mon

G-Dragon Writes Rrack for Babymonster's Upcoming Album


G-Dragon has helped write a song for Babymonster’s upcoming full-length album which will drop next month. The rookie girl group’s first full-length album “Drip” will drop...

[more...]




mon

H1-Key to Launch First Fan Concert Next Month


H1-Key is set to embark on its first fan concert tour next month. The group will kick off the tour called “Find My KEY” in Hong Kong on Nov. 16 and will travel to other regions...

[more...]




mon

S. Korea Posts Current Account Surplus in September for Fifth Straight Month

[Economy] :
The nation posted a current account surplus for the fifth consecutive month in September, on the back of robust exports of semiconductors and other IT products.  According to tentative data from the Bank of Korea on Thursday, the current account surplus came to eleven-point-12 billion dollars in ...

[more...]




mon

Foreign Investors Sell Stocks for Third Consecutive Month

[Economy] :
Foreign investors were net sellers in the South Korean stock market for the third month in October. According to data from the Bank of Korea(BOK) on Friday, foreigners sold a net four-point-17 billion U.S. dollars worth of stocks last month. But the latest figure is lower than September’s total of ...

[more...]




mon

KOSPI Down 1.15% on Monday

[Economy] :
The benchmark Korea Composite Stock Price Index dipped 29-point-49 points, or one-point-15 percent, on Monday to close at two-thousand-531-point-66. The tech-heavy KOSDAQ slid 14-point-54 points, or one-point-96 percent, to close at 728-point-84.

[more...]




mon

KOSPI Slips below 2,500 Threshold for First Time since Black Monday in August

[Economy] :
South Korea’s benchmark Korea Composite Stock Price Index(KOSPI) slipped below the two-thousand-500 threshold on Tuesday for the first time since August’s “Black Monday.” The KOSPI dipped 49-point-09 points, or one-point-94 percent, on Tuesday to close at two-thousand-482-point-57. In the ...

[more...]




mon

83,000 Jobs Added in October, Slowest Growth in 4 Months

[Economy] :
The nation added 83-thousand jobs in October, with job growth falling below 100-thousand for the first time in four months.  According to Statistics Korea on Wednesday, the number of employed people stood at 28-point-eight million last month, up 83-thousand from the same month last year. Job growth fell ...

[more...]




mon

Import Prices Jump 2.2% in October, Largest Gain in 6 Months

[Economy] :
The country’s import prices jumped more than two percent in October due to the won’s depreciation against the U.S. dollar and a rise in global oil prices.  According to data from the Bank of Korea on Wednesday, the country’s import price index reached 137-point-61 in October, up two-point-two ...

[more...]




mon

KOSDAQ Falls below 700 for First Time in 2 Months

[Economy] :
South Korea’s tech-laden KOSDAQ fell below the 700 mark during trading for the first time in two months.  As of 10:12 a.m. Wednesday, the secondary KOSDAQ market stood at 697-point-94, down 12-point-58 points or one-point-77 percent from the previous day.  It marks the first time the KOSDAQ has ...

[more...]





mon

The Common Ground project - British Geological Survey

The Common Ground project  British Geological Survey





mon

Tracking anharmonic oscillations in the structure of β 1,3-diacetylpyrene

A recently discovered β polymorph of 1,3-diacetylpyrene has turned out to be a prominent negative thermal expansion material. Its unique properties can be linked to anharmonic oscillations in the crystal structure. The onset and development of anharmonic behavior have been successfully tracked over a wide temperature range by single-crystal X-ray diffraction experiments. Sufficient diffraction data quality combined with modern quantum crystallography tools allowed a thorough analysis of the elusive anharmonic effects for a moderate-scattering purely organic compound.




mon

Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate

Incommensurate phase of potassium guaninate monohydrate is the first example of a modulation in purine derivatives and of a high-pressure incommensurate crystal structure to be solved for an organic compound.




mon

Atypical phase transition, twinning and ferroelastic domain structure in bis(ethylenediammonium) tetrabromozincate(II) bromide, [NH3(CH2)2NH3]2[ZnBr4]Br2

A unique phase transition, twinning and ferroelastic domain structure in [NH3(CH2)2NH3]2[ZnBr4]Br2 is found. The new additional domain structure is observed at the phase transition on heating, which is preserved after cooling to room temperature.




mon

Structures of hexa­methyl-[1,1'-bi­phenyl]-4,4'-di­ammonium salts

The structures of nine hexa­methyl-[1,1'-bi­phenyl]-4,4'-di­ammonium (HMB) salts are described




mon

Crystal structure predictions for molecules with soft degrees of freedom using intermonomer force fields derived from first principles




mon

Atypical phase transition, twinning and ferroelastic domain structure in bis(ethylenediammonium) tetrabromozincate(II) bromide, [NH3(CH2)2NH3]2[ZnBr4]Br2

Single-crystal growth, differential thermal analysis (DTA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray structural studies and polarized microscopy observations of bis(ethylenediammonium) tetrabromozincate(II) bromide [NH3(CH2)2NH3]2[ZnBr4]Br2 are presented. A reversible phase transition is described. At room temperature, the complex crystallizes in the monoclinic system. In some cases, the single crystals are twinned into two or more large domains of ferroelastic type with domain walls in the (100) crystallographic plane. DTA and DTG measurements show chemical stability of the crystal up to ∼538 K. In the DSC studies, a reversible isostructural phase transition was revealed at ∼526/522 K on heating/cooling run, respectively. Optical observation on the heating run reveals that at the phase transition the plane of twinning (domain wall) does not disappear and additionally the appearance of a new domain structure of ferroelastic type with domain walls in the planes (101), (101), (100) and (001) is observed. The domain structure pattern is preserved after cooling to the room-temperature phase and the symmetry of this phase is unchanged.




mon

Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate

The crystal structure of the incommensurate modulated phase of potassium guaninate monohydrate has been solved on the basis of high-pressure single-crystal X-ray diffraction data. The modulated structure was described as a `mosaic' sequence of three different local configurations of two neighbouring guaninate rings. In contrast to known examples of incommensurate modulated organic compounds, the modulation functions of all atoms are discontinuous. This is the first example of the experimental detection of an incommensurate modulated crystal structure that can be modelled using the special `soliton mode' modulation function proposed by Aramburu et al. [(1995), J. Phys. Condens. Matter, 7, 6187–6196].




mon

Permissible domain walls in monoclinic ferroelectrics. Part II. The case of MC phases

Monoclinic ferroelectric phases are prevalent in various functional materials, most notably mixed-ion perovskite oxides. These phases can manifest as regularly ordered long-range crystallographic structures or as macroscopic averages of the self-assembled tetragonal/rhombohedral nanodomains. The structural and physical properties of monoclinic ferroelectric phases play a pivotal role when exploring the interplay between ferroelectricity, ferroelasticity, giant piezoelectricity and multiferroicity in crystals, ceramics and epitaxial thin films. However, the complex nature of this subject presents challenges, particularly in deciphering the microstructures of monoclinic domains. In Paper I [Biran & Gorfman (2024). Acta Cryst. A80, 112–128] the geometrical principles governing the connection of domain microstructures formed by pairing MAB type monoclinic domains were elucidated. Specifically, a catalog was established of `permissible domain walls', where `permissible', as originally introduced by Fousek & Janovec [J. Appl. Phys. (1969), 40, 135–142], denotes a mismatch-free connection between two monoclinic domains along the corresponding domain wall. The present article continues the prior work by elaborating on the formalisms of permissible domain walls to describe domain microstructures formed by pairing the MC type monoclinic domains. Similarly to Paper I, 84 permissible domain walls are presented for MC type domains. Each permissible domain wall is characterized by Miller indices, the transformation matrix between the crystallographic basis vectors of the domains and, crucially, the expected separation of Bragg peaks diffracted from the matched pair of domains. All these parameters are provided in an analytical form for easy and intuitive interpretation of the results. Additionally, 2D illustrations are provided for selected instances of permissible domain walls. The findings can prove valuable for various domain-related calculations, investigations involving X-ray diffraction for domain analysis and the description of domain-related physical properties.




mon

Structure of the outer membrane porin OmpW from the pervasive pathogen Klebsiella pneumoniae

Conjugation is the process by which plasmids, including those that carry antibiotic-resistance genes, are mobilized from one bacterium (the donor) to another (the recipient). The conjugation efficiency of IncF-like plasmids relies on the formation of mating-pair stabilization via intimate interactions between outer membrane proteins on the donor (a plasmid-encoded TraN isoform) and recipient bacteria. Conjugation of the R100-1 plasmid into Escherichia coli and Klebsiella pneumoniae (KP) recipients relies on pairing between the plasmid-encoded TraNα in the donor and OmpW in the recipient. Here, the crystal structure of K. pneumoniae OmpW (OmpWKP) is reported at 3.2 Å resolution. OmpWKP forms an eight-stranded β-barrel flanked by extracellular loops. The structures of E. coli OmpW (OmpWEC) and OmpWKP show high conservation despite sequence variability in the extracellular loops.




mon

The structure of a pectin-active family 1 polysaccharide lyase from the marine bacterium Pseudoalteromonas fuliginea

Pseudoalteromonas fuliginea sp. PS47 is a recently identified marine bacterium that has extensive enzymatic machinery to metabolize polysaccharides, including a locus that targets pectin-like substrates. This locus contains a gene (locus tag EU509_03255) that encodes a pectin-degrading lyase, called PfPL1, that belongs to polysaccharide lyase family 1 (PL1). The 2.2 Å resolution X-ray crystal structure of PfPL1 reveals the compact parallel β-helix fold of the PL1 family. The back side of the core parallel β-helix opposite to the active site is a meandering set of five α-helices joined by lengthy loops. A comparison of the active site with those of other PL1 enzymes suggests a catalytic mechanism that is independent of metal ions, such as Ca2+, but that substrate recognition may require metal ions. Overall, this work provides the first structural insight into a pectinase of marine origin and the first structure of a PL1 enzyme in subfamily 2.




mon

First crystal structure of the DUF2436 domain of virulence proteins from Porphyromonas gingivalis

Porphyromonas gingivalis is a major pathogenic oral bacterium that is responsible for periodontal disease. It is linked to chronic periodontitis, gingivitis and aggressive periodontitis. P. gingivalis exerts its pathogenic effects through mechanisms such as immune evasion and tissue destruction, primarily by secreting various factors, including cysteine proteases such as gingipain K (Kgp), gingipain R (RgpA and RgpB) and PrtH (UniProtKB ID P46071). Virulence proteins comprise multiple domains, including the pro-peptide region, catalytic domain, K domain, R domain and DUF2436 domain. While there is a growing database of knowledge on virulence proteins and domains, there was no prior evidence or information regarding the structure and biological function of the well conserved DUF2436 domain. In this study, the DUF2436 domain of PrtH from P. gingivalis (PgDUF2436) was determined at 2.21 Å resolution, revealing a noncanonical β-jelly-roll sandwich topology with two antiparallel β-sheets and one short α-helix. Although the structure of PgDUF2436 was determined by the molecular-replacement method using an AlphaFold model structure as a template, there were significant differences in the positions of β1 between the AlphaFold model and the experimentally determined PgDUF2436 structure. The Basic Local Alignment Search Tool sequence-similarity search program showed no sequentially similar proteins in the Protein Data Bank. However, DaliLite search results using structure-based alignment revealed that the PgDUF2436 structure has structural similarity Z-scores of 5.9–5.4 with the C-terminal domain of AlgF, the D4 domain of cytolysin, IglE and the extracellular domain structure of PepT2. This study has elucidated the structure of the DUF2436 domain for the first time and a comparative analysis with similar structures has been performed.




mon

Crystal structure of guanosine 5'-monophosphate synthetase from the thermophilic bacterium Thermus thermophilus HB8

Guanosine 5'-monophosphate (GMP) synthetase (GuaA) catalyzes the last step of GMP synthesis in the purine nucleotide biosynthetic pathway. This enzyme catalyzes a reaction in which xanthine 5'-monophosphate (XMP) is converted to GMP in the presence of Gln and ATP through an adenyl-XMP intermediate. A structure of an XMP-bound form of GuaA from the domain Bacteria has not yet been determined. In this study, the crystal structure of an XMP-bound form of GuaA from the thermophilic bacterium Thermus thermophilus HB8 (TtGuaA) was determined at a resolution of 2.20 Å and that of an apo form of TtGuaA was determined at 2.10 Å resolution. TtGuaA forms a homodimer, and the monomer is composed of three domains, which is a typical structure for GuaA. Disordered regions in the crystal structure were obtained from the AlphaFold2-predicted model structure, and a model with substrates (Gln, XMP and ATP) was constructed for molecular-dynamics (MD) simulations. The structural fluctuations of the TtGuaA dimer as well as the interactions between the active-site residues were analyzed by MD simulations.




mon

Integrating machine learning interatomic potentials with hybrid reverse Monte Carlo structure refinements in RMCProfile

New software capabilities in RMCProfile allow researchers to study the structure of materials by combining machine learning interatomic potentials and reverse Monte Carlo.




mon

Variable temperature studies of tetra­pyridine­silver(I) hexa­fluoro­phosphate and tetra­pyridine­silver(I) hexa­fluoro­anti­monate

Structures of tetra­pyridine­silver(I) hexa­fluoro­phosphate and tetra­pyridine silver(I) hexa­fluoro­anti­monate are reported from data collected at 300 K and 100 K.




mon

Integrating machine learning interatomic potentials with hybrid reverse Monte Carlo structure refinements in RMCProfile

Structure refinement with reverse Monte Carlo (RMC) is a powerful tool for interpreting experimental diffraction data. To ensure that the under-constrained RMC algorithm yields reasonable results, the hybrid RMC approach applies interatomic potentials to obtain solutions that are both physically sensible and in agreement with experiment. To expand the range of materials that can be studied with hybrid RMC, we have implemented a new interatomic potential constraint in RMCProfile that grants flexibility to apply potentials supported by the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular dynamics code. This includes machine learning interatomic potentials, which provide a pathway to applying hybrid RMC to materials without currently available interatomic potentials. To this end, we present a methodology to use RMC to train machine learning interatomic potentials for hybrid RMC applications.




mon

Periodic diffraction from an aperiodic monohedral tiling – the Spectre tiling. Addendum

This article describes the diffraction pattern (2-periodic Fourier transform) from the vertices of a large patch of the recently discovered `Spectre' tiling – a strictly chiral aperiodic monotile. It was reported recently that the diffraction pattern of the related weakly chiral aperiodic `Hat' monotile was 2-periodic with chiral plane-group symmetry p6 [Kaplan et al. (2024). Acta Cryst. A80, 72–78]. The diffraction periodicity arises because the Hat tiling is a systematic aperiodic deletion of vertices from the 2-periodic hexagonal mta tiling. Despite the similarity of the Hat and Spectre tilings, the Spectre tiling is not aligned with a 2-periodic lattice, and its diffraction pattern is non-periodic with chiral point symmetry 6 about the origin.




mon

A thermal deformation optimization method for cryogenically cooled silicon crystal monochromators under high heat load

A method to optimize the thermal deformation of an indirectly cryo-cooled silicon crystal monochromator exposed to intense X-rays at a low-emittance diffraction-limited synchrotron radiation source is presented. The thermal-induced slope error of the monochromator crystal has been studied as a function of heat transfer efficiency, crystal temperature distribution and beam footprint size. A partial cooling method is proposed, which flattens the crystal surface profile within the beam footprint by modifying the cooling contact area to optimize the crystal peak temperature. The optimal temperature varies with different photon energies, which is investigated, and a proper cooling strategy is obtained to fulfil the thermal distortion requirements over the entire photon energy range. At an absorbed power up to 300 W with a maximum power density of 44.8 W mm−2 normal incidence beam from an in-vacuum undulator, the crystal thermal distortion does not exceed 0.3 µrad at 8.33 keV. This method will provide references for the monochromator design on diffraction-limited synchrotron radiation or free-electron laser light sources.




mon

Submillisecond in situ X-ray diffraction measurement system with changing temperature and pressure using diamond anvil cells at BL10XU/SPring-8

Recently, there has been a high demand for elucidating kinetics and visualizing reaction processes under extreme dynamic conditions, such as chemical reactions under meteorite impact conditions, structural changes under non­equilibrium conditions, and in situ observations of dynamic changes. To accelerate material science studies and Earth science fields under dynamic conditions, a submillisecond in situ X-ray diffraction measurement system has been developed using a diamond anvil cell to observe reaction processes under rapidly changing pressure and temperature conditions replicating extreme dynamic conditions. The development and measurements were performed at the high-pressure beamline BL10XU/SPring-8 by synchronizing a high-speed hybrid pixel array detector, laser heating and temperature measurement system, and gas-pressure control system that enables remote and rapid pressure changes using the diamond anvil cell. The synchronized system enabled momentary heating and rapid cooling experiments up to 5000 K via laser heating as well as the visualization of structural changes in high-pressure samples under extreme dynamic conditions during high-speed pressure changes.




mon

VerSoX B07-B: a high-throughput XPS and ambient pressure NEXAFS beamline at Diamond Light Source

The beamline optics and endstations at branch B of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source are described. B07-B provides medium-flux X-rays in the range 45–2200 eV from a bending magnet source, giving access to local electronic structure for atoms of all elements from Li to Y. It has an endstation for high-throughput X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) measurements under ultrahigh-vacuum (UHV) conditions. B07-B has a second endstation dedicated to NEXAFS at pressures from UHV to ambient pressure (1 atm). The combination of these endstations permits studies of a wide range of interfaces and materials. The beamline and endstation designs are discussed in detail, as well as their performance and the commissioning process.




mon

Modelling the power threshold and optimum thermal deformation of indirectly liquid-nitro­gen cryo-cooled Si monochromators

Maximizing the performance of crystal monochromators is a key aspect in the design of beamline optics for diffraction-limited synchrotron sources. Temperature and deformation of cryo-cooled crystals, illuminated by high-power beams of X-rays, can be estimated with a purely analytical model. The analysis is based on the thermal properties of cryo-cooled silicon crystals and the cooling geometry. Deformation amplitudes can be obtained, quickly and reliably. In this article the concept of threshold power conditions is introduced and defined analytically. The contribution of parameters such as liquid-nitro­gen cooling efficiency, thermal contact conductance and interface contact area of the crystal with the cooling base is evaluated. The optimal crystal illumination and the base temperature are inferred, which help minimize the optics deformation. The model has been examined using finite-element analysis studies performed for several beamlines of the Diamond-II upgrade.




mon

Developing an in situ LED irradiation system for small-angle X-ray scattering at B21, Diamond Light Source

Beamline B21 at the Diamond Light Source synchrotron in the UK is a small-angle X-ray scattering (SAXS) beamline that specializes in high-throughput measurements via automated sample delivery systems. A system has been developed whereby a sample can be illuminated by a focused beam of light coincident with the X-ray beam. The system is compatible with the highly automated sample delivery system at the beamline and allows a beamline user to select a light source from a broad range of wavelengths across the UV and visible spectrum and to control the timing and duration of the light pulse with respect to the X-ray exposure of the SAXS measurement. The intensity of the light source has been characterized across the wavelength range enabling experiments where a quantitative measure of dose is important. Finally, the utility of the system is demonstrated via measurement of several light-responsive samples.




mon

Hard X-ray operation of X-ray gas monitors at the European XFEL

X-ray gas monitors (XGMs) are operated at the European XFEL for non-invasive single-shot pulse energy measurements and average beam-position monitoring. The underlying measurement principle is the photo-ionization of rare gas atoms at low gas pressures and the detection of the photo-ions and photo-electrons created. These are essential for tuning and sustaining self-amplified spontaneous emission (SASE) operation, machine radiation safety, and sorting single-shot experimental data according to pulse energy. In this paper, the first results from XGM operation at photon energies up to 30 keV are presented, which are far beyond the original specification of this device. Here, the Huge Aperture MultiPlier (HAMP) is used for single-shot pulse energy measurements since the standard X-ray gas monitor detectors (XGMDs) do not provide a sufficient signal-to-noise ratio, even at the highest operating gas pressures. A single-shot correlation coefficient of 0.98 is measured between consecutive XGMs operated with HAMP, which is as good as measuring with the standard XGMD detectors. An intra-train non-linearity of the HAMP signal is discovered, and operation parameters to mitigate this effect are studied. The upper repetition rate limit of HAMP operation at 2.25 MHz is also determined. Finally, the possibilities and limits for future XGM operation at photon energies up to 50 keV are discussed.




mon

Development of an X-ray ionization beam position monitor for PAL-XFEL soft X-rays

The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) operates hard X-ray and soft X-ray beamlines for conducting scientific experiments providing intense ultrashort X-ray pulses based on the self-amplified spontaneous emission (SASE) process. The X-ray free-electron laser is characterized by strong pulse-to-pulse fluctuations resulting from the SASE process. Therefore, online photon diagnostics are very important for rigorous measurements. The concept of photo-absorption and emission using solid materials is seldom considered in soft X-ray beamline diagnostics. Instead, gas monitoring detectors, which utilize the photo-ionization of noble gas, are employed for monitoring the beam intensity. To track the beam position at the soft X-ray beamline in addition to those intensity monitors, an X-ray ionization beam position monitor (XIBPM) has been developed and characterized at the soft X-ray beamline of PAL-XFEL. The XIBPM utilizes ionization of either the residual gas in an ultra-high-vacuum environment or injected krypton gas, along with a microchannel plate with phosphor. The XIBPM was tested separately for monitoring horizontal and vertical beam positions, confirming the feasibility of tracking relative changes in beam position both on average and down to single-shot measurements. This paper presents the basic structure and test results of the newly developed non-invasive XIBPM.




mon

Diamond sensors for hard X-ray energy and position resolving measurements at the European XFEL

The diagnostics of X-ray beam properties has a critical importance at the European X-ray Free-Electron Laser facility. Besides existing diagnostic components, utilization of a diamond sensor was proposed to achieve radiation-hard, non-invasive beam position and pulse energy measurements for hard X-rays. In particular, with very hard X-rays, diamond-based sensors become a useful complement to gas-based devices which lose sensitivity due to significantly reduced gas cross-sections. The measurements presented in this work were performed with diamond sensors consisting of an electronic-grade single-crystal chemical-vapor-deposition diamond with position-sensitive resistive electrodes in a duo-lateral configuration. The results show that the diamond sensor delivers pulse-resolved X-ray beam position data at 2.25 MHz with an uncertainty of less than 1% of the beam size. To our knowledge this is the first demonstration of pulse-resolved position measurements at the MHz rate using a transmissive diamond sensor at a free-electron laser facility. It can therefore be a valuable tool for X-ray free-electron lasers, especially for high-repetition-rate machines, enabling applications such as beam-based alignment and intra-pulse-train position feedback.




mon

The diamond–silicon carbide composite Skeleton® as a promising material for substrates of intense X-ray beam optics

The paper considers the possibility of using the diamond-silicon carbide composite Skeleton® with a technological coating of polycrystalline silicon as a substrate for X-ray mirrors used with powerful synchrotron radiation sources (third+ and fourth generation). Samples were studied after polishing to provide the following surface parameters: root-mean-square flatness ≃ 50 nm, micro-roughness on the frame 2 µm × 2 µm σ ≃ 0.15 nm. The heat capacity, thermal conductivity and coefficient of linear thermal expansion were investigated. For comparison, a monocrystalline silicon sample was studied under the same conditions using the same methods. The value of the coefficient of linear thermal expansion turned out to be higher than that of monocrystalline silicon and amounted to 4.3 × 10−6 K−1, and the values of thermal conductivity (5.0 W cm−1 K−1) and heat capacity (1.2 J K−1 g−1) also exceeded the values for Si. Thermally induced deformations of both Skeleton® and monocrystalline silicon samples under irradiation with a CO2 laser beam have also been experimentally studied. Taking into account the obtained thermophysical constants, the calculation of thermally induced deformation under irradiation with hard (20 keV) X-rays showed almost three times less deformation of the Skeleton® sample than of the monocrystalline silicon sample.




mon

Demonstration of full polarization control of soft X-ray pulses with Apple X undulators at SwissFEL using recoil ion momentum spectroscopy

The ability to freely control the polarization of X-rays enables measurement techniques relying on circular or linear dichroism, which have become indispensable tools for characterizing the properties of chiral molecules or magnetic structures. Therefore, the demand for polarization control in X-ray free-electron lasers is increasing to enable polarization-sensitive dynamical studies on ultrafast time scales. The soft X-ray branch Athos of SwissFEL was designed with the aim of providing freely adjustable and arbitrary polarization by building its undulator solely from modules of the novel Apple X type. In this paper, the magnetic model of the linear inclined and circular Apple X polarization schemes are studied. The polarization is characterized by measuring the angular electron emission distributions of helium for various polarizations using cold target recoil ion momentum spectroscopy. The generation of fully linear polarized light of arbitrary angle, as well as elliptical polarizations of varying degree, are demonstrated.




mon

Hyperspectral full-field quick-EXAFS imaging at the ROCK beamline for monitoring micrometre-sized heterogeneity of functional materials under process conditions

Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK–SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150 µm × 150 µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000 eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed.




mon

Development of an advanced in-line multilayer deposition system at Diamond Light Source

A state-of-the-art multilayer deposition system with a 4200 mm-long linear substrate translator housed within an ultra-high vacuum chamber has been developed. This instrument is engineered to produce single and multilayer coatings, accommodating mirrors up to 2000 mm in length through the utilization of eight rectangular cathodes. To ensure the quality and reliability of the coatings, the system incorporates various diagnostic tools for in situ thickness uniformity and stress measurement. Furthermore, the system features an annealing process capable of heating up to 700°C within the load-lock chamber. The entire operation, including pump down, deposition and venting processes, is automated through user-friendly software. In addition, all essential log data, power of sputtering source, working pressure and motion positions are automatically stored for comprehensive data analysis. Preliminary commissioning results demonstrate excellent lateral film thickness uniformity, achieving 0.26% along the translation direction over 1500 mm in dynamic mode. The multilayer deposition system is poised for use in fabricating periodic, lateral-graded and depth-graded multilayers, specifically catering to the beamlines for diverse scientific applications at Diamond Light Source.




mon

meso-α,α-5,15-Bis(o-nicotinamido­phen­yl)-10,20-diphen­ylporphyrin n-hexane monosolvate

The structure of the title solvated porphyrin, C56H38N8O2·C6H14, is reported. Two porphyrin mol­ecules, one ordered and one disordered n-hexane solvate mol­ecules are present in its asymmetric unit. The porphyrin macrocycle shows a characteristic saddle-shaped distortion, and the maximum deviation from the mean plane for non-hydrogen atoms is 0.48 Å. N—H⋯N, N—H⋯O, and C—H⋯O hydrogen bonds, as well as π–π inter­actions, are observed in the crystal structure.




mon

Bis[2,6-bis­(benzimidazol-2-yl)pyridine-κ3N,N',N'']nickel(II) bis­(tri­fluoro­methane­sulfonate) diethyl ether monosolvate

In the title complex, [Ni(C19H13N5)2](CF3SO3)2·(CH3CH2)2O, the central NiII atom is sixfold coordinated by three nitro­gen atoms of each 2,6-bis­(2-benzimidazol­yl)pyridine ligand in a distorted octa­hedral geometry with two tri­fluoro­methane­sulfonate ions and a mol­ecule of diethyl ether completing the outer coordination sphere of the complex. Hydrogen bonding contributes to the organization of the asymmetric units in columns along the a axis generating a porous supra­molecular structure. The structure was refined as a two-component twin with a refined BASF value of 0.4104 (13).




mon

Ethidium benzoate methanol monosolvate

In the title salt solvate (systematic name: 8-amino-5-ethyl-6-phenyl­phenanthridin-5-ium benzoate methanol monosolvate), C21H20N3+·C6H5CO2−·CH3OH, two ethidium cations, C21H20N3+, dimerize about a twofold axis through π–π inter­actions [inter-centroid separation = 3.6137 (4) Å]. The benzoate anions are connected through hydrogen bonding with the –NH2 groups of the ethidium cations and the –OH group of the MeOH mol­ecule. The MeOH mol­ecule also accepts a hydrogen bond from the –NH2 group of the ethidium cation. The result is a one-dimensional hydrogen-bonded chain along the b-axis direction.




mon

4-(1H-2,3-Dihydronaphtho­[1,8-de][1,3,2]di­aza­borinin-2-yl)-1-ethylpyridin-1-ium iodide monohydrate

The cation of the title hydrated salt, C17H17BN3+·I−·H2O, is a di­aza­borinane featuring substitution at the 1, 2, and 3 positions in the nitro­gen–boron six-membered heterocycle. The cation is approximately planar with a dihedral angle between the pyridyl ring and the di­aza­borinane ring system of 5.40 (5)°. In the crystal, the cations stack along [100] in an alternating head-to-tail manner, while the iodide ion and water mol­ecule form one-dimensional hydrogen-bonded chains beside the cation stack. The cation stacks and I−–water chains are crosslinked by N—H⋯I and N—H⋯O hydrogen bonds.




mon

Octa­kis(di­butyl­ammonium) deca­molybdate(VI)

In the title salt, (C8H20N)8[Mo10O34], the [Mo10O34]8− polyanion is located about an inversion centre and can be considered as a β-type octa­molybdate anion to which two additional MoO4 tetra­hedra are linked via common corners. The [Mo10O34]8− polyanions are packed in rows extending parallel to [001] and are connected to the di­butyl­ammonium counter-cations through N—H⋯O hydrogen-bonding inter­actions.




mon

Poly[[{μ2-5-[(di­methyl­amino)(thioxo)meth­oxy]benzene-1,3-di­carboxyl­ato-κ4O1,O1':O3,O3'}(μ2-4,4'-di­pyridyl­amine-κ2N4:N4')cobalt(II)] di­methyl­formamide hemisolvate monohydrate]

In the crystal structure of the title compound, {[Co(C11H9NSO5)(C10H9N3)]0.5C3H7NO·H2O}n or {[Co(dmtb)(dpa)]·0.5DMF·H2O}n (dmtb2– = 5-[(di­meth­yl­amino)­thioxometh­oxy]-1,3-benzene­dicarboxyl­ate and dpa = 4,4'-di­pyridyl­amine), an assembly of periodic [Co(C11H9NSO5)(C10H9N3)]n layers extending parallel to the bc plane is present. Each layer is constituted by distorted [CoO4N2] octa­hedra, which are connected through the μ2-coordination modes of both dmtb2– and dpa ligands. Occupationally disordered water and di­meth­yl­formamide (DMF) solvent mol­ecules are located in the voids of the network to which they are connected through hydrogen-bonding inter­actions.




mon

Bis(ethyl­enedi­ammonium) μ-ethyl­enedi­aminetetra­acetato-1κ3O,N,O':2κ3O'',N',O'''-bis­[tri­oxidomolybdate(VI)] tetra­hydrate

The title compound, (C2H10N2)2[(C10H12N2O8)(MoO3)2]·4H2O, which crystallizes in the monoclinic C2/c space group, was obtained by mixing molybdenum oxide, ethyl­enedi­amine and ethyl­enedi­amine­tetra­acetic acid (H4edta) in a 2:4:1 ratio. The complex anion contains two MoO3 units bridged by an edta4− anion. The midpoint of the central C—C bond of the edta4− anion is located on a crystallographic inversion centre. The independent Mo atom is tridentately coordin­ated by a nitro­gen atom and two carboxyl­ate groups of the edta4− ligand, together with the three oxo ligands, producing a distorted octa­hedral coordination environment. In the three-dimensional supra­molecular crystal structure, the dinuclear anions, the organo­ammonium counter-ions and the solvent water mol­ecules are linked by N—H⋯Ow, N—H⋯Oedta and O—H⋯O hydrogen bonds.




mon

Diisobutyl­ammonium tri­phenyl(2-thiolato­acetato-κ2O,S)stannate(IV)

Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutyl­ammonium cations and mercapto­acetato­tri­phenyl­stannate(IV) anions. The bidentate binding mode of the mercapto­acetate ligand gives rise to a five-coordinated, ionic tri­phenyl­tin complex with a distorted cis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H⋯O(carboxyl­ate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3).




mon

Poly[tris­(2-amino­butan-1-ol)copper(II) [hexa­kis-μ2-cyanido-κ12C:N-tetra­copper(I)] bis­(2-amino­butan-1-olato)aqua­copper(II) monohydrate]

The title structure, {[Cu(C4H11NO)3][Cu4(CN)6]·[Cu(C4H10NO)2(H2O)]·H2O}n, is made up of diperiodic honeycomb CuICN networks built from [Cu4(CN)6]2− units, together with two independent CuII complexes: six-coord­inate [Cu(CH3CH2CH(NH2)CH2OH)3]2+ cations, and five-coordinate [Cu(CH3CH2CH(NH2)CH2O)2·H2O] neutral species. The two CuII complexes are not covalently bonded to the CuICN networks. Strong O—H⋯O hydrogen bonds link the CuII complexes into pairs and the pairs are hydrogen bonded into chains along the crystallographic b axis via the hydrate water mol­ecule. In addition, O—H⋯(CN) and N—H⋯(CN) hydrogen bonds link the cations to the CuCN network. In the honeycomb polymeric moiety, all bridging cyanido ligands are disordered over two orientations, head-to-tail and tail-to-head, with occupancies for C and N atoms varying for each CN group.




mon

Bis[2-(isoquinolin-1-yl)phenyl-κ2N,C1](2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline-κ2N,N')iridium(III) hexa­fluorido­phosphate methanol monosolvate

The title compound, [Ir(C15H10N)2(C19H12N4)]PF6·CH3OH, crystallizes in the C2/c space group with one monocationic iridium complex, one hexa­fluorido­phosphate anion, and one methanol solvent mol­ecule of crystallization in the asymmetric unit, all in general positions. The anion and solvent are linked to the iridium complex cation via hydrogen bonding. All bond lengths and angles fall into expected ranges compared to similar compounds.