au

Generalized Optimal Matching Methods for Causal Inference

We develop an encompassing framework for matching, covariate balancing, and doubly-robust methods for causal inference from observational data called generalized optimal matching (GOM). The framework is given by generalizing a new functional-analytical formulation of optimal matching, giving rise to the class of GOM methods, for which we provide a single unified theory to analyze tractability and consistency. Many commonly used existing methods are included in GOM and, using their GOM interpretation, can be extended to optimally and automatically trade off balance for variance and outperform their standard counterparts. As a subclass, GOM gives rise to kernel optimal matching (KOM), which, as supported by new theoretical and empirical results, is notable for combining many of the positive properties of other methods in one. KOM, which is solved as a linearly-constrained convex-quadratic optimization problem, inherits both the interpretability and model-free consistency of matching but can also achieve the $sqrt{n}$-consistency of well-specified regression and the bias reduction and robustness of doubly robust methods. In settings of limited overlap, KOM enables a very transparent method for interval estimation for partial identification and robust coverage. We demonstrate this in examples with both synthetic and real data.




au

High-dimensional Gaussian graphical models on network-linked data

Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits.




au

Researching the Pacific: The Pacific Manuscripts Bureau

The State Library holds a superb collection of original documents, illustrations, photographs and books about the Pacifi




au

Town launches new Community Support Hotline




au

Bayesian modeling and prior sensitivity analysis for zero–one augmented beta regression models with an application to psychometric data

Danilo Covaes Nogarotto, Caio Lucidius Naberezny Azevedo, Jorge Luis Bazán.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 304--322.

Abstract:
The interest on the analysis of the zero–one augmented beta regression (ZOABR) model has been increasing over the last few years. In this work, we developed a Bayesian inference for the ZOABR model, providing some contributions, namely: we explored the use of Jeffreys-rule and independence Jeffreys prior for some of the parameters, performing a sensitivity study of prior choice, comparing the Bayesian estimates with the maximum likelihood ones and measuring the accuracy of the estimates under several scenarios of interest. The results indicate, in a general way, that: the Bayesian approach, under the Jeffreys-rule prior, was as accurate as the ML one. Also, different from other approaches, we use the predictive distribution of the response to implement Bayesian residuals. To further illustrate the advantages of our approach, we conduct an analysis of a real psychometric data set including a Bayesian residual analysis, where it is shown that misleading inference can be obtained when the data is transformed. That is, when the zeros and ones are transformed to suitable values and the usual beta regression model is considered, instead of the ZOABR model. Finally, future developments are discussed.




au

Symmetrical and asymmetrical mixture autoregressive processes

Mohsen Maleki, Arezo Hajrajabi, Reinaldo B. Arellano-Valle.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 273--290.

Abstract:
In this paper, we study the finite mixtures of autoregressive processes assuming that the distribution of innovations (errors) belongs to the class of scale mixture of skew-normal (SMSN) distributions. The SMSN distributions allow a simultaneous modeling of the existence of outliers, heavy tails and asymmetries in the distribution of innovations. Therefore, a statistical methodology based on the SMSN family allows us to use a robust modeling on some non-linear time series with great flexibility, to accommodate skewness, heavy tails and heterogeneity simultaneously. The existence of convenient hierarchical representations of the SMSN distributions facilitates also the implementation of an ECME-type of algorithm to perform the likelihood inference in the considered model. Simulation studies and the application to a real data set are finally presented to illustrate the usefulness of the proposed model.




au

Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal

Zhengwei Liu, Qi Li, Fukang Zhu.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 251--272.

Abstract:
To predict time series of counts with small values and remarkable fluctuations, an available model is the $r$ states random environment process based on the negative binomial thinning operator and the geometric marginal. However, we argue that the aforementioned model may suffer from the following two drawbacks. First, under the condition of no prior information, the overdispersed property of the geometric distribution may cause the predictions fluctuate greatly. Second, because of the constraints on the model parameters, some estimated parameters are close to zero in real-data examples, which may not objectively reveal the correlation relationship. For the first drawback, an $r$ states random environment process based on the binomial thinning operator and the Poisson marginal is introduced. For the second drawback, we propose a generalized $r$ states random environment integer-valued autoregressive model based on the binomial thinning operator to model fluctuations of data. Yule–Walker and conditional maximum likelihood estimates are considered and their performances are assessed via simulation studies. Two real-data sets are conducted to illustrate the better performances of the proposed models compared with some existing models.




au

The limiting distribution of the Gibbs sampler for the intrinsic conditional autoregressive model

Marco A. R. Ferreira.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 734--744.

Abstract:
We study the limiting behavior of the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model with centering on the fly. The intrinsic conditional autoregressive model is widely used as a prior for random effects in hierarchical models for spatial modeling. This model is defined by full conditional distributions that imply an improper joint “density” with a multivariate Gaussian kernel and a singular precision matrix. To guarantee propriety of the posterior distribution, usually at the end of each iteration of the Gibbs sampler the random effects are centered to sum to zero in what is widely known as centering on the fly. While this works well in practice, this informal computational way to recenter the random effects obscures their implied prior distribution and prevents the development of formal Bayesian procedures. Here we show that the implied prior distribution, that is, the limiting distribution of the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model with centering on the fly is a singular Gaussian distribution with a covariance matrix that is the Moore–Penrose inverse of the precision matrix. This result has important implications for the development of formal Bayesian procedures such as reference priors and Bayes-factor-based model selection for spatial models.




au

A new log-linear bimodal Birnbaum–Saunders regression model with application to survival data

Francisco Cribari-Neto, Rodney V. Fonseca.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 329--355.

Abstract:
The log-linear Birnbaum–Saunders model has been widely used in empirical applications. We introduce an extension of this model based on a recently proposed version of the Birnbaum–Saunders distribution which is more flexible than the standard Birnbaum–Saunders law since its density may assume both unimodal and bimodal shapes. We show how to perform point estimation, interval estimation and hypothesis testing inferences on the parameters that index the regression model we propose. We also present a number of diagnostic tools, such as residual analysis, local influence, generalized leverage, generalized Cook’s distance and model misspecification tests. We investigate the usefulness of model selection criteria and the accuracy of prediction intervals for the proposed model. Results of Monte Carlo simulations are presented. Finally, we also present and discuss an empirical application.




au

Failure rate of Birnbaum–Saunders distributions: Shape, change-point, estimation and robustness

Emilia Athayde, Assis Azevedo, Michelli Barros, Víctor Leiva.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 301--328.

Abstract:
The Birnbaum–Saunders (BS) distribution has been largely studied and applied. A random variable with BS distribution is a transformation of another random variable with standard normal distribution. Generalized BS distributions are obtained when the normally distributed random variable is replaced by another symmetrically distributed random variable. This allows us to obtain a wide class of positively skewed models with lighter and heavier tails than the BS model. Its failure rate admits several shapes, including the unimodal case, with its change-point being able to be used for different purposes. For example, to establish the reduction in a dose, and then in the cost of the medical treatment. We analyze the failure rates of generalized BS distributions obtained by the logistic, normal and Student-t distributions, considering their shape and change-point, estimating them, evaluating their robustness, assessing their performance by simulations, and applying the results to real data from different areas.




au

The equivalence of dynamic and static asset allocations under the uncertainty caused by Poisson processes

Yong-Chao Zhang, Na Zhang.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 1, 184--191.

Abstract:
We investigate the equivalence of dynamic and static asset allocations in the case where the price process of a risky asset is driven by a Poisson process. Under some mild conditions, we obtain a necessary and sufficient condition for the equivalence of dynamic and static asset allocations. In addition, we provide a simple sufficient condition for the equivalence.




au

Heavy metalloid music : the story of Simply Saucer

Locke, Jesse, 1983- author.
9781771613682 (Paper)




au

Reclaiming indigenous governance : reflections and insights from Australia, Canada, New Zealand, and the United States

9780816539970 (paperback)




au

Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis. (arXiv:2005.02535v1 [econ.EM] CROSS LISTED)

Arctic sea ice extent (SIE) in September 2019 ranked second-to-lowest in history and is trending downward. The understanding of how internal variability amplifies the effects of external $ ext{CO}_2$ forcing is still limited. We propose the VARCTIC, which is a Vector Autoregression (VAR) designed to capture and extrapolate Arctic feedback loops. VARs are dynamic simultaneous systems of equations, routinely estimated to predict and understand the interactions of multiple macroeconomic time series. Hence, the VARCTIC is a parsimonious compromise between fullblown climate models and purely statistical approaches that usually offer little explanation of the underlying mechanism. Our "business as usual" completely unconditional forecast has SIE hitting 0 in September by the 2060s. Impulse response functions reveal that anthropogenic $ ext{CO}_2$ emission shocks have a permanent effect on SIE - a property shared by no other shock. Further, we find Albedo- and Thickness-based feedbacks to be the main amplification channels through which $ ext{CO}_2$ anomalies impact SIE in the short/medium run. Conditional forecast analyses reveal that the future path of SIE crucially depends on the evolution of $ ext{CO}_2$ emissions, with outcomes ranging from recovering SIE to it reaching 0 in the 2050s. Finally, Albedo and Thickness feedbacks are shown to play an important role in accelerating the speed at which predicted SIE is heading towards 0.




au

Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection. (arXiv:2005.01889v2 [cs.LG] UPDATED)

Building a scalable machine learning system for unsupervised anomaly detection via representation learning is highly desirable. One of the prevalent methods is using a reconstruction error from variational autoencoder (VAE) via maximizing the evidence lower bound. We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error, and finally arrive at a simpler and more effective model for anomaly detection. In addition, to enhance the effectiveness of detecting anomalies, we incorporate a practical model uncertainty measure into the metric. We show empirically the competitive performance of our approach on benchmark datasets.




au

How many modes can a constrained Gaussian mixture have?. (arXiv:2005.01580v2 [math.ST] UPDATED)

We show, by an explicit construction, that a mixture of univariate Gaussians with variance 1 and means in $[-A,A]$ can have $Omega(A^2)$ modes. This disproves a recent conjecture of Dytso, Yagli, Poor and Shamai [IEEE Trans. Inform. Theory, Apr. 2020], who showed that such a mixture can have at most $O(A^2)$ modes and surmised that the upper bound could be improved to $O(A)$. Our result holds even if an additional variance constraint is imposed on the mixing distribution. Extending the result to higher dimensions, we exhibit a mixture of Gaussians in $mathbb{R}^d$, with identity covariances and means inside $[-A,A]^d$, that has $Omega(A^{2d})$ modes.




au

Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization. (arXiv:2005.00061v2 [stat.ML] UPDATED)

Data-space inversion (DSI) and related procedures represent a family of methods applicable for data assimilation in subsurface flow settings. These methods differ from model-based techniques in that they provide only posterior predictions for quantities (time series) of interest, not posterior models with calibrated parameters. DSI methods require a large number of flow simulations to first be performed on prior geological realizations. Given observed data, posterior predictions can then be generated directly. DSI operates in a Bayesian setting and provides posterior samples of the data vector. In this work we develop and evaluate a new approach for data parameterization in DSI. Parameterization reduces the number of variables to determine in the inversion, and it maintains the physical character of the data variables. The new parameterization uses a recurrent autoencoder (RAE) for dimension reduction, and a long-short-term memory (LSTM) network to represent flow-rate time series. The RAE-based parameterization is combined with an ensemble smoother with multiple data assimilation (ESMDA) for posterior generation. Results are presented for two- and three-phase flow in a 2D channelized system and a 3D multi-Gaussian model. The RAE procedure, along with existing DSI treatments, are assessed through comparison to reference rejection sampling (RS) results. The new DSI methodology is shown to consistently outperform existing approaches, in terms of statistical agreement with RS results. The method is also shown to accurately capture derived quantities, which are computed from variables considered directly in DSI. This requires correlation and covariance between variables to be properly captured, and accuracy in these relationships is demonstrated. The RAE-based parameterization developed here is clearly useful in DSI, and it may also find application in other subsurface flow problems.




au

Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. (arXiv:1909.06155v2 [math.PR] UPDATED)

We study the problem of parameter estimation for a non-ergodic Gaussian Vasicek-type model defined as $dX_t=(mu+ heta X_t)dt+dG_t, tgeq0$ with unknown parameters $ heta>0$ and $muinR$, where $G$ is a Gaussian process. We provide least square-type estimators $widetilde{ heta}_T$ and $widetilde{mu}_T$ respectively for the drift parameters $ heta$ and $mu$ based on continuous-time observations ${X_t, tin[0,T]}$ as $T ightarrowinfty$.

Our aim is to derive some sufficient conditions on the driving Gaussian process $G$ in order to ensure that $widetilde{ heta}_T$ and $widetilde{mu}_T$ are strongly consistent, the limit distribution of $widetilde{ heta}_T$ is a Cauchy-type distribution and $widetilde{mu}_T$ is asymptotically normal. We apply our result to fractional Vasicek, subfractional Vasicek and bifractional Vasicek processes. In addition, this work extends the result of cite{EEO} studied in the case where $mu=0$.




au

Personalized food intervention and therapy for autism spectrum disorder management

9783030304027 (electronic bk.)




au

Diabetes & obesity in women : adolescence, pregnancy, and menopause

Diabetes in women.
9781496390547 (paperback)




au

InBios receives Emergency Use Authorization for its Smart Detect...

InBios International, Inc. announces the U.S. Food and Drug Administration (FDA) issued an emergency use authorization (EUA) for its diagnostic test that can be used immediately by CLIA...

(PRWeb April 08, 2020)

Read the full story at https://www.prweb.com/releases/inbios_receives_emergency_use_authorization_for_its_smart_detect_sars_cov_2_rrt_pcr_kit_for_detection_of_the_virus_causing_covid_19/prweb17036897.htm




au

New Partnerships Emerge for COVID-19 Relief: Dade County Farm Bureau...

Harvested produce crops feed Florida Department of Corrections’ (FDC) more than 87,000 inmates; action saves food costs while reducing COVID-19 related supply chain impacts.

(PRWeb April 20, 2020)

Read the full story at https://www.prweb.com/releases/new_partnerships_emerge_for_covid_19_relief_dade_county_farm_bureau_teams_with_state_leaders_to_launch_farm_to_inmate_program/prweb17052045.htm




au

New $G$-formula for the sequential causal effect and blip effect of treatment in sequential causal inference

Xiaoqin Wang, Li Yin.

Source: The Annals of Statistics, Volume 48, Number 1, 138--160.

Abstract:
In sequential causal inference, two types of causal effects are of practical interest, namely, the causal effect of the treatment regime (called the sequential causal effect) and the blip effect of treatment on the potential outcome after the last treatment. The well-known $G$-formula expresses these causal effects in terms of the standard parameters. In this article, we obtain a new $G$-formula that expresses these causal effects in terms of the point observable effects of treatments similar to treatment in the framework of single-point causal inference. Based on the new $G$-formula, we estimate these causal effects by maximum likelihood via point observable effects with methods extended from single-point causal inference. We are able to increase precision of the estimation without introducing biases by an unsaturated model imposing constraints on the point observable effects. We are also able to reduce the number of point observable effects in the estimation by treatment assignment conditions.




au

Tracy–Widom limit for Kendall’s tau

Zhigang Bao.

Source: The Annals of Statistics, Volume 47, Number 6, 3504--3532.

Abstract:
In this paper, we study a high-dimensional random matrix model from nonparametric statistics called the Kendall rank correlation matrix, which is a natural multivariate extension of the Kendall rank correlation coefficient. We establish the Tracy–Widom law for its largest eigenvalue. It is the first Tracy–Widom law for a nonparametric random matrix model, and also the first Tracy–Widom law for a high-dimensional U-statistic.




au

Joint convergence of sample autocovariance matrices when $p/n o 0$ with application

Monika Bhattacharjee, Arup Bose.

Source: The Annals of Statistics, Volume 47, Number 6, 3470--3503.

Abstract:
Consider a high-dimensional linear time series model where the dimension $p$ and the sample size $n$ grow in such a way that $p/n o 0$. Let $hat{Gamma }_{u}$ be the $u$th order sample autocovariance matrix. We first show that the LSD of any symmetric polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$ exists under independence and moment assumptions on the driving sequence together with weak assumptions on the coefficient matrices. This LSD result, with some additional effort, implies the asymptotic normality of the trace of any polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$. We also study similar results for several independent MA processes. We show applications of the above results to statistical inference problems such as in estimation of the unknown order of a high-dimensional MA process and in graphical and significance tests for hypotheses on coefficient matrices of one or several such independent processes.




au

Statistical inference for autoregressive models under heteroscedasticity of unknown form

Ke Zhu.

Source: The Annals of Statistics, Volume 47, Number 6, 3185--3215.

Abstract:
This paper provides an entire inference procedure for the autoregressive model under (conditional) heteroscedasticity of unknown form with a finite variance. We first establish the asymptotic normality of the weighted least absolute deviations estimator (LADE) for the model. Second, we develop the random weighting (RW) method to estimate its asymptotic covariance matrix, leading to the implementation of the Wald test. Third, we construct a portmanteau test for model checking, and use the RW method to obtain its critical values. As a special weighted LADE, the feasible adaptive LADE (ALADE) is proposed and proved to have the same efficiency as its infeasible counterpart. The importance of our entire methodology based on the feasible ALADE is illustrated by simulation results and the real data analysis on three U.S. economic data sets.




au

Estimating causal effects in studies of human brain function: New models, methods and estimands

Michael E. Sobel, Martin A. Lindquist.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 452--472.

Abstract:
Neuroscientists often use functional magnetic resonance imaging (fMRI) to infer effects of treatments on neural activity in brain regions. In a typical fMRI experiment, each subject is observed at several hundred time points. At each point, the blood oxygenation level dependent (BOLD) response is measured at 100,000 or more locations (voxels). Typically, these responses are modeled treating each voxel separately, and no rationale for interpreting associations as effects is given. Building on Sobel and Lindquist ( J. Amer. Statist. Assoc. 109 (2014) 967–976), who used potential outcomes to define unit and average effects at each voxel and time point, we define and estimate both “point” and “cumulated” effects for brain regions. Second, we construct a multisubject, multivoxel, multirun whole brain causal model with explicit parameters for regions. We justify estimation using BOLD responses averaged over voxels within regions, making feasible estimation for all regions simultaneously, thereby also facilitating inferences about association between effects in different regions. We apply the model to a study of pain, finding effects in standard pain regions. We also observe more cerebellar activity than observed in previous studies using prevailing methods.




au

Bayesian factor models for probabilistic cause of death assessment with verbal autopsies

Tsuyoshi Kunihama, Zehang Richard Li, Samuel J. Clark, Tyler H. McCormick.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 241--256.

Abstract:
The distribution of deaths by cause provides crucial information for public health planning, response and evaluation. About 60% of deaths globally are not registered or given a cause, limiting our ability to understand disease epidemiology. Verbal autopsy (VA) surveys are increasingly used in such settings to collect information on the signs, symptoms and medical history of people who have recently died. This article develops a novel Bayesian method for estimation of population distributions of deaths by cause using verbal autopsy data. The proposed approach is based on a multivariate probit model where associations among items in questionnaires are flexibly induced by latent factors. Using the Population Health Metrics Research Consortium labeled data that include both VA and medically certified causes of death, we assess performance of the proposed method. Further, we estimate important questionnaire items that are highly associated with causes of death. This framework provides insights that will simplify future data




au

New formulation of the logistic-Gaussian process to analyze trajectory tracking data

Gianluca Mastrantonio, Clara Grazian, Sara Mancinelli, Enrico Bibbona.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2483--2508.

Abstract:
Improved communication systems, shrinking battery sizes and the price drop of tracking devices have led to an increasing availability of trajectory tracking data. These data are often analyzed to understand animal behavior. In this work, we propose a new model for interpreting the animal movent as a mixture of characteristic patterns, that we interpret as different behaviors. The probability that the animal is behaving according to a specific pattern, at each time instant, is nonparametrically estimated using the Logistic-Gaussian process. Owing to a new formalization and the way we specify the coregionalization matrix of the associated multivariate Gaussian process, our model is invariant with respect to the choice of the reference element and of the ordering of the probability vector components. We fit the model under a Bayesian framework, and show that the Markov chain Monte Carlo algorithm we propose is straightforward to implement. We perform a simulation study with the aim of showing the ability of the estimation procedure to retrieve the model parameters. We also test the performance of the information criterion we used to select the number of behaviors. The model is then applied to a real dataset where a wolf has been observed before and after procreation. The results are easy to interpret, and clear differences emerge in the two phases.




au

Empirical Bayes analysis of RNA sequencing experiments with auxiliary information

Kun Liang.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2452--2482.

Abstract:
Finding differentially expressed genes is a common task in high-throughput transcriptome studies. While traditional statistical methods rank the genes by their test statistics alone, we analyze an RNA sequencing dataset using the auxiliary information of gene length and the test statistics from a related microarray study. Given the auxiliary information, we propose a novel nonparametric empirical Bayes procedure to estimate the posterior probability of differential expression for each gene. We demonstrate the advantage of our procedure in extensive simulation studies and a psoriasis RNA sequencing study. The companion R package calm is available at Bioconductor.




au

Propensity score weighting for causal inference with multiple treatments

Fan Li, Fan Li.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2389--2415.

Abstract:
Causal or unconfounded descriptive comparisons between multiple groups are common in observational studies. Motivated from a racial disparity study in health services research, we propose a unified propensity score weighting framework, the balancing weights, for estimating causal effects with multiple treatments. These weights incorporate the generalized propensity scores to balance the weighted covariate distribution of each treatment group, all weighted toward a common prespecified target population. The class of balancing weights include several existing approaches such as the inverse probability weights and trimming weights as special cases. Within this framework, we propose a set of target estimands based on linear contrasts. We further develop the generalized overlap weights, constructed as the product of the inverse probability weights and the harmonic mean of the generalized propensity scores. The generalized overlap weighting scheme corresponds to the target population with the most overlap in covariates across the multiple treatments. These weights are bounded and thus bypass the problem of extreme propensities. We show that the generalized overlap weights minimize the total asymptotic variance of the moment weighting estimators for the pairwise contrasts within the class of balancing weights. We consider two balance check criteria and propose a new sandwich variance estimator for estimating the causal effects with generalized overlap weights. We apply these methods to study the racial disparities in medical expenditure between several racial groups using the 2009 Medical Expenditure Panel Survey (MEPS) data. Simulations were carried out to compare with existing methods.




au

Predicting paleoclimate from compositional data using multivariate Gaussian process inverse prediction

John R. Tipton, Mevin B. Hooten, Connor Nolan, Robert K. Booth, Jason McLachlan.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2363--2388.

Abstract:
Multivariate compositional count data arise in many applications including ecology, microbiology, genetics and paleoclimate. A frequent question in the analysis of multivariate compositional count data is what underlying values of a covariate(s) give rise to the observed composition. Learning the relationship between covariates and the compositional count allows for inverse prediction of unobserved covariates given compositional count observations. Gaussian processes provide a flexible framework for modeling functional responses with respect to a covariate without assuming a functional form. Many scientific disciplines use Gaussian process approximations to improve prediction and make inference on latent processes and parameters. When prediction is desired on unobserved covariates given realizations of the response variable, this is called inverse prediction. Because inverse prediction is often mathematically and computationally challenging, predicting unobserved covariates often requires fitting models that are different from the hypothesized generative model. We present a novel computational framework that allows for efficient inverse prediction using a Gaussian process approximation to generative models. Our framework enables scientific learning about how the latent processes co-vary with respect to covariates while simultaneously providing predictions of missing covariates. The proposed framework is capable of efficiently exploring the high dimensional, multi-modal latent spaces that arise in the inverse problem. To demonstrate flexibility, we apply our method in a generalized linear model framework to predict latent climate states given multivariate count data. Based on cross-validation, our model has predictive skill competitive with current methods while simultaneously providing formal, statistical inference on the underlying community dynamics of the biological system previously not available.




au

Objective Bayes model selection of Gaussian interventional essential graphs for the identification of signaling pathways

Federico Castelletti, Guido Consonni.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2289--2311.

Abstract:
A signalling pathway is a sequence of chemical reactions initiated by a stimulus which in turn affects a receptor, and then through some intermediate steps cascades down to the final cell response. Based on the technique of flow cytometry, samples of cell-by-cell measurements are collected under each experimental condition, resulting in a collection of interventional data (assuming no latent variables are involved). Usually several external interventions are applied at different points of the pathway, the ultimate aim being the structural recovery of the underlying signalling network which we model as a causal Directed Acyclic Graph (DAG) using intervention calculus. The advantage of using interventional data, rather than purely observational one, is that identifiability of the true data generating DAG is enhanced. More technically a Markov equivalence class of DAGs, whose members are statistically indistinguishable based on observational data alone, can be further decomposed, using additional interventional data, into smaller distinct Interventional Markov equivalence classes. We present a Bayesian methodology for structural learning of Interventional Markov equivalence classes based on observational and interventional samples of multivariate Gaussian observations. Our approach is objective, meaning that it is based on default parameter priors requiring no personal elicitation; some flexibility is however allowed through a tuning parameter which regulates sparsity in the prior on model space. Based on an analytical expression for the marginal likelihood of a given Interventional Essential Graph, and a suitable MCMC scheme, our analysis produces an approximate posterior distribution on the space of Interventional Markov equivalence classes, which can be used to provide uncertainty quantification for features of substantive scientific interest, such as the posterior probability of inclusion of selected edges, or paths.




au

Bayesian methods for multiple mediators: Relating principal stratification and causal mediation in the analysis of power plant emission controls

Chanmin Kim, Michael J. Daniels, Joseph W. Hogan, Christine Choirat, Corwin M. Zigler.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1927--1956.

Abstract:
Emission control technologies installed on power plants are a key feature of many air pollution regulations in the US. While such regulations are predicated on the presumed relationships between emissions, ambient air pollution and human health, many of these relationships have never been empirically verified. The goal of this paper is to develop new statistical methods to quantify these relationships. We frame this problem as one of mediation analysis to evaluate the extent to which the effect of a particular control technology on ambient pollution is mediated through causal effects on power plant emissions. Since power plants emit various compounds that contribute to ambient pollution, we develop new methods for multiple intermediate variables that are measured contemporaneously, may interact with one another, and may exhibit joint mediating effects. Specifically, we propose new methods leveraging two related frameworks for causal inference in the presence of mediating variables: principal stratification and causal mediation analysis. We define principal effects based on multiple mediators, and also introduce a new decomposition of the total effect of an intervention on ambient pollution into the natural direct effect and natural indirect effects for all combinations of mediators. Both approaches are anchored to the same observed-data models, which we specify with Bayesian nonparametric techniques. We provide assumptions for estimating principal causal effects, then augment these with an additional assumption required for causal mediation analysis. The two analyses, interpreted in tandem, provide the first empirical investigation of the presumed causal pathways that motivate important air quality regulatory policies.




au

Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics

Ying Chen, J. S. Marron, Jiejie Zhang.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1590--1616.

Abstract:
Electricity prices are high dimensional, serially dependent and have seasonal variations. We propose a Warping Functional AutoRegressive (WFAR) model that simultaneously accounts for the cross time-dependence and seasonal variations of the large dimensional data. In particular, electricity price curves are obtained by smoothing over the $24$ discrete hourly prices on each day. In the functional domain, seasonal phase variations are separated from level amplitude changes in a warping process with the Fisher–Rao distance metric, and the aligned (season-adjusted) electricity price curves are modeled in the functional autoregression framework. In a real application, the WFAR model provides superior out-of-sample forecast accuracy in both a normal functioning market, Nord Pool, and an extreme situation, the California market. The forecast performance as well as the relative accuracy improvement are stable for different markets and different time periods.




au

On the eigenproblem for Gaussian bridges

Pavel Chigansky, Marina Kleptsyna, Dmytro Marushkevych.

Source: Bernoulli, Volume 26, Number 3, 1706--1726.

Abstract:
Spectral decomposition of the covariance operator is one of the main building blocks in the theory and applications of Gaussian processes. Unfortunately, it is notoriously hard to derive in a closed form. In this paper, we consider the eigenproblem for Gaussian bridges. Given a base process, its bridge is obtained by conditioning the trajectories to start and terminate at the given points. What can be said about the spectrum of a bridge, given the spectrum of its base process? We show how this question can be answered asymptotically for a family of processes, including the fractional Brownian motion.




au

On the probability distribution of the local times of diagonally operator-self-similar Gaussian fields with stationary increments

Kamran Kalbasi, Thomas Mountford.

Source: Bernoulli, Volume 26, Number 2, 1504--1534.

Abstract:
In this paper, we study the local times of vector-valued Gaussian fields that are ‘diagonally operator-self-similar’ and whose increments are stationary. Denoting the local time of such a Gaussian field around the spatial origin and over the temporal unit hypercube by $Z$, we show that there exists $lambdain(0,1)$ such that under some quite weak conditions, $lim_{n ightarrow+infty}frac{sqrt[n]{mathbb{E}(Z^{n})}}{n^{lambda}}$ and $lim_{x ightarrow+infty}frac{-logmathbb{P}(Z>x)}{x^{frac{1}{lambda}}}$ both exist and are strictly positive (possibly $+infty$). Moreover, we show that if the underlying Gaussian field is ‘strongly locally nondeterministic’, the above limits will be finite as well. These results are then applied to establish similar statements for the intersection local times of diagonally operator-self-similar Gaussian fields with stationary increments.




au

The moduli of non-differentiability for Gaussian random fields with stationary increments

Wensheng Wang, Zhonggen Su, Yimin Xiao.

Source: Bernoulli, Volume 26, Number 2, 1410--1430.

Abstract:
We establish the exact moduli of non-differentiability of Gaussian random fields with stationary increments. As an application of the result, we prove that the uniform Hölder condition for the maximum local times of Gaussian random fields with stationary increments obtained in Xiao (1997) is optimal. These results are applicable to fractional Riesz–Bessel processes and stationary Gaussian random fields in the Matérn and Cauchy classes.




au

Rates of convergence in de Finetti’s representation theorem, and Hausdorff moment problem

Emanuele Dolera, Stefano Favaro.

Source: Bernoulli, Volume 26, Number 2, 1294--1322.

Abstract:
Given a sequence ${X_{n}}_{ngeq 1}$ of exchangeable Bernoulli random variables, the celebrated de Finetti representation theorem states that $frac{1}{n}sum_{i=1}^{n}X_{i}stackrel{a.s.}{longrightarrow }Y$ for a suitable random variable $Y:Omega ightarrow [0,1]$ satisfying $mathsf{P}[X_{1}=x_{1},dots ,X_{n}=x_{n}|Y]=Y^{sum_{i=1}^{n}x_{i}}(1-Y)^{n-sum_{i=1}^{n}x_{i}}$. In this paper, we study the rate of convergence in law of $frac{1}{n}sum_{i=1}^{n}X_{i}$ to $Y$ under the Kolmogorov distance. After showing that a rate of the type of $1/n^{alpha }$ can be obtained for any index $alpha in (0,1]$, we find a sufficient condition on the distribution of $Y$ for the achievement of the optimal rate of convergence, that is $1/n$. Besides extending and strengthening recent results under the weaker Wasserstein distance, our main result weakens the regularity hypotheses on $Y$ in the context of the Hausdorff moment problem.




au

The maximal degree in a Poisson–Delaunay graph

Gilles Bonnet, Nicolas Chenavier.

Source: Bernoulli, Volume 26, Number 2, 948--979.

Abstract:
We investigate the maximal degree in a Poisson–Delaunay graph in $mathbf{R}^{d}$, $dgeq 2$, over all nodes in the window $mathbf{W}_{ ho }:= ho^{1/d}[0,1]^{d}$ as $ ho $ goes to infinity. The exact order of this maximum is provided in any dimension. In the particular setting $d=2$, we show that this quantity is concentrated on two consecutive integers with high probability. A weaker version of this result is discussed when $dgeq 3$.




au

Operator-scaling Gaussian random fields via aggregation

Yi Shen, Yizao Wang.

Source: Bernoulli, Volume 26, Number 1, 500--530.

Abstract:
We propose an aggregated random-field model, and investigate the scaling limits of the aggregated partial-sum random fields. In this model, each copy in the aggregation is a $pm 1$-valued random field built from two correlated one-dimensional random walks, the law of each determined by a random persistence parameter. A flexible joint distribution of the two parameters is introduced, and given the parameters the two correlated random walks are conditionally independent. For the aggregated random field, when the persistence parameters are independent, the scaling limit is a fractional Brownian sheet. When the persistence parameters are tail-dependent, characterized in the framework of multivariate regular variation, the scaling limit is more delicate, and in particular depends on the growth rates of the underlying rectangular region along two directions: at different rates different operator-scaling Gaussian random fields appear as the region area tends to infinity. In particular, at the so-called critical speed, a large family of Gaussian random fields with long-range dependence arise in the limit. We also identify four different regimes at non-critical speed where fractional Brownian sheets arise in the limit.




au

Multivariate count autoregression

Konstantinos Fokianos, Bård Støve, Dag Tjøstheim, Paul Doukhan.

Source: Bernoulli, Volume 26, Number 1, 471--499.

Abstract:
We are studying linear and log-linear models for multivariate count time series data with Poisson marginals. For studying the properties of such processes we develop a novel conceptual framework which is based on copulas. Earlier contributions impose the copula on the joint distribution of the vector of counts by employing a continuous extension methodology. Instead we introduce a copula function on a vector of associated continuous random variables. This construction avoids conceptual difficulties related to the joint distribution of counts yet it keeps the properties of the Poisson process marginally. Furthermore, this construction can be employed for modeling multivariate count time series with other marginal count distributions. We employ Markov chain theory and the notion of weak dependence to study ergodicity and stationarity of the models we consider. Suitable estimating equations are suggested for estimating unknown model parameters. The large sample properties of the resulting estimators are studied in detail. The work concludes with some simulations and a real data example.




au

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




au

From Westphalia to South Australia : the story of Franz Heinrich Ernst Siekmann / by Peter Brinkworth.

Siekmann, Francis Heinrich Ernst, 1830-1917.




au

From the coalfields of Somerset to the Adelaide Hills and beyond : the story of the Hewish Family : three centuries of one family's journey through time / Maureen Brown.

Hewish Henry -- Family.




au

The Yangya Hicks : tales from the Hicks family of Yangya near Gladstone, South Australia, written from the 12th of May 1998 / by Joyce Coralie Hale (nee Hicks) (28.12.1923-17.12.2003).

Hicks (Family)




au

Gordon of Huntly : heraldic heritage : cadets to South Australia / Robin Gregory Gordon.

South Australia -- Genealogy.




au

Discover Protestant nonconformity in England and Wales / Paul Blake.

Dissenters, Religious -- Great Britain.




au

South Australian history sources / by Andrew Guy Peake.

South Australia -- History -- Sources.




au

Traegers in Australia. 3, Ernst's story : the story of Ernst Wilhelm Traeger and Johanne Dorothea nee Lissmann, and their descendants, 1856-2018.

Traeger, Ernst Wilhelm, 1805-1874.