Ship Swallow, Captain Philip Carteret Commander Commencing from the 20th August 1766 and Ending [21st May 1768] By feedproxy.google.com Published On :: 5/05/2015 12:19:15 PM Full Article
au Item 10: Log book of the Swallow from 22 August 1767 to 4 June 1768 / by Philip Carteret By feedproxy.google.com Published On :: 5/05/2015 4:20:18 PM Full Article
au Item 01: Notebooks (2) containing hand written copies of 123 letters from Major William Alan Audsley to his parents, ca. 1916-ca. 1919, transcribed by his father. Also includes original letters (2) written by Major Audsley. By feedproxy.google.com Published On :: 28/05/2015 11:00:09 AM Full Article
au Item 01: Autograph letter signed, from Hume, Appin, to William E. Riley, concerning an account for money owed by Riley, 4 September 1834 By feedproxy.google.com Published On :: 14/07/2015 9:51:03 AM Full Article
au A person was struck and killed by a Southwest plane as it landed on the runway at Austin international airport By news.yahoo.com Published On :: Fri, 08 May 2020 10:53:00 -0400 Austin-Bergstrom International Airport said it was "aware of an individual that was struck and killed on runway 17-R by a landing aircraft." Full Article
au ‘Selfish, tribal and divided’: Barack Obama warns of changes to American way of life in leaked audio slamming Trump administration By news.yahoo.com Published On :: Sat, 09 May 2020 07:22:00 -0400 Barack Obama said the “rule of law is at risk” following the justice department’s decision to drop charges against former Trump advisor Mike Flynn, as he issued a stark warning about the long-term impact on the American way of life by his successor. Full Article
au The McMichaels can't be charged with a hate crime by the state in the shooting death of Ahmaud Arbery because the law doesn't exist in Georgia By news.yahoo.com Published On :: Fri, 08 May 2020 17:07:36 -0400 Georgia is one of four states that doesn't have a hate crime law. Arbery's killing has reignited calls for legislation. Full Article
au Neighbor of father and son arrested in Ahmaud Arbery killing is also under investigation By news.yahoo.com Published On :: Fri, 08 May 2020 11:42:19 -0400 The ongoing investigation of the fatal shooting in Brunswick, Georgia, will also look at a neighbor of suspects Gregory and Travis McMichael who recorded video of the incident, authorities said. Full Article
au Additive Multivariate Gaussian Processes for Joint Species Distribution Modeling with Heterogeneous Data By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Jarno Vanhatalo, Marcelo Hartmann, Lari Veneranta. Source: Bayesian Analysis, Volume 15, Number 2, 415--447.Abstract: Species distribution models (SDM) are a key tool in ecology, conservation and management of natural resources. Two key components of the state-of-the-art SDMs are the description for species distribution response along environmental covariates and the spatial random effect that captures deviations from the distribution patterns explained by environmental covariates. Joint species distribution models (JSDMs) additionally include interspecific correlations which have been shown to improve their descriptive and predictive performance compared to single species models. However, current JSDMs are restricted to hierarchical generalized linear modeling framework. Their limitation is that parametric models have trouble in explaining changes in abundance due, for example, highly non-linear physical tolerance limits which is particularly important when predicting species distribution in new areas or under scenarios of environmental change. On the other hand, semi-parametric response functions have been shown to improve the predictive performance of SDMs in these tasks in single species models. Here, we propose JSDMs where the responses to environmental covariates are modeled with additive multivariate Gaussian processes coded as linear models of coregionalization. These allow inference for wide range of functional forms and interspecific correlations between the responses. We propose also an efficient approach for inference with Laplace approximation and parameterization of the interspecific covariance matrices on the Euclidean space. We demonstrate the benefits of our model with two small scale examples and one real world case study. We use cross-validation to compare the proposed model to analogous semi-parametric single species models and parametric single and joint species models in interpolation and extrapolation tasks. The proposed model outperforms the alternative models in all cases. We also show that the proposed model can be seen as an extension of the current state-of-the-art JSDMs to semi-parametric models. Full Article
au Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Abhishek Bishoyi, Xiaojing Wang, Dipak K. Dey. Source: Bayesian Analysis, Volume 15, Number 1, 215--239.Abstract: Missing data often appear as a practical problem while applying classical models in the statistical analysis. In this paper, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another through Auto-mpg data taken from the StatLib library. Full Article
au Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Antony Overstall, James McGree. Source: Bayesian Analysis, Volume 15, Number 1, 103--131.Abstract: A Bayesian design is given by maximising an expected utility over a design space. The utility is chosen to represent the aim of the experiment and its expectation is taken with respect to all unknowns: responses, parameters and/or models. Although straightforward in principle, there are several challenges to finding Bayesian designs in practice. Firstly, the utility and expected utility are rarely available in closed form and require approximation. Secondly, the design space can be of high-dimensionality. In the case of intractable likelihood models, these problems are compounded by the fact that the likelihood function, whose evaluation is required to approximate the expected utility, is not available in closed form. A strategy is proposed to find Bayesian designs for intractable likelihood models. It relies on the development of an automatic, auxiliary modelling approach, using multivariate Gaussian process emulators, to approximate the likelihood function. This is then combined with a copula-based approach to approximate the marginal likelihood (a quantity commonly required to evaluate many utility functions). These approximations are demonstrated on examples of stochastic process models involving experimental aims of both parameter estimation and model comparison. Full Article
au Bayesian Network Marker Selection via the Thresholded Graph Laplacian Gaussian Prior By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Qingpo Cai, Jian Kang, Tianwei Yu. Source: Bayesian Analysis, Volume 15, Number 1, 79--102.Abstract: Selecting informative nodes over large-scale networks becomes increasingly important in many research areas. Most existing methods focus on the local network structure and incur heavy computational costs for the large-scale problem. In this work, we propose a novel prior model for Bayesian network marker selection in the generalized linear model (GLM) framework: the Thresholded Graph Laplacian Gaussian (TGLG) prior, which adopts the graph Laplacian matrix to characterize the conditional dependence between neighboring markers accounting for the global network structure. Under mild conditions, we show the proposed model enjoys the posterior consistency with a diverging number of edges and nodes in the network. We also develop a Metropolis-adjusted Langevin algorithm (MALA) for efficient posterior computation, which is scalable to large-scale networks. We illustrate the superiorities of the proposed method compared with existing alternatives via extensive simulation studies and an analysis of the breast cancer gene expression dataset in the Cancer Genome Atlas (TCGA). Full Article
au Spatial Disease Mapping Using Directed Acyclic Graph Auto-Regressive (DAGAR) Models By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Abhirup Datta, Sudipto Banerjee, James S. Hodges, Leiwen Gao. Source: Bayesian Analysis, Volume 14, Number 4, 1221--1244.Abstract: Hierarchical models for regionally aggregated disease incidence data commonly involve region specific latent random effects that are modeled jointly as having a multivariate Gaussian distribution. The covariance or precision matrix incorporates the spatial dependence between the regions. Common choices for the precision matrix include the widely used ICAR model, which is singular, and its nonsingular extension which lacks interpretability. We propose a new parametric model for the precision matrix based on a directed acyclic graph (DAG) representation of the spatial dependence. Our model guarantees positive definiteness and, hence, in addition to being a valid prior for regional spatially correlated random effects, can also directly model the outcome from dependent data like images and networks. Theoretical results establish a link between the parameters in our model and the variance and covariances of the random effects. Simulation studies demonstrate that the improved interpretability of our model reaps benefits in terms of accurately recovering the latent spatial random effects as well as for inference on the spatial covariance parameters. Under modest spatial correlation, our model far outperforms the CAR models, while the performances are similar when the spatial correlation is strong. We also assess sensitivity to the choice of the ordering in the DAG construction using theoretical and empirical results which testify to the robustness of our model. We also present a large-scale public health application demonstrating the competitive performance of the model. Full Article
au Bayesian Functional Forecasting with Locally-Autoregressive Dependent Processes By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Guillaume Kon Kam King, Antonio Canale, Matteo Ruggiero. Source: Bayesian Analysis, Volume 14, Number 4, 1121--1141.Abstract: Motivated by the problem of forecasting demand and offer curves, we introduce a class of nonparametric dynamic models with locally-autoregressive behaviour, and provide a full inferential strategy for forecasting time series of piecewise-constant non-decreasing functions over arbitrary time horizons. The model is induced by a non Markovian system of interacting particles whose evolution is governed by a resampling step and a drift mechanism. The former is based on a global interaction and accounts for the volatility of the functional time series, while the latter is determined by a neighbourhood-based interaction with the past curves and accounts for local trend behaviours, separating these from pure noise. We discuss the implementation of the model for functional forecasting by combining a population Monte Carlo and a semi-automatic learning approach to approximate Bayesian computation which require limited tuning. We validate the inference method with a simulation study, and carry out predictive inference on a real dataset on the Italian natural gas market. Full Article
au Extrinsic Gaussian Processes for Regression and Classification on Manifolds By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Lizhen Lin, Niu Mu, Pokman Cheung, David Dunson. Source: Bayesian Analysis, Volume 14, Number 3, 907--926.Abstract: Gaussian processes (GPs) are very widely used for modeling of unknown functions or surfaces in applications ranging from regression to classification to spatial processes. Although there is an increasingly vast literature on applications, methods, theory and algorithms related to GPs, the overwhelming majority of this literature focuses on the case in which the input domain corresponds to a Euclidean space. However, particularly in recent years with the increasing collection of complex data, it is commonly the case that the input domain does not have such a simple form. For example, it is common for the inputs to be restricted to a non-Euclidean manifold, a case which forms the motivation for this article. In particular, we propose a general extrinsic framework for GP modeling on manifolds, which relies on embedding of the manifold into a Euclidean space and then constructing extrinsic kernels for GPs on their images. These extrinsic Gaussian processes (eGPs) are used as prior distributions for unknown functions in Bayesian inferences. Our approach is simple and general, and we show that the eGPs inherit fine theoretical properties from GP models in Euclidean spaces. We consider applications of our models to regression and classification problems with predictors lying in a large class of manifolds, including spheres, planar shape spaces, a space of positive definite matrices, and Grassmannians. Our models can be readily used by practitioners in biological sciences for various regression and classification problems, such as disease diagnosis or detection. Our work is also likely to have impact in spatial statistics when spatial locations are on the sphere or other geometric spaces. Full Article
au Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Mengyang Gu. Source: Bayesian Analysis, Volume 14, Number 3, 877--905.Abstract: Gaussian stochastic process (GaSP) has been widely used in two fundamental problems in uncertainty quantification, namely the emulation and calibration of mathematical models. Some objective priors, such as the reference prior, are studied in the context of emulating (approximating) computationally expensive mathematical models. In this work, we introduce a new class of priors, called the jointly robust prior, for both the emulation and calibration. This prior is designed to maintain various advantages from the reference prior. In emulation, the jointly robust prior has an appropriate tail decay rate as the reference prior, and is computationally simpler than the reference prior in parameter estimation. Moreover, the marginal posterior mode estimation with the jointly robust prior can separate the influential and inert inputs in mathematical models, while the reference prior does not have this property. We establish the posterior propriety for a large class of priors in calibration, including the reference prior and jointly robust prior in general scenarios, but the jointly robust prior is preferred because the calibrated mathematical model typically predicts the reality well. The jointly robust prior is used as the default prior in two new R packages, called “RobustGaSP” and “RobustCalibration”, available on CRAN for emulation and calibration, respectively. Full Article
au Analysis of the Maximal a Posteriori Partition in the Gaussian Dirichlet Process Mixture Model By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Łukasz Rajkowski. Source: Bayesian Analysis, Volume 14, Number 2, 477--494.Abstract: Mixture models are a natural choice in many applications, but it can be difficult to place an a priori upper bound on the number of components. To circumvent this, investigators are turning increasingly to Dirichlet process mixture models (DPMMs). It is therefore important to develop an understanding of the strengths and weaknesses of this approach. This work considers the MAP (maximum a posteriori) clustering for the Gaussian DPMM (where the cluster means have Gaussian distribution and, for each cluster, the observations within the cluster have Gaussian distribution). Some desirable properties of the MAP partition are proved: ‘almost disjointness’ of the convex hulls of clusters (they may have at most one point in common) and (with natural assumptions) the comparability of sizes of those clusters that intersect any fixed ball with the number of observations (as the latter goes to infinity). Consequently, the number of such clusters remains bounded. Furthermore, if the data arises from independent identically distributed sampling from a given distribution with bounded support then the asymptotic MAP partition of the observation space maximises a function which has a straightforward expression, which depends only on the within-group covariance parameter. As the operator norm of this covariance parameter decreases, the number of clusters in the MAP partition becomes arbitrarily large, which may lead to the overestimation of the number of mixture components. Full Article
au Gaussianization Machines for Non-Gaussian Function Estimation Models By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST T. Tony Cai. Source: Statistical Science, Volume 34, Number 4, 635--656.Abstract: A wide range of nonparametric function estimation models have been studied individually in the literature. Among them the homoscedastic nonparametric Gaussian regression is arguably the best known and understood. Inspired by the asymptotic equivalence theory, Brown, Cai and Zhou ( Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–2046) and Brown et al. ( Probab. Theory Related Fields 146 (2010) 401–433) developed a unified approach to turn a collection of non-Gaussian function estimation models into a standard Gaussian regression and any good Gaussian nonparametric regression method can then be used. These Gaussianization Machines have two key components, binning and transformation. When combined with BlockJS, a wavelet thresholding procedure for Gaussian regression, the procedures are computationally efficient with strong theoretical guarantees. Technical analysis given in Brown, Cai and Zhou ( Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–2046) and Brown et al. ( Probab. Theory Related Fields 146 (2010) 401–433) shows that the estimators attain the optimal rate of convergence adaptively over a large set of Besov spaces and across a collection of non-Gaussian function estimation models, including robust nonparametric regression, density estimation, and nonparametric regression in exponential families. The estimators are also spatially adaptive. The Gaussianization Machines significantly extend the flexibility and scope of the theories and methodologies originally developed for the conventional nonparametric Gaussian regression. This article aims to provide a concise account of the Gaussianization Machines developed in Brown, Cai and Zhou ( Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–2046), Brown et al. ( Probab. Theory Related Fields 146 (2010) 401–433). Full Article
au Assessing the Causal Effect of Binary Interventions from Observational Panel Data with Few Treated Units By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Pantelis Samartsidis, Shaun R. Seaman, Anne M. Presanis, Matthew Hickman, Daniela De Angelis. Source: Statistical Science, Volume 34, Number 3, 486--503.Abstract: Researchers are often challenged with assessing the impact of an intervention on an outcome of interest in situations where the intervention is nonrandomised, the intervention is only applied to one or few units, the intervention is binary, and outcome measurements are available at multiple time points. In this paper, we review existing methods for causal inference in these situations. We detail the assumptions underlying each method, emphasize connections between the different approaches and provide guidelines regarding their practical implementation. Several open problems are identified thus highlighting the need for future research. Full Article
au Comment: Variational Autoencoders as Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Yixin Wang, Andrew C. Miller, David M. Blei. Source: Statistical Science, Volume 34, Number 2, 229--233. Full Article
au Gaussian Integrals and Rice Series in Crossing Distributions—to Compute the Distribution of Maxima and Other Features of Gaussian Processes By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Georg Lindgren. Source: Statistical Science, Volume 34, Number 1, 100--128.Abstract: We describe and compare how methods based on the classical Rice’s formula for the expected number, and higher moments, of level crossings by a Gaussian process stand up to contemporary numerical methods to accurately deal with crossing related characteristics of the sample paths. We illustrate the relative merits in accuracy and computing time of the Rice moment methods and the exact numerical method, developed since the late 1990s, on three groups of distribution problems, the maximum over a finite interval and the waiting time to first crossing, the length of excursions over a level, and the joint period/amplitude of oscillations. We also treat the notoriously difficult problem of dependence between successive zero crossing distances. The exact solution has been known since at least 2000, but it has remained largely unnoticed outside the ocean science community. Extensive simulation studies illustrate the accuracy of the numerical methods. As a historical introduction an attempt is made to illustrate the relation between Rice’s original formulation and arguments and the exact numerical methods. Full Article
au Comment: Contributions of Model Features to BART Causal Inference Performance Using ACIC 2016 Competition Data By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Nicole Bohme Carnegie. Source: Statistical Science, Volume 34, Number 1, 90--93.Abstract: With a thorough exposition of the methods and results of the 2016 Atlantic Causal Inference Competition, Dorie et al. have set a new standard for reproducibility and comparability of evaluations of causal inference methods. In particular, the open-source R package aciccomp2016, which permits reproduction of all datasets used in the competition, will be an invaluable resource for evaluation of future methodological developments. Building upon results from Dorie et al., we examine whether a set of potential modifications to Bayesian Additive Regression Trees (BART)—multiple chains in model fitting, using the propensity score as a covariate, targeted maximum likelihood estimation (TMLE), and computing symmetric confidence intervals—have a stronger impact on bias, RMSE, and confidence interval coverage in combination than they do alone. We find that bias in the estimate of SATT is minimal, regardless of the BART formulation. For purposes of CI coverage, however, all proposed modifications are beneficial—alone and in combination—but use of TMLE is least beneficial for coverage and results in considerably wider confidence intervals. Full Article
au Comment: Causal Inference Competitions: Where Should We Aim? By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Ehud Karavani, Tal El-Hay, Yishai Shimoni, Chen Yanover. Source: Statistical Science, Volume 34, Number 1, 86--89.Abstract: Data competitions proved to be highly beneficial to the field of machine learning, and thus expected to provide similar advantages in the field of causal inference. As participants in the 2016 and 2017 Atlantic Causal Inference Conference (ACIC) data competitions and co-organizers of the 2018 competition, we discuss the strengths of simulation-based competitions and suggest potential extensions to address their limitations. These suggested augmentations aim at making the data generating processes more realistic and gradually increase in complexity, allowing thorough investigations of algorithms’ performance. We further outline a community-wide competition framework to evaluate an end-to-end causal inference pipeline, beginning with a causal question and a database, and ending with causal estimates. Full Article
au Comment on “Automated Versus Do-It-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition” By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Susan Gruber, Mark J. van der Laan. Source: Statistical Science, Volume 34, Number 1, 82--85.Abstract: Dorie and co-authors (DHSSC) are to be congratulated for initiating the ACIC Data Challenge. Their project engaged the community and accelerated research by providing a level playing field for comparing the performance of a priori specified algorithms. DHSSC identified themes concerning characteristics of the DGP, properties of the estimators, and inference. We discuss these themes in the context of targeted learning. Full Article
au Matching Methods for Causal Inference: A Review and a Look Forward By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Elizabeth A. StuartSource: Statist. Sci., Volume 25, Number 1, 1--21.Abstract: When estimating causal effects using observational data, it is desirable to replicate a randomized experiment as closely as possible by obtaining treated and control groups with similar covariate distributions. This goal can often be achieved by choosing well-matched samples of the original treated and control groups, thereby reducing bias due to the covariates. Since the 1970s, work on matching methods has examined how to best choose treated and control subjects for comparison. Matching methods are gaining popularity in fields such as economics, epidemiology, medicine and political science. However, until now the literature and related advice has been scattered across disciplines. Researchers who are interested in using matching methods—or developing methods related to matching—do not have a single place to turn to learn about past and current research. This paper provides a structure for thinking about matching methods and guidance on their use, coalescing the existing research (both old and new) and providing a summary of where the literature on matching methods is now and where it should be headed. Full Article
au The hidden holocaust. By search.wellcomelibrary.org Published On :: [London?], [199-?] Full Article
au Nike Launches Zoom Pulse Sneakers for Medical Workers Who Are On Their Feet All Day By www.health.com Published On :: Fri, 13 Dec 2019 13:45:17 -0500 The new style is available to shop today. Full Article
au Amazon Just Launched an Exclusive Clothing Collection Full of Warm and Comfy Basics Under $45 By www.health.com Published On :: Tue, 17 Dec 2019 12:23:05 -0500 The womenswear line is new, and there’s already a variety of items to shop. Full Article
au Social Laughter Triggers Endogenous Opioid Release in Humans By www.jneurosci.org Published On :: 2017-06-21 Sandra ManninenJun 21, 2017; 37:6125-6131BehavioralSystemsCognitive Full Article
au The Encoding of Sound Source Elevation in the Human Auditory Cortex By www.jneurosci.org Published On :: 2018-03-28 Régis TrapeauMar 28, 2018; 38:3252-3264BehavioralSystemsCognitive Full Article
au Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;1 By www.jneurosci.org Published On :: 1992-07-01 KM HarrisJul 1, 1992; 12:2685-2705Articles Full Article
au A fronte della diffusione delle criptovalute, le autorità devono essere pronte ad agire - Agustín Carstens By www.bis.org Published On :: 2018-02-06T09:00:00Z Italian translation of Press Release about BIS General Manager Agustín Carstens giving a speech on "Money in the digital age: what role for central banks?" (6 February 2018) Full Article
au Le Comité de Bâle finalise sa revue du traitement réglementaire des expositions aux actifs souverains sans modifier les règles existantes et publie un document de discussion By www.bis.org Published On :: 2017-12-07T16:00:00Z French translation of the press release about the Basel Committee publishing a discussion paper on "The regulatory treatment of sovereign exposures" (7 December 2017) Full Article
au Face aux cryptomonnaies, les autorités doivent être prêtes à agir - Agustín Carstens By www.bis.org Published On :: 2018-02-06T09:00:00Z French translation of Press Release about BIS General Manager Agustín Carstens giving a speech on "Money in the digital age: what role for central banks?" (6 February 2018) Full Article
au Implications des évolutions de la technologie financière pour les banques et les autorités de contrôle bancaire By www.bis.org Published On :: 2018-02-19T12:15:00Z French translation of the Basel Committee is publishing "Sound Practices: implications of fintech developments for banks and bank supervisors", February 2018. Full Article
au Il faut saisir l'occasion d'assurer une croissance durable, selon la BRI By www.bis.org Published On :: 2018-06-24T10:30:00Z French translation of BIS press release on the presentation of the Annual Economic Report 2018, 24 June 2018. Les responsables des politiques publiques peuvent prolonger la phase de croissance actuelle en engageant des réformes structurelles, en restaurant les marges de manoeuvre monétaires et budgétaires pour faire face aux menaces futures et en encourageant une mise en oeuvre rapide des réformes réglementaires, indique la Banque des Règlements Internationaux (BRI) dans son Rapport économique annuel. ... Full Article
au Le Communiqué de Bâle finalise les principes relatifs aux tests de résistance, passe en revue les moyens pour mettre fin aux comportements d'arbitrage réglementaire, s'accorde sur la liste annuelle des G-SIB et discute du ratio By www.bis.org Published On :: 2018-09-20T14:00:00Z French translation of press release - the Basel Committee on Banking Supervision is finalising stress-testing principles, reviews ways to stop regulatory arbitrage behaviour, agrees on annual G-SIB list, discusses leverage ratio, crypto-assets, market risk framework and implementation, 20 September 2018. Full Article
au Exigences de communication financière au titre du troisième pilier - dispositif révisé By www.bis.org Published On :: 2018-12-11T10:43:00Z French translation of "Pillar 3 disclosure requirements - updated framework", December 2018 Full Article