mon

(Z)-N-(2,6-Di­methyl­phen­yl)-1-[(2-meth­oxy­phen­yl)amino]­methanimine oxide methanol monosolvate

In the title solvate, C16H18N2O2·CH4O, the dihedral angles between the formamidine backbone and the pendant 2-meth­oxy­phenyl and 2,6-di­methyl­phenyl groups are 14.84 (11) and 81.61 (12)°, respectively. In the crystal, the components are linked by C—H⋯O, O—H⋯O and C—H⋯ π hydrogen bonds, generating a supra­molecular chain that extends along the crystallographic a-axis direction.




mon

Benzilic acid: a monoclinic polymorph

The title compound, C14H12O3, is an α-hy­droxy­carb­oxy­lic acid whose ortho­rhom­bic polymorph has been reported earlier [Qiu et al. (2007). Inorg. Chim. Acta, 360, 1819–1824]. The asymmetric unit contains two complete mol­ecules. Classical hydrogen bonds, as well as C—H⋯O contacts, connect the mol­ecules to infinite chains along the crystallographic c-axis direction.




mon

Isostructural behaviour in ammonium and potassium salt forms of sulfonated azo dyes

The structures of five ammonium salt forms of mono­sulfonated azo dyes, derivatives of 4-(2-phenyldiazen-1-yl)benzenesulfonate, with the general formula [NH4][O3S(C6H4)NN(C6H3)RR']·XH2O [R = OH, NH2 or N(C2H4OH)2; R' = H or OH] are presented. All form simple layered structures with alternating hydro­phobic (organic) and hydro­philic (cation, solvent and polar groups) layers. To assess for isostructural behaviour of the ammonium cation with M+ ions, the packing of these structures is compared with literature examples. To aid this comparison, the corresponding structures of four potassium salt forms of the mono­sulfonated azo dyes are also presented herein. Of the five ammonium salts it is found that three have isostructural equivalents. In two cases this equivalent is a potassium salt form and in one case it is a rubidium salt form. The isostructurality of ion packing and of unit-cell symmetry and dimensions tolerates cases where the ammonium ions form somewhat different inter­action types with coformer species than do the potassium or rubidium ions. No sodium salt forms are found to be isostructural with any ammonium equivalent. However, similarities in the anion packing within a single hydro­phobic layer are found for a group that consists of the ammonium and rubidium salt forms of one azo anion species and the sodium and silver salt forms of a different azo species.




mon

The crystal structure of the ammonium salt of 2-amino­malonic acid

The salt ammonium 2-am­ino­mal­on­ate (systematic name: ammonium 2-aza­niumyl­propane­dioate), NH4+·C3H4NO4−, was synthesized in diethyl ether from the starting materials malonic acid, ammonia and bromine. The salt was recrystallized from water as colourless blocks. In the solid state, intra­molecular medium–strong N—H⋯O, weak C—H⋯O and weak C—H⋯N hydrogen bonds build a three-dimensional network.




mon

Crystal structure and cryomagnetic study of a mononuclear erbium(III) ox­am­ate inclusion com­plex

The synthesis, crystal structure and magnetic properties of an ox­am­ate-con­taining erbium(III) com­plex, namely, tetra­butyl­ammonium aqua­[N-(2,4,6-tri­methyl­phen­yl)oxamato]erbium(III)–di­methyl sulfoxide–water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted ox­am­ate ligands and one water mol­ecule in a nine-coordinated environment, together with one tetra­butyl­ammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) mol­ecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic mea­sure­ments were carried out for this mononuclear com­plex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K.




mon

Photocrystallography – common or exclusive?

 




mon

Mononuclear binding and catalytic activity of europium(III) and gadolinium(III) at the active site of the model metalloenzyme phosphotriesterase

Lanthanide ions have ideal chemical properties for catalysis, such as hard Lewis acidity, fast ligand-exchange kinetics, high coordination-number preferences and low geometric requirements for coordination. As a result, many small-molecule lanthanide catalysts have been described in the literature. Yet, despite the ability of enzymes to catalyse highly stereoselective reactions under gentle conditions, very few lanthanoenzymes have been investigated. In this work, the mononuclear binding of europium(III) and gadolinium(III) to the active site of a mutant of the model enzyme phosphotriesterase are described using X-ray crystallography at 1.78 and 1.61 Å resolution, respectively. It is also shown that despite coordinating a single non-natural metal cation, the PTE-R18 mutant is still able to maintain esterase activity.




mon

Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography

Light–oxygen–voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intra­cellular signals responsible for various cell behaviors (e.g. phototropism and chloro­plast relocation). This ability relies on the light-induced formation of a covalent thio­ether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thio­ether adduct and the C-terminal region implicated in the signal transduction process.




mon

Crystal structure and Hirshfeld surface analysis of (2Z)-3-oxo-N-phenyl-2-[(1H-pyrrol-2-yl)methylidene]butanamide monohydrate

In the title compound, C15H14N2O2·H2O, the 1H-pyrrole ring makes a dihedral angle of 59.95 (13)° with the phenyl ring. In the crystal, the mol­ecules are connected by C—H⋯O hydrogen bonds into layers parallel to the (020) plane, while two mol­ecules are connected to the water mol­ecule by two N—H⋯O hydrogen bonds and one mol­ecule by an O—H⋯O hydrogen bond. C—H⋯π and π–π inter­actions further link the mol­ecules into chains extending in the [overline{1}01] direction and stabilize the mol­ecular packing. According to a Hirshfeld surface study, H⋯H (49.4%), C⋯H/H⋯C (23.2%) and O⋯H/H⋯O (20.0%) inter­actions are the most significant contributors to the crystal packing.




mon

Synthesis, crystal structure and Hirshfeld analysis of trans-bis­(2-{1-[(6R,S)-3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydronaphthalen-2-yl]ethyl­idene}-N-methyl­hydrazinecarbo­thio­amidato-κ2N2,S)palladium(II) ethanol mon

The reaction between the (R,S)-fixolide 4-methyl­thio­semicarbazone and PdII chloride yielded the title compound, [Pd(C20H30N3S)2]·C2H6O {common name: trans-bis­[(R,S)-fixolide 4-methyl­thio­semicarbazonato-κ2N2S]palladium(II) ethanol monosolvate}. The asymmetric unit of the title compound consists of one bis-thio­semicarbazonato PdII complex and one ethanol solvent mol­ecule. The thio­semicarbazononato ligands act as metal chelators with a trans configuration in a distorted square-planar geometry. A C—H⋯S intra­molecular inter­action, with graph-set motif S(6), is observed and the coordination sphere resembles a hydrogen-bonded macrocyclic environment. Additionally, one C—H⋯Pd anagostic inter­action can be suggested. Each ligand is disordered over the aliphatic ring, which adopts a half-chair conformation, and two methyl groups [s.o.f. = 0.624 (2):0.376 (2)]. The disorder includes the chiral carbon atoms and, remarkably, one ligand has the (R)-isomer with the highest s.o.f. value atoms, while the other one shows the opposite, the atoms with the highest s.o.f. value are associated with the (S)-isomer. The N—N—C(=S)—N fragments of the ligands are approximately planar, with the maximum deviations from the mean plane through the selected atoms being 0.0567 (1) and −0.0307 (8) Å (r.m.s.d. = 0.0403 and 0.0269 Å) and the dihedral angle with the respective aromatic rings amount to 46.68 (5) and 50.66 (4)°. In the crystal, the complexes are linked via pairs of N—H⋯S inter­actions, with graph-set motif R22(8), into centrosymmetric dimers. The dimers are further connected by centrosymmetric pairs of ethanol mol­ecules, building mono-periodic hydrogen-bonded ribbons along [011]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are [atoms with highest/lowest s.o.f.s considered separately]: H⋯H (81.6/82.0%), H⋯C/C⋯H (6.5/6.4%), H⋯N/N⋯H (5.2/5.0%) and H⋯S/S⋯H (5.0/4.9%).




mon

Crystal structure of 2-[(5-amino-1-tosyl-1H-pyrazol-3-yl)­oxy]-1-(4-meth­oxy­phen­yl)ethan-1-one 1,4-dioxane monosolvate

In the structure of the title compound, C19H19N3O5S·C4H8O2, the two independent dioxane mol­ecules each display inversion symmetry. The pyrazole ring is approximately parallel to the aromatic ring of the oxy-ethanone group and approximately perpendicular to the tolyl ring of the sulfonyl substituent. An extensive system of classical and `weak' hydrogen bonds connects the residues to form a layer structure parallel to (201), within which dimeric subunits are conspicuous; neighbouring layers are connected by classical hydrogen bonds to dioxanes and by `weak' hydrogen bonds from Htol­yl donors.




mon

Crystal structure and Hirshfeld surface analysis of (E)-2-[2-(2-amino-1-cyano-2-oxo­ethyl­idene)hydrazin-1-yl]benzoic acid N,N-di­methylformamide monosolvate

In the title compound, C10H8N4O3·C3H7NO, the asymmetric unit contains two crystallographically independent mol­ecules A and B, each of which has one DMF solvate mol­ecule. Mol­ecules A and B both feature intra­molecular N—H⋯O hydrogen bonds, forming S(6) ring motifs and consolidating the mol­ecular configuration. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect mol­ecules A and B, forming R22(8) ring motifs. Weak C—H⋯O inter­actions link the mol­ecules, forming layers parallel to the (overline{2}12) plane. The DMF solvent mol­ecules are also connected to the main mol­ecules (A and B) by N—H⋯O hydrogen bonds. π–π stacking inter­actions [centroid-to-centroid distance = 3.8702 (17) Å] between the layers also increase the stability of the mol­ecular structure in the third dimension. According to the Hirshfeld surface study, O⋯H/H⋯O inter­actions are the most significant contributors to the crystal packing (27.5% for mol­ecule A and 25.1% for mol­ecule B).




mon

Synthesis, crystal structure and Hirshfeld surface analysis of sodium bis­(malonato)borate monohydrate

In the title salt, poly[aqua­[μ4-bis­(malonato)borato]sodium], {[Na(C6H4BO8)]·H2O}n or Na+·[B(C3H2O4)2]−·H2O, the sodium cation exhibits fivefold coordination by four carbonyl O atoms of the bis­(malonato)borate anions and a water O atom. The tetra­hedral B atom at the centre of the anion leads to the formation of a polymeric three-dimensional framework, which is consolidated by C—H⋯O and O—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are H⋯O/O⋯H (49.7%), Na⋯O/O⋯Na (16.1%), O⋯O (12.6%), H⋯H (10.7%) and C⋯O/O⋯C (7.3%).




mon

Crystal structure and Hirshfeld surface analysis of (Z)-N-{chloro­[(4-ferrocenylphen­yl)imino]­meth­yl}-4-ferrocenylaniline N,N-di­methyl­formamide monosolvate

The title mol­ecule, [Fe2(C5H5)2(C23H17ClN2)]·C3H7NO, is twisted end to end and the central N/C/N unit is disordered. In the crystal, several C—H⋯π(ring) inter­actions lead to the formation of layers, which are connected by further C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (60.2%) and H⋯C/C⋯H (27.0%) inter­actions. Hydrogen bonding, C—H⋯π(ring) inter­actions and van der Waals inter­actions dominate the crystal packing.




mon

Crystal structure of di­ethyl­ammonium dioxido{Z)-N-[(pyri­din-2-yl)car­bon­yl­azan­idyl]pyri­dine-2-car­box­imid­ato}vana­date(1−) monohydrate

The title compound, (C4H12N)[V(C12H8N4O2)O2]·H2O, was synthesized via aerial oxidation on refluxing picolinohydrazide with ethyl picolinate followed by addition of VIVO(acac)2 and di­ethyl­amine in methanol. It crystallizes in the triclinic crystal system in space group Poverline{1}. In the complex anion, the dioxidovanadium(V) moiety exhibits a distorted square-pyramidal geometry. In the crystal, extensive hydrogen bonding links the water mol­ecule to two complex anions and one di­ethyl­ammonium ion. One of the CH2 groups in the di­ethyl­amine is disordered over two sets of sites in a 0.7:0.3 ratio.




mon

Crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II)

The crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II) (systematic name: tetra­ethyl­ammonium N-methane­sulfonyl-4-nitro-2-phen­oxy­anilinide), C8H20N+·C13H11N2O5S−, was determined using single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group P21/c with one tetra­ethyl­ammonium cation and one nimesulide anion in the asymmetric unit. In the crystal, the ions are linked by C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions. There are differences in the geometry of both the nimesulide anion and the tetra­ethyl­ammonium cation in polymorphs I [Rybczyńska & Sikorski (2023). Sci. Rep. 13, 17268] and II of the title compound.




mon

CoII-catalysed synthesis of N-(4-meth­oxy­phen­yl)-5-(pyridin-4-yl)-1,3,4-oxa­diazol-2-amine hemi­hydro­chloride monohydrate

The title compound, C14H12N4O2·0.5HCl·H2O or H(C14H12N4O2)2+·Cl−·2H2O, arose from the unexpected cyclization of isonicotinoyl-N-phenyl hydrazine carbo­thio­amide catalysed by cobalt(II) acetate. The organic mol­ecule is almost planar and a symmetric N⋯H+⋯N hydrogen bond links two of them together, with the H atom lying on a crystallographic twofold axis. The extended structure features N—H⋯O and O—H⋯Cl hydrogen bonds, which generate [001] chains. Weak C—H⋯Cl inter­actions cross-link the chains. The chloride ion has site symmetry 2. The major contributions to the Hirshfeld surface are from H⋯H (47.1%), Cl⋯H/H⋯Cl (total 10.8%), O⋯H/H⋯O (7.4%) and N⋯H/H⋯N (6.7%) inter­actions.




mon

Bis[tris­(diiso­butyl­dithio­carbamato)-μ3-sulfido-tri-μ2-di­sulfido-trimolybdenum(IV)] sulfide tetra­hydro­furan monosolvate

The title compound, [Mo3(C9H18NS2)3(S2)3S]2S, crystallizes on a general position in the monoclinic space group P21/n (No. 14). The cationic [Mo3S7(S2CNiBu2)3]+ fragments are joined by a mono­sulfide dianion that forms close S⋯S contacts to each of the di­sulfide ligands on the side of the Mo3 plane opposite the μ32− ligand. The two Mo3 planes are inclined at an angle of 40.637 (15)°, which gives the assembly an open clamshell-like appearance. One μ6-S2−⋯S22− contact, at 2.4849 (14) Å, is appreciably shorter than the remaining five, which are in the range 2.7252 (13)–2.8077 (14) Å.




mon

Crystal structure and Hirshfeld surface analysis of 2,4-di­amino-6-[(1Z,3E)-1-cyano-2,4-di­phenyl­penta-1,3-dien-1-yl]pyridine-3,5-dicarbo­nitrile monohydrate

The asymmetric unit of the title compound, C25H18N6·H2O, comproses two mol­ecules (I and II), together with a water mol­ecule. The terminal phenyl groups attached to the methyl groups of the mol­ecules I and II do not overlap completely, but are approximately perpendicular. In the crystal, the mol­ecules are connected by N—H⋯N, C—H⋯N, O—H⋯N and N—H⋯O hydrogen bonds with each other directly and through water mol­ecules, forming layers parallel to the (001) plane. C—H⋯π inter­actions between these layers ensure the cohesion of the crystal structure. A Hirshfeld surface analysis indicates that H⋯H (39.1% for mol­ecule I; 40.0% for mol­ecule II), C⋯H/H⋯C (26.6% for mol­ecule I and 25.8% for mol­ecule II) and N⋯H/H⋯N (24.3% for mol­ecules I and II) inter­actions are the most important contributors to the crystal packing.




mon

Crystal structure of a three-coordinate lithium complex with monodentate phenyl­oxazoline and hexa­methyl­disilyl­amide ligands

The reaction of lithium hexa­methyl­disilyl­amide, [Li{N(Si(CH3)3)2}] (LiHMDS), with 4,4-dimethyl-2-phenyl-2-oxazoline (Phox, C11H13NO) in hexane produced colourless crystals of bis­(4,4-dimethyl-2-phenyl-2-oxazoline-κN)(hexa­methyl­disilyl­amido-κN)lithium, [Li(C6H18NSi2)(C11H13NO)2] or [Li{N(Si(CH3)3)2}(Phox)2] in high yield (89%). Despite the 1:1 proportion of the starting materials in the reaction mixture, the product formed with a 1:2 amide:oxazoline ratio. In the unit cell of the C2/c space group, the neutral mol­ecules lie on twofold rotation axes coinciding with the Li—N(amide) bonds. The lithium(I) centre adopts a trigonal–planar coordination geometry with three nitro­gen donor atoms, one from the HMDS anion and two from the oxazolines. All ligands are monodentate. In the phenyl­oxazoline units, the dihedral angle defined by the five-membered heterocyclic rings is 35.81 (5)°, while the phenyl substituents are approximately face-to-face, separated by 3.908 (5) Å. In the amide, the methyl groups assume a nearly eclipsed arrangement to minimize steric repulsion with the analogous substituents on the oxazoline rings. The non-covalent inter­actions in the solid-state structure of [Li{N(Si(CH3)3)2}(Phox)2] were assessed by Hirshfeld surface analysis and fingerprint plots. This new compound is attractive for catalysis due to its unique structural features.




mon

Crystal structure and Hirshfeld surface analysis of 2-bromo­ethyl­ammonium bromide – a possible side product upon synthesis of hybrid perovskites

This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br−. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of −64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H inter­actions, which constitute 62.6% of the overall close atom contacts.




mon

Crystal structure of 1,2,3,4-tetra­hydro­isoquinolin-2-ium (2S,3S)-3-carb­oxy-2,3-di­hydroxy­propano­ate monohydrate

The crystal structure of 1,2,3,4-tetra­hydro­isoquinolin-2-ium (2S,3S)-3-carb­oxy-2,3-di­hydroxy­propano­ate monohydrate, C9H12N+·C4H5O6−·H2O, at 115 K shows ortho­rhom­bic symmetry (space group P212121). The hydrogen tartrate anions and solvent water mol­ecules form an intricate diperiodic O—H⋯O hydrogen-bond network parallel to (001). The tetra­hydro­isoquinolinium cations are tethered to the anionic hydrogen-bonded layers through N—H⋯O hydrogen bonds. The crystal packing in the third direction is achieved through van der Waals contacts between the hydro­carbon tails of the tetra­hydro­isoquinolinium cations, resulting in hydro­phobic and hydro­philic regions in the crystal structure.




mon

The crystal structure of a mononuclear PrIII complex with cucurbit[6]uril

A new mononuclear complex, penta­aqua­(cucurbit[6]uril-κ2O,O')(nitrato-κ2O,O')praseodymium(III) dinitrate 9.56-hydrate, [Pr(NO3)(CB6)(H2O)5](NO3)2·9.56H2O (1), was obtained as outcome of the hydro­thermal reaction between the macrocyclic ligand cucurbit[6]uril (CB6, C36H36N24O12) with a tenfold excess of Pr(NO3)3·6H2O. Complex 1 crystallizes in the P21/n space group with two crystallographically independent but chemically identical [Pr(CB6)(NO3)(H2O)5]2+ complex cations, four nitrate counter-anions and 19.12 inter­stitial water mol­ecules per asymmetric unit. The nona­coordinated PrIII in 1 are located in the PrO9 coordination environment formed by two carbonyl O atoms from bidentate cucurbit[6]uril units, two oxygen atoms from the bidentate nitrate anion and five water mol­ecules. Considering the differences in Pr—O bond distances and O—Pr—O angles in the coordination spheres, the coordination polyhedrons of the two PrIII atoms can be described as distorted spherical capped square anti­prismatic and muffin polyhedral.




mon

A monoclinic polymorph of chloro­thia­zide

A new polymorph of the diuretic chloro­thia­zide, 6-chloro-1,1-dioxo-2H-1,2,4-benzo­thia­zine-7-sulfonamide, C7H6ClN3O4S2, is described. Crystallized from basic aqueous solution, this monoclinic polymorph is found to be less thermodynamically favoured than the known triclinic polymorph and to feature only N—H⋯O type inter­molecular hydrogen bonds as opposed to the N—H⋯O and N—H⋯N type hydrogen bonds found in the P1 form.




mon

Crystal structure and Hirshfeld surface analysis of di­chlorido­[2-(3-cyclo­pentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) di­methyl­formamide monosolvate

This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclo­pentyl-1,2,4-triazol-5-yl)pyridine] and one mol­ecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H inter­actions is somewhat smaller, amounting to 12.4% and 5%, respectively.




mon

Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aqua­bis­(μ3-carba­moyl­cyano­nitro­somethanido)barium] monohydrate] and its thermal decomposition

In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water mol­ecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water mol­ecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coord­ination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water mol­ecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoyl­cyano­nitro­somethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyano­nitroso anions can be utilized as bridging ligands for the supra­molecular synthesis of MOF solids. Such an outcome may be anti­cipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K.




mon

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.




mon

Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methyl­sulfate monohydrate

The mol­ecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulf­amo­yl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S−·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitro­gen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methyl­sulfate anion) and inter­molecular N—H⋯N inter­actions involving the sulfonamide and isoxazole nitro­gen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π–π inter­actions between the phenyl rings of adjacent mol­ecules. A Hirshfeld surface analysis was used to verify the contributions of the different inter­molecular inter­actions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) inter­actions.




mon

Synthesis and crystal structure of 1H-1,2,4-triazole-3,5-di­amine monohydrate

The title compound, a hydrate of 3,5-di­amino-1,2,4-triazole (DATA), C2H5N5·H2O, was synthesized in the presence of sodium perchlorate. The evaporation of H2O from its aqueous solution resulted in anhydrous DATA, suggesting that sodium perchlorate was required to precipitate the DATA hydrate. The DATA hydrate crystallizes in the P21/c space group in the form of needle-shaped crystals with one DATA and one water mol­ecule in the asymmetric unit. The water mol­ecules form a three-dimensional network in the crystal structure. Hirshfeld surface analysis revealed that 8.5% of the inter­molecular inter­actions originate from H⋯O contacts derived from the incorporation of the water mol­ecules.




mon

Synthesis, crystal structure and properties of μ-tetra­thio­anti­monato-bis­[(cyclam)zinc(II)] perchlorate 0.8-hydrate

The reaction of Zn(ClO4)2·6H2O with Na3SbS4·9H2O in a water/aceto­nitrile mixture leads to the formation of the title compound, (μ-tetra­thio­anti­monato-κ2S:S')bis­[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)zinc(II)] perchlorate 0.8-hydrate, [Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2O or [(Zn-cyclam)2(SbS4)]+[ClO4]−·0.8H2O. The asymmetric unit consists of two crystallographically independent [SbS4]3– anions, two independent perchlorate anions and two independent water mol­ecules as well as four crystallographically independent Zn(cyclam)2+ cations that are located in general positions. Both perchlorate anions and one cyclam ligand are disordered and were refined with a split mode using restraints. The water mol­ecules are partially occupied. Two Zn(cyclam)2+ cations are linked via the [SbS4]3– anions into [Zn2(cyclam)2SbS4]+ cations that are charged-balanced by the [ClO4]− anions. The water mol­ecules of crystallization are hydrogen bonded to the [SbS4]3– anions. The cations, anions and water mol­ecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds into a three-dimensional network. Powder X-ray diffraction proves that a pure sample had been obtained that was additionally investigated for its spectroscopic properties.




mon

N,N'-Di­benzyl­ethyl­enedi­ammonium dichloride

The isolation and crystalline structure of N,N'-di­benzyl­ethyl­enedi­ammonium dichloride, C16H22N22+·2Cl−, is reported. This was obtained as an unintended product of an attempted Curtius rearrangement that involved benzyl­amine as one of the reagents and 1,2-di­chloro­ethane as the solvent. Part of a series of reactions of a course-based undergraduate research experience (CURE), this was not the intended reaction outcome. The goal of the course was to engage students as active participants in a laboratory experience which applies the foundational techniques of a synthetic organic laboratory, using the Curtius rearrangement as a tool for the assembly of medicinally significant scaffolds. The isolation of the title compound, N,N'-di­benzyl­ethyl­enedi­ammonium dichloride, the result of the 1,2-di­chloro­ethane solvent outcompeting the Curtius iso­cyanate inter­mediate in the reaction with the nucleophilic amine, confirms the importance of conducting research at the undergraduate level where the outcome is not predetermined. The solid-state structure of N,N'-di­benzyl­ethyl­enedi­ammonium dichloride was found to feature an all-trans methyl­ene-ammonium backbone. Strong N—H⋯Cl hydrogen bonds and C—H⋯Cl inter­actions lead to a layered structure with pseudo-translational symmetry emulating a C-centered setting. Different phenyl torsion angles at each end of the mol­ecule enable a more stable packing by allowing stronger hydrogen-bonding inter­actions, leading to a more ordered but lower symmetry and modulated structure in P21/n.




mon

Crystal structures and photophysical properties of mono- and dinuclear ZnII complexes flanked by tri­ethyl­ammonium

Two new zinc(II) complexes, tri­ethyl­ammonium di­chlorido­[2-(4-nitro­phen­yl)-4-phenyl­quinolin-8-olato]zinc(II), (C6H16N){Zn(C21H13N2O3)Cl2] (ZnOQ), and bis­(tri­ethyl­ammonium) {2,2'-[1,4-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato}bis­[di­chlorido­zinc(II)], (C6H16N)2[Zn2(C20H14N2O2)Cl4] (ZnBS), were synthesized and their structures were determined using ESI–MS spectrometry, 1H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro­phen­yl)-4-phenyl­quinolin-8-ol (HOQ) and N,N'-bis­(2-hy­droxy­benzyl­idene)benzene-1,4-di­amine (H2BS) were deprotonated by tri­ethyl-amine, forming the counter-ion Et3NH+, which inter­acts via an N—H⋯O hydrogen bond with the ligand. The ZnII atoms have a distorted trigonal–pyramidal (ZnOQ) and distorted tetra­hedral (ZnBS) geometries with a coord­ination number of four, coordinating with the ligands via N and O atoms. The N atoms coordinating with ZnII correspond to the heterocyclic nitro­gen for the HOQ ligand, while for the H2BS ligand, it is the nitro­gen of the imine (CH=N). The crystal packing of ZnOQ is characterized by C—H⋯π inter­actions, while that of ZnBS by C—H⋯Cl inter­actions. The emission spectra showed that ZnBS complex exhibits green fluorescence in the solid state with a small band-gap energy, and the ZnOQ complex does exhibit non-fluorescence.




mon

Crystal structure and Hirshfeld surface analysis of the salt 2-iodo­ethyl­ammonium iodide – a possible side product upon synthesis of hybrid perovskites

The title organic–inorganic hybrid salt, C2H7IN+·I−, is isotypic with its bromine analog, C2H7BrN+·Br− [Semenikhin et al. (2024). Acta Cryst. E80, 738–741]. Its asymmetric unit consists of one 2-iodo­ethyl­ammonium cation and one iodide anion. The NH3+ group of the organic cation forms weak hydrogen bonds with four neighboring iodide anions, leading to the formation of supra­molecular layers propagating parallel to the bc plane. Hirshfeld surface analysis reveals that the most important contribution to the crystal packing is from N—H⋯I inter­actions (63.8%). The crystal under investigation was twinned by a 180° rotation around [001].




mon

Reducing heat load density with asymmetric and inclined double-crystal monochromators: principles and requirements revisited

The major principles and requirements of asymmetric and inclined double-crystal monochromators are re-examined and presented to guide their design and development for significantly reducing heat load density and gradient on the monochromators of fourth-generation synchrotron light sources and X-ray free-electron lasers.




mon

Enhancing the Efficiency of a Wavelength-Dispersive Spectrometer based upon a Slit-less Design Using a Single-Bounce Monocapillary

A slit-less wavelength-dispersive spectrometer design using a single-bounce monocapillary that aligns the sample on the Rowland circle, enhancing photon throughput and maintaining resolution. The compact design supports flexibility and reconfiguration in facilities without complex beamline infrastructure, significantly improving detection efficiency.




mon

Using XAS to monitor radiation damage in real time and post-analysis, and investigation of systematic errors of fluorescence XAS for Cu-bound amyloid-β

X-ray absorption spectroscopy (XAS) is a promising technique for determining structural information from sensitive biological samples, but high-accuracy X-ray absorption fine structure (XAFS) requires corrections of systematic errors in experimental data. Low-temperature XAS and room-temperature X-ray absorption spectro-electrochemical (XAS-EC) measurements of N-truncated amyloid-β samples were collected and corrected for systematic effects such as dead time, detector efficiencies, monochromator glitches, self-absorption, radiation damage and noise at higher wavenumber (k). A new protocol was developed using extended X-ray absorption fine structure (EXAFS) data analysis for monitoring radiation damage in real time and post-analysis. The reliability of the structural determinations and consistency were validated using the XAS measurement experimental uncertainty. The correction of detector pixel efficiencies improved the fitting χ2 by 12%. An improvement of about 2.5% of the structural fitting was obtained after dead-time corrections. Normalization allowed the elimination of 90% of the monochromator glitches. The remaining glitches were manually removed. The dispersion of spectra due to self-absorption was corrected. Standard errors of experimental measurements were propagated from pointwise variance of the spectra after systematic corrections. Calculated uncertainties were used in structural refinements for obtaining precise and reliable values of structural parameters including atomic bond lengths and thermal parameters. This has permitted hypothesis testing.




mon

RMCProfile7: reverse Monte Carlo for multiphase systems

This work introduces a completely rewritten version of the program RMCProfile (version 7), big-box, reverse Monte Carlo modelling software for analysis of total scattering data. The major new feature of RMCProfile7 is the ability to refine multiple phases simultaneously, which is relevant for many current research areas such as energy materials, catalysis and engineering. Other new features include improved support for molecular potentials and rigid-body refinements, as well as multiple different data sets. An empirical resolution correction and calculation of the pair distribution function as a back-Fourier transform are now also available. RMCProfile7 is freely available for download at https://rmcprofile.ornl.gov/.




mon

Demonstration of neutron time-of-flight diffraction with an event-mode imaging detector

Neutron diffraction beamlines have traditionally relied on deploying large detector arrays of 3He tubes or neutron-sensitive scintillators coupled with photomultipliers to efficiently probe crystallographic and microstructure information of a given material. Given the large upfront cost of custom-made data acquisition systems and the recent scarcity of 3He, new diffraction beamlines or upgrades to existing ones demand innovative approaches. This paper introduces a novel Timepix3-based event-mode imaging neutron diffraction detector system as well as first results of a silicon powder diffraction measurement made at the HIPPO neutron powder diffractometer at the Los Alamos Neutron Science Center. Notably, these initial measurements were conducted simultaneously with the 3He array on HIPPO, enabling direct comparison. Data reduction for this type of data was implemented in the MAUD code, enabling Rietveld analysis. Results from the Timepix3-based setup and HIPPO were benchmarked against McStas simulations, showing good agreement for peak resolution. With further development, systems such as the one presented here may substantially reduce the cost of detector systems for new neutron instrumentation as well as for upgrades of existing beamlines.




mon

Use of a confocal optical device for centring a diamond anvil cell in single-crystal X-ray diffraction experiments

High-pressure crystallographic data can be measured using a diamond anvil cell (DAC), which allows the sample to be viewed only along a cell vector which runs perpendicular to the diamond anvils. Although centring a sample perpendicular to this direction is straightforward, methods for centring along this direction often rely on sample focusing, measurements of the direct beam or short data collections followed by refinement of the crystal offsets. These methods may be inaccurate, difficult to apply or slow. Described here is a method based on precise measurement of the offset in this direction using a confocal optical device, whereby the cell centre is located at the mid-point of two measurements of the distance between a light source and the external faces of the diamond anvils viewed along the forward and reverse directions of the cell vector. It is shown that the method enables a DAC to be centred to within a few micrometres reproducibly and quickly.




mon

VMXm – A sub-micron focus macromolecular crystallography beamline at Diamond Light Source

VMXm joins the suite of operational macromolecular crystallography beamlines at Diamond Light Source. It has been designed to optimize rotation data collections from protein crystals less than 10 µm and down to below 1 µm in size. The beamline has a fully focused beam of 0.3 × 2.3 µm (vertical × horizontal) with a tuneable energy range (6–28 keV) and high flux (1.6 × 1012 photons s−1 at 12.5 keV). The crystals are housed within a vacuum chamber to minimize background scatter from air. Crystals are plunge-cooled on cryo-electron microscopy grids, allowing much of the liquid surrounding the crystals to be removed. These factors improve the signal-to-noise during data collection and the lifetime of the microcrystals can be prolonged by exploiting photoelectron escape. A novel in vacuo sample environment has been designed which also houses a scanning electron microscope to aid with sample visualization. This combination of features at VMXm allows measurements at the physical limits of X-ray crystallography on biomacromolecules to be explored and exploited.




mon

USI Money plans to integrate Visa Direct

UK-based USI Money has announced its...




mon

Lufthansa Group partners with FinMont to improve B2B payments

The Lufthansa Group has teamed up with



mon

FilmWeek: ‘Demon Slayer the Movie: Mugen Train,’ Street Gang: How We Got to Sesame Street,’ ‘Together Together’ And More

Archival still from the documentary "Street Gang: How We Got to Sesame Street"; Credit: HBO

FilmWeek Marquee

Larry Mantle and KPCC film critics Claudia Puig and Charles Solomon review this weekend’s new movie releases.

This content is from Southern California Public Radio. View the original story at SCPR.org.




mon

FinMont joins The Payments Group to expand payment solutions in travel

Payment orchestration platform FinMont has partnered with...




mon

Free weekend? Try the Feline Festival, Oktoberfest and Monterey Park Night Market

MPK Night Market. ; Credit: MPK Night Market (via YouTube)

Ahhhhh. Can you feel that breeze? Cool temps are here to stay through Sunday and we're going ham (in a totally respectable, public radio kind of way). Because frankly, we all deserve a break after sweating ourselves through this near-awful workweek. 

Here's everything you need to know: 


1. Pro volleyball at Hermosa Beach

Video: NVL highlights

These people are serious about volleyball — and they look damn good doing it. Take a trip to Hermosa Beach this weekend, where the National Volleyball League will be hosting its fifth tour stop of the season. The championship will feature 32 elite men’s and women’s teams, all competing for a prize of $50,000. Come by at noon Saturday for a free juniors’ clinic (all ages welcome). Sign up here

When: Friday through Sunday | Schedule here

Where: Hermosa Beach Pier | MAP

Price: Free


2. #DTLA salsa dancing

Video: Music Center's Dance Downtown

We know you're dying to show off your salsa skills. Join dancers of all levels at the Music Center's last Dance Downtown of the summer on Friday night. Temps are dropping (hallelujah!) so pack a picnic and get movin'.

When: 6:30 to 10 p.m. Friday 

Where: The Music Center Plaza | MAP 

Price: Free


3. Shades and Shadows 

Looking for something a little different and a bit creepy? The reading series Shades and Shadows focuses solely on horror, sci-fi, fantasy and any other form of dark literature that you’re afraid to put down. To honor its one-year anniversary, the group will be haunting the California Institute of Abnormalarts. (Yes, this exists. It's in North Hollywood). Stop by for an all-female lineup, including Nancy Holder of "Buffy the Vampire Slayer" and the Internet's most famous morticianCaitlin Doughty.  

When: 8 p.m. Saturday

Where: California Institute of Abnormalarts | MAP

Price: $10


4. Oktoberfest at Angel City

It doesn't feel like fall. The sun is blazing and the thought of drinking a pumpkin-spice latte is just gross. That's why we're sipping on cold beer instead. Savor seasonal craft brews with sausage, sauerkraut and soft pretzels at Angel City Brewery's Oktoberfest on Sunday. Festivities will include keg races, live polka music, ping pong and brewery tours. The best part? You're drinking for a good cause — a portion of the event’s beer and retail store sales will go to the Downtown Women’s Center.

When: Noon to 8 p.m. Sunday

Where: Angel City Brewery | MAP

Price: Free admission


5. Monterey Park Night Market 

Video: Every food you ever wanted

Have your pick of tacos, sliders, pressed juice or even a sushi burrito at Monterey Park's Night Market on Friday. That's not all — other highlights include food and dessert from Sticky Rice and Ice Cream Lab. After indulging, walk it off while viewing funky art prints, interesting hand-painted rocks and L.A.-inspired oil pantings

When: 5:30 to 10:30 p.m. Friday

Where: Barnes Park | MAP

Price: Free admission; eat at your own will 


6. Friday Night Flicks 

Watch: The best of Johnny Depp

Take a break from Netflix and catch classic Johnny Depp in "Benny and Joon" at Pershing Square on Friday. Pack a picnic, bring a blanket or lawn chair and watch the '90s flick on a 20-foot inflatable screen. Pro tip: Dogs are welcome (if on a leash). For quick easy access to Pershing Square take the Metro (Pershing Square 5th street stop) or park in the Pershing Square Garage.

When: 8 p.m. Friday

Where: Pershing Square | MAP

Price: Free 


7. Kayaking in Malibu

(Photo: Benjamin Brayfield/KPCC)

Spend a leisurely day kayaking the waves of the Pacific. Head to Malibu Surf Shack and grab a one- or two-seater before staking your spot on Malibu Lagoon State Beach. The state park has shallow tide pools and a lagoon with pelicans — plus, it's home to the Malibu Pier. Pro tip: Wear sunscreen and don't drop your phone in the ocean while taking selfies, people.

When: The Surf Shack is open daily 10 a.m. to 6 p.m. 

Where: Malibu Lagoon State Beach | MAP

Price: $35 per day for single kayak; $50 per day for double kayak


8. Feline Film Festival 

Video: We are gonna have a cat party

Imagine watching "America's Funniest Home Videos," but every entry includes a cat. That's what's happening Sunday at the L.A. Feline Film Festival. Sit back and enjoy over an hour of the most popular feline flicks from the Internet. Special guests include Lil BubTara the Hero and Dusty Klepto Kitty. There will also be music, cat adoptions, a cat costume contest, food and drink. Pro tip: Cat flair is obviously encouraged.

When: 1 to 10 p.m. Sunday

Where: Exposition Park | MAP

Price: $15 admission; $15 parking | Purchase tix here


What'd we miss? Let me know on Twitter @KristenLepore.





mon

Simon Pegg fights 'beige' life in 'Hector and the Search for Happiness'

TORONTO, ON - SEPTEMBER 07: Actor Simon Pegg attends the "Hector and the Search for Happiness" premiere during the 2014 Toronto International Film Festival at Winter Garden Theatre on September 7, 2014 in Toronto, Canada. (Photo by Tommaso Boddi/Getty Images); Credit: Tommaso Boddi/Getty Images

British actor Simon Pegg has had the chance to take on some pretty fun roles. He’s battled zombies in Shaun of the Dead. He’s taken on the role of Scotty in the J.J. Abrams reboot of "Star Trek." And he plays an Impossible Missions Force technician alongside Tom Cruise in the Mission Impossible film series.

In his latest film release, Pegg plays Hector, a psychiatrist who decides his life is just too “beige,” so he sets out into the world to find out what makes people truly happy.

Pegg joins Take Two to talk about what Hector’s journey brings him in “Hector and the Search for Happiness.”

“Hector and the Search for Happiness” opens in the U.S. September 19th.

Interview Highlights:
 

On prepping to play the psychiatrist, Hector:

“Rosamund Pike and I…had dinner with a psychiatrist prior to starting shooting just to see, sort of, how he felt about dealing with people who have problems which aren’t necessarily, real problems, you know; which are what people call first world problems on Twitter.”

Why Hector sets out on his journey:

"I think Hector, at the beginning of the film, has a life that is very satisfactory; and to that degree, he’s unhappy…And, you know, what he learns is, you need more than that emotionally in your life to truly be happy. You know, if everything’s kind of just beige, you’re never going to be happy. You need to know misery, you need to know fear, and you need to know abandonment."

A little perspective:

"It was a very interesting thing to be shooting in Johannesburg, and to get out into…the townships…and see societies which contend with just abject poverty, and hardship everyday; but seeing so many smiles, and so many people genuinely joyful. And then get into the interior of Johannesburg, where there’s a lot of white people living in, sort of, gated communities, terrified...And see less smiles. It’s a very odd thing. And very, in keeping with the message of the film, which is, avoiding unhappiness is not the root to happiness.”

On his favorite emotion to convey as an actor – happiness, sadness, or anger:

“It’s a weird thing, I think, acting, sometimes. I sometimes almost resent it because you go through this sort of Pavlovian trauma sometimes because you have to recreate certain things that are sometimes a bit stressful.”

“Happiness is always a nice one because it’s fun to laugh on screen or to recreate moments of joy or euphoria, cause you do get a buzz from it, you know, you get this…vicarious, sort of, happiness in yourself. But that works as well for having to replicate sadness, or fear, or anger, or love even. “

“Your body thinks, ‘Oh, are we doing this now? Are we in love with someone here? Are we scared of something [laughs]?’ And you have to constantly intellectualize and remind your hormones that you’re actually – ‘No. This is fake, okay. You’re actually not about to die.’”




mon

Why Liam Neeson was 'very reluctant' to star in 'A Walk Among the Tombstones'

Liam Neeson stars as Matthew Scudder in "A Walk Among the Tombstones." ; Credit: Universal Pictures

Screenwriter and director Scott Frank has been trying to make “A Walk Among the Tombstones” for more than a decade, but it wasn't until Liam Neeson signed on that his efforts finally came into view.

Based on the Lawrence Block novel, “Tombstones” stars Liam Neeson as Matthew Scudder, an ex-cop working as an unlicensed private investigator. He agrees to help a well-to-do drug trafficker hunt down the kidnappers who have brutally murdered his wife.

 

Frank wrote the screenplay and, after the departures of other attached directors, Frank decided to step behind the cameras himself. 

When he came by The Frame studio, Frank spoke with host John Horn about Neeson's great strengths as an action hero and how he convinced Neeson to sign on to the project.

Interview Highlights:

 

John Horn: Liam Neeson has evolved in a fascinating way as an action hero. When did you start having conversations with him about this movie, and what was it about him as an actor that made it feel like the right fit?

"Well, what's interesting is that Larry Block, the novelist, had always said, going way back to 2003 or something, that the perfect actor for this, after [he saw] 'Michael Collins'...would be Liam Neeson. Chris Andrews, who is Liam's agent, always loved the script and was always trying to find a way to put it together, and he's the one who gave it to Liam back when D.J. [Caruso] was going to direct. So the first time I met Liam to talk about the movie, I was talking to him as the writer, not as the director of the movie. And then when D.J. fell out to go do a different movie at Sony...we had a conversation about directing the movie.

JH: Was this before or after the first "Taken" had come out?

This was well after the first 'Taken,' this was right before the second 'Taken.'

JH: So Liam is...succeeding as a version of that character, and I wonder if that success cuts both ways, that maybe there's a reluctance on his part to not do something that's quite as similar? Or is that part of your conversation that you have with him? 

It absolutely cuts both ways, and that was a huge part of the conversation because there's a kidnapping in this story, and there he is on the telephone for a few minutes at the end of the movie talking to kidnappers, and there are similarities [to 'Taken']. And he knew that was the way to sell the movie, and so he was very reluctant. And I talked to him and I had him watch 'Klute,' and I said, "That's the movie we're gonna make. We're not going to make 'Taken,' we're going to make a movie that's like 'Klute,' or a little bit like 'Dirty Harry,' or one of those old-school '70s films. It's going to feel more like that than an action movie."

 

 

JH: Liam Neeson's not physically imposing, but there's something about him that really kind of makes the hair on the back of your neck stand up. What is it about him as an actor in this kind of part?

Well, there's a couple things. One: you believe him. No matter what he's talking about, it seems authentic and true...he has this thing about him that, whatever he's doing, you believe him. Two: he's one of those actors like Gene Hackman where he can convey exposition and make it feel like character. He can talk pages of exposition and make it all feel like it's character and drama — it's a great thing. The other thing about him is that he has this real gravitas, and it almost borders on sadness sometimes; it's interesting when you watch him and you feel like there's all this other life going on behind him.

JH: That he has nothing to lose, in other words.

Nothing to lose, and he says that at one point in the film, but I think it's those things that are all at work at the same time.




mon

Benmont Tench - of Tom Petty and the Heartbreakers - says goodbye to John with the most Off-Rampy song ever

; Credit: John Rabe/KPCC

John Rabe | Off-Ramp®

Off-Ramp fan, KPCC member (!), and Tom Petty and Heartbreakers keyboardist Benmont Tench III joined John in his old Mercedes with his large, but portable Casio.

Tench has lived in the hills of Tarzana for decades, in a perfectly good house, but in the 100-degree heat, John outfitted his car with condenser mikes to record a farewell ode to Off-Ramp, Tench's "Like the Sun."

The full band version of Benmont Tench III's "Like the Sun"

"Like the Sun" helped Tench get back in the songwriting groove a decade ago after he burnt out on being professional songwriter in Nashville. He based the lyrics on tours of Los Angeles given to him by a friend, and takes the listener (with his Southern accent) from a restaurant called Michoacan to a hill top tent city. Tench also told John how he and his wife Alice explore Los Angeles.

 

This content is from Southern California Public Radio. View the original story at SCPR.org.




mon

Mayor Garcetti's Q&A in John's car was almost over... until Hizzoner saw the backgammon game

Off-Ramp host John Rabe and Mayor Eric Garcetti playing backgammon in John’s car. Julian “The First Lady of Off-Ramp” Bermudez in the passenger seat with camera. ; Credit: Andrea Garcia

John Rabe | Off-Ramp®

John Rabe’s last show coincides with Eric Garcetti’s inauguration for his second term as Mayor of Los Angeles. In John's car, the two talked about:

  • The joys of exploring Los Angeles
  • The time the future Mayor's mom and dad took his drivers' license away
  • Where Justin Trudeau should visit when he comes to LA
  • And how the drop in crime has led to more people doing the Off-Ramp thing

The Mayor also did some slam poetry, and then played a competitive game of backgammon. Listen with the audio player to see who was brown and who was white. And listen to Off-Ramp on the radio to find out who won the game! (Saturday at noon/Sunday at 6pm)

This content is from Southern California Public Radio. View the original story at SCPR.org.




mon

Genetic redundancy aids competition among symbiotic bacteria in squid

Full Text:

The molecular mechanism used by many bacteria to kill neighboring cells has redundancy built into its genetic makeup, which could allow for the mechanism to be expressed in different environments, say researchers at Penn State and the University of Wisconsin-Madison. Their new study provides insights into the molecular mechanisms of competition among bacteria. "Many organisms, including humans, acquire bacteria from their environment," said Tim Miyashiro, a biochemist and molecular biologist at Penn State and the leader of the research team. "These bacteria can contribute to functions within the host organism, like how our gut bacteria help us digest food. We're interested in the interactions among bacteria cells, and between bacteria and their hosts, to better understand these mutually beneficial symbiotic relationships." Cells of the bioluminescent bacteria Vibrio fisheri take up residence in the light organ of newly hatched bobtail squid. At night, the bacteria produce a blue glow that researchers believe obscures a squid's silhouette and helps protect it from predators. The light organ has pockets, or crypts, in the squid's skin that provide nutrients and a safe environment for the bacteria. "When the squid hatches, it doesn't yet have any bacteria in its light organ," said Miyashiro. "But bacteria in the environment quickly colonize the squid's light organ." Some of these different bacteria strains can coexist, but others can't. "Microbial symbioses are essentially universal in animals, and are crucial to the health and development of both partners," says Irwin Forseth, a program director in the National Science Foundation's Division of Integrative Organismal Systems, which funded the research. "The results from this study highlight the role small genetic changes can play in microbe interactions. Increased understanding will allow us to better predict organisms' performance in changing environments."

Image credit: Andrew Cecere