pipe

Global Chess League: Nihal’s draw stands, SG Pipers’ appeal to reverse result rejected




pipe

Global Chess League: Pipers stun Knights




pipe

Global Chess League: Defending champion Triveni Continental Kings reach final, edging out Alpine SG Pipers

Continental Kings will defend its crown against PBG Alaskan Knights.




pipe

Design, synthesis, and evaluation of benzhydrylpiperazine-based novel dual COX-2/5-LOX inhibitors with anti-inflammatory and anti-cancer activity

RSC Med. Chem., 2024, Advance Article
DOI: 10.1039/D4MD00471J, Research Article
Poorvi Saraf, Bhagwati Bhardwaj, Akash Verma, Mohammad Aquib Siddiqui, Himanshu Verma, Pradeep Kumar, Samridhi Srivastava, Sairam Krishnamurthy, Saripella Srikrishna, Sushant Kumar Shrivastava
Screening piperazine derivatives via ChEMBL database led to the design and synthesis of novel dual COX-2/5-LOX inhibitors with strong anti-inflammatory, analgesic, and anti-cancer activity.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




pipe

Miniaturized click chemistry and direct screening facilitate the discovery of triazole piperazine SARS-CoV-2 Mpro inhibitors with improved metabolic stability

RSC Med. Chem., 2024, Advance Article
DOI: 10.1039/D4MD00555D, Research Article
Shenghua Gao, Letian Song, Bing Ye, Mianling Yang, Junyi Li, Manyu Gu, Ann E. Tollefson, Karoly Toth, Peng Zhan, Xinyong Liu
The continuous mutational nature of SARS-CoV-2 and its inter-species' similarities emphasize the urgent need to design and develop more direct-acting antiviral agents against highly infectious variants.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




pipe

Lilly boosts immunotherapy pipeline with Armo BioSciences acquisition

The drug company will pay $1.6 billion to gain Armo’s IL-10 program




pipe

Sadara plans pipeline for ethylene and propylene oxide




pipe

Paper describing piperlongumine anticancer activity retracted

Some coauthors dissent from withdrawal of report, for which key findings have been independently confirmed




pipe

Paper describing piperlongumine anticancer activity retracted

Some coauthors dissent from withdrawal of report, for which key findings have been independently confirmed




pipe

Sharp-tailed Sandpiper


I photographed this Sharp-tailed Sandpiper (Calidris acuminata) today near Stanhope in Victoria.




pipe

Zoetis to Participate in the 27th Annual Piper Jaffray Healthcare Conference




pipe

Halifax Water Generates Power from a 32-kW In-pipe Small Hydroelectric System

Halifax Regional Municipality of Nova Scotia, Canada, is the first Canadian city to use an in-pipe hydroelectric generation system within a pressurized water distribution pipeline, according to Halifax Water. On Nov. 13, a 32-kW generating system within a drinking water distribution control chamber for Halifax Water began providing power.




pipe

Harry Maguire's fiancée Fern Hawkins gives birth to their second daughter Piper Rose

The couple shared the news to Instagram on Saturday, with the Man United captain, 27, captioning a sweet hospital snap: Welcome to this crazy world baby girl. Piper Rose Maguire'




pipe

5 more COVID hospitals in the pipeline: Minister

Minister for Medical and Health Alla Kali Krishna Srinivas on Saturday said that five more private hospitals were designated as COVID-19 hospitals in




pipe

1,4-Bis(2-nitro­benz­yl)piperazine

The title compound, C18H20N4O4, was synthesized via the base-assisted reaction of piperazine and 2-nitro­benyl bromide in toluene: the complete mol­ecule is generated by a crystallographic inversion centre in the solid state.




pipe

4-Amino-6-(piperidin-1-yl)pyrimidine-5-carbo­nitrile

In the title compound, C10H13N5, the piperidine ring adopts a chair conformation with the exocyclic N—C bond in an axial orientation, and the dihedral angle between the mean planes of piperidine and pyrimidine rings is 49.57 (11)°. A short intra­molecular C—H⋯N contact generates an S(7) ring. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into (100) sheets and a weak aromatic π-π stacking inter­action is observed [centroid–centroid separation = 3.5559 (11) Å] between inversion-related pyrimidine rings.




pipe

2,6-Diphenyl-3-(prop-2-en-1-yl)piperidin-4-one

In the title compound, C20H21NO, the dihedral angle between the phenyl ring is 47.5 (1)° and the piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions into dimers with the mol­ecules related by twofold symmetry.




pipe

Crystal structures and Hirshfeld surface analysis of [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 and the product of its reaction with piperidine, [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br]

The coordination of the ligands with respect to the central atom in the complex bromido­tricarbon­yl[diphen­yl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloro­form disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 or [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3, (I·2CHCl3), is best described as a distorted octa­hedron with three carbonyls in a facial conformation, a bromide atom, and a biting P,N-di­phenyl­pyridyl­phosphine ligand. Hirshfeld surface analysis shows that C—Cl⋯H inter­actions contribute 26%, the distance of these inter­actions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C5H11N) at 313 K in di­chloro­methane leads to the partial decoord­ination of the pyridyl­phosphine ligand, whose pyridyl group is replaced by a piperidine mol­ecule, and the complex bromido­tricarbon­yl[diphen­yl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I), [ReBr(C5H11N)(C17H14NP)(CO)3] or [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II). The mol­ecule has an intra­molecular N—H⋯N hydrogen bond between the non-coordinated pyridyl nitro­gen atom and the amine hydrogen atom from piperidine with D⋯A = 2.992 (9) Å. Thermogravimetry shows that I·2CHCl3 losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloro­form mol­ecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridyl­phosphine. The contribution to the scattering from highly disordered solvent mol­ecules in II was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for Mr, μ etc. do not take this solvent into account.




pipe

Syntheses and structures of piperazin-1-ium ABr2 (A = Cs or Rb): hybrid solids containing `curtain wall' layers of face- and edge-sharing ABr6 trigonal prisms

The isostructural title compounds, poly[piperazin-1-ium [di-μ-bromido-caesium]], {(C4H11N2)[CsBr2]}n, and poly[piperazin-1-ium [di-μ-bromido-rubidium]], {(C4H11N2)[RbBr2]}n, contain singly-protonated piperazin-1-ium cations and unusual ABr6 (A = Cs or Rb) trigonal prisms. The prisms are linked into a distinctive `curtain wall' arrangement propagating in the (010) plane by face and edge sharing. In each case, a network of N—H⋯N, N—H⋯Br and N—H⋯(Br,Br) hydrogen bonds consolidates the structure.




pipe

Six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines: similar mol­ecular structures but different patterns of supra­molecular assembly

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O2, (I). The mol­ecules of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking inter­action. 1-(2-Chloro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19ClN2O2, (III), 1-(2-bromo­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodo­benzo­yl)-4-(4-meth­oxyphen­yl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. A single O—H⋯O hydrogen bond links the mol­ecules of 1-(2-hy­droxy­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds.




pipe

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions: supra­molecular assembly in one, two and three dimensions

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluoro­benzoate, 4-chloro­benzoate and 4-bromo­benzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-meth­oxy­phenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hy­droxy­benzoate, pyridine-3-carboxyl­ate and 2-hy­droxy-3,5-di­nitro­benzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) inter­actions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the tri­chloro­acetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds.




pipe

Crystal structure of (4-chloro­phen­yl)(4-methyl­piperidin-1-yl)methanone

The title compound, C13H16ClNO, contains a methyl­piperidine ring in the stable chair conformation. The mean plane of the twisted piperidine ring subtends a dihedral angle of 39.89 (7)° with that of the benzene ring. In the crystal, weak C—H⋯O inter­actions link the mol­ecules along the a-axis direction to form infinite mol­ecular chains. H⋯H inter­atomic inter­actions, C—H⋯O inter­molecular inter­actions and weak dispersive forces stabilize mol­ecular packing and form a supra­molecular network, as established by Hirshfeld surface analysis.




pipe

Crystal structure, Hirshfeld surface analysis and DFT studies of 1-[r-2,c-6-diphenyl-t-3-(propan-2-yl)piperidin-1-yl]ethan-1-one

In the title compound, C22H27NO, the piperidine ring adopts a chair conformation. The dihedral angles between the mean plane of the piperidine ring and the phenyl rings are 89.78 (7) and 48.30 (8)°. In the crystal, mol­ecules are linked into chains along the b-axis direction by C—H⋯O hydrogen bonds. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. The mol­ecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions in the mol­ecule.




pipe

Crystal structures of the recreational drug N-(4-meth­oxy­phen­yl)piperazine (MeOPP) and three of its salts

Crystal structures are reported for N-(4-meth­oxy­phen­yl)piperazine (MeOPP), (I), and for its 3,5-di­nitro­benzoate, 2,4,6-tri­nitro­phenolate (picrate) and 4-amino­benzoate salts, (II)–(IV), the last of which crystallizes as a monohydrate. In MeOPP, C11H16N2O, (I), the 4-meth­oxy­phenyl group is nearly planar and it occupies an equatorial site on the piperazine ring: the mol­ecules are linked into simple C(10) chains by N—H⋯O hydrogen bonds. In each of the salts, i.e., C11H17N2O+·C7H3N2O6−, (II), C11H17N2O+·C6H2N3O7−, (III), and C11H17N2O+·C7H6NO2−·H2O, (IV), the effectively planar 4-meth­oxy­phenyl substituent again occupies an equatorial site on the piperazine ring. In (II), two of the nitro groups are disordered over two sets of atomic sites and the bond distances in the anion indicate considerable delocalization of the negative charge over the C atoms of the ring. The ions in (II) are linked by two N—H⋯O hydrogen bonds to form a cyclic, centrosymmetric four-ion aggregate; those in (III) are linked by a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds to form sheets; and the components of (IV) are linked by N—H⋯O, O—H⋯O and C—H⋯π(arene) hydrogen bonds to form a three-dimensional framework structure. Comparisons are made with the structures of some related compounds.




pipe

Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-butyl-2,6-bis­(4-fluoro­phen­yl)piperidin-4-one

The title compound, C21H23F2NO, consists of two fluoro­phenyl groups and one butyl group equatorially oriented on a piperidine ring, which adopts a chair conformation. The dihedral angle between the mean planes of the phenyl rings is 72.1 (1)°. In the crystal, N—H⋯O and weak C—H⋯F inter­actions, which form R22[14] motifs, link the mol­ecules into infinite C(6) chains propagating along [001]. A weak C—H⋯π inter­action is also observed. A Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H⋯H (53.3%), H⋯C/C⋯H (19.1%), H⋯F/F⋯H (15.7%) and H⋯O/O⋯H (7.7%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure in the solid state and used to determine the HOMO–LUMO energy gap and compare it to the UV–vis experimental spectrum.




pipe

Syntheses and crystal structures of two piperine derivatives

The title compounds, 5-(2H-1,3-benzodioxol-5-yl)-N-cyclo­hexyl­penta-2,4-dienamide, C18H21NO3 (I), and 5-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one C16H17NO3 (II), are derivatives of piperine, which is known as a pungent component of pepper. Their geometrical parameters are similar to those of the three polymorphs of piperine, which indicate conjugation of electrons over the length of the mol­ecules. The extended structure of (I) features N—H⋯O amide hydrogen bonds, which generate C(4) [010] chains. The crystal of (II) features aromatic π–π stacking, as for two of three known piperine polymorphs.




pipe

Consistency and variability of cocrystals containing positional isomers: the self-assembly evolution mechanism of supramolecular synthons of cresol–piperazine

The disposition of functional groups can induce variations in the nature and type of interactions and hence affect the molecular recognition and self-assembly mechanism in cocrystals. To better understand the formation of cocrystals on a molecular level, the effects of disposition of functional groups on the formation of cocrystals were systematically and comprehensively investigated using cresol isomers (o-, m-, p-cresol) as model compounds. Consistency and variability in these cocrystals containing positional isomers were found and analyzed. The structures, molecular recognition and self-assembly mechanism of supramolecular synthons in solution and in their corresponding cocrystals were verified by a combined experimental and theoretical calculation approach. It was found that the heterosynthons (heterotrimer or heterodimer) combined with O—H⋯N hydrogen bonding played a significant role. Hirshfeld surface analysis and computed interaction energy values were used to determine the hierarchical ordering of the weak interactions. The quantitative analyses of charge transfers and molecular electrostatic potential were also applied to reveal and verify the reasons for consistency and variability. Finally, the molecular recognition, self-assembly and evolution process of the supramolecular synthons in solution were investigated. The results confirm that the supramolecular synthon structures formed initially in solution would be carried over to the final cocrystals, and the supramolecular synthon structures are the precursors of cocrystals and the information memory of the cocrystallization process, which is evidence for classical nucleation theory.




pipe

The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase

Single-particle electron cryo-microscopy (cryoEM) has undergone a `resolution revolution' that makes it possible to characterize megadalton (MDa) complexes at atomic resolution without crystals. To fully exploit the new opportunities in molecular microscopy, new procedures for the cloning, expression and purification of macromolecular complexes need to be explored. Macromolecular assemblies are often unstable, and invasive construct design or inadequate purification conditions and sample-preparation methods can result in disassembly or denaturation. The structure of the 2.6 MDa yeast fatty acid synthase (FAS) has been studied by electron microscopy since the 1960s. Here, a new, streamlined protocol for the rapid production of purified yeast FAS for structure determination by high-resolution cryoEM is reported. Together with a companion protocol for preparing cryoEM specimens on a hydrophilized graphene layer, the new protocol yielded a 3.1 Å resolution map of yeast FAS from 15 000 automatically picked particles within a day. The high map quality enabled a complete atomic model of an intact fungal FAS to be built.




pipe

The crystal structure and Hirshfeld surface analysis of 1-(2,5-di­meth­oxy­phen­yl)-2,2,6,6-tetra­methyl­piperidine

The title compound, 1-(2,5-di­meth­oxy­phen­yl)-2,2,6,6-tetra­methyl­piperidine, was synthesized as a side-product during the synthesis of the inter­mediate, methyl 3,6-dimeth­oxy-2-(2-meth­oxy-2-oxoeth­yl)benzoate, necessary for the total synthesis of the isocoumarin 5,8-dimeth­oxy-3-methyl-1H-isochromen-1-one.




pipe

The crystal structure and Hirshfeld surface analysis of 1-(2,5-dimethoxyphenyl)-2,2,6,6-tetramethylpiperidine

In the title compound, C17H27NO2, the piperidine ring has a chair conformation and is positioned normal to the benzene ring. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming chains propagating along the c-axis direction.




pipe

New Research Needed to Improve Detection, Identification Techniques for Finding Pipe Bombs, Catching Bomb Makers

Increased research is the key to developing more widely applicable detection systems to find pipe bombs before they explode and to help catch the perpetrators when a bomb has gone off, says a new report from a committee of the National Research Council.




pipe

Glenbrook Road Closure October 29 - November 1 - Detour in place during pipe replacement and storm drain work

MANTUA – Glenbrook Road between Little River Turnpike (Route 236) and Denise Lane will be closed to through traffic from 9 a.m. Monday, Oct. 29 to 5...




pipe

Oil spill in Yellowstone River is latest pipeline accident

An accident in Montana is the latest in a long and troubled line of pipeline incidents in America.



  • Wilderness & Resources

pipe

'Pipe Dreams': How TransCanada's Keystone XL oil pipeline endangers America

Narrator Daryl Hannah, filmmaker Leslie Iwerks and others discuss the Keystone XL pipeline battle in 'Pipe Dreams.'



  • Arts & Culture

pipe

NASA climate scientist arrested in Keystone XL pipeline protest

Climate scientist James Hansen was arrested on Feb. 13 outside the White House while protesting the Keystone Pipeline.




pipe

Standing Rock protesters celebrate as pipeline is halted

Protesters celebrate in North Dakota as the Army halts the Dakota Access pipeline, but many of them still aren't leaving.



  • Wilderness & Resources

pipe

Another pipeline spill makes for another political battle

Pipeline spills aren't good for the environment and they aren't good for politics. They are especially bad for business.




pipe

Pipeline is great concern to Great Plains

Expansion of the TransCanada pipeline is coming with a few complaints — not what the company wants to hear these days.




pipe

Tar sands pipeline losing steam

A year ago, it seemed that the construction of a 1,700-mile pipeline connecting northern Alberta with the United States was all but a certainty. Now, it feels l




pipe

Hillary Clinton sued over communications about proposed pipeline

Environmental groups sue State Department about contact that Clinton and a pipeline lobbyist (and former aid) may have had.




pipe

Another snag for the Keystone XL pipeline

Five Nebraska lawmakers say there is no rush to approve a massive pipeline that could damage the environment.




pipe

Daryl Hannah on her arrest, oil pipeline

Daryl Hannah landed in jail Tuesday while protesting a planned oil pipeline that would stretch from Canada to the U.S. Gulf Coast. The actress has been released



  • Arts & Culture

pipe

Kyra Sedgwick urges president to reject Keystone pipeline

Actress partners with Natural Resources Defense Council, asking people to join her in opposing the $7 billion project.



  • Arts & Culture

pipe

Emails show cozy ties in pipeline review

An environmental group obtains emails that it says show "bias and complicity" in a government review of the proposed Keystone XL pipeline.




pipe

Obama to reject Keystone XL pipeline

The State Department has denied the proposed oil pipeline from Canada, heading off a congressionally mandated deadline of Feb. 21.




pipe

Daryl Hannah arrested protesting oil pipeline

Actress Daryl Hannah and landowner Eleanor Fairchild were taken into custody after standing in the way of heavy equipment being used to build the southern porti



  • Arts & Culture

pipe

Obama needs to face climate change, reject Keystone pipeline

Climate activist Bill McKibben says now is the time for the Obama administration to stand up to the richest industry on Earth.




pipe

Could pipeline money bias Susan Rice?

The U.N. ambassador is considered a top candidate for secretary of State, but her stock in the firm behind the Keystone XL oil pipeline has raised eyebrows.




pipe

A child sees through the emperor's new pipeline

David Lillard writes about how his son's questions about the Keystone XL Pipeline led him to learn something new.




pipe

Pipeline spills call attention to Keystone XL

From Michigan to Arkansas, a series of recent oil spills have raised doubts about the proposed Keystone XL oil pipeline.



  • Wilderness & Resources