tor

On Rearrangement of Items Stored in Stacks. (arXiv:2002.04979v2 [cs.RO] UPDATED)

There are $n ge 2$ stacks, each filled with $d$ items, and one empty stack. Every stack has capacity $d > 0$. A robot arm, in one stack operation (step), may pop one item from the top of a non-empty stack and subsequently push it onto a stack not at capacity. In a {em labeled} problem, all $nd$ items are distinguishable and are initially randomly scattered in the $n$ stacks. The items must be rearranged using pop-and-pushs so that in the end, the $k^{ m th}$ stack holds items $(k-1)d +1, ldots, kd$, in that order, from the top to the bottom for all $1 le k le n$. In an {em unlabeled} problem, the $nd$ items are of $n$ types of $d$ each. The goal is to rearrange items so that items of type $k$ are located in the $k^{ m th}$ stack for all $1 le k le n$. In carrying out the rearrangement, a natural question is to find the least number of required pop-and-pushes.

Our main contributions are: (1) an algorithm for restoring the order of $n^2$ items stored in an $n imes n$ table using only $2n$ column and row permutations, and its generalization, and (2) an algorithm with a guaranteed upper bound of $O(nd)$ steps for solving both versions of the stack rearrangement problem when $d le lceil cn ceil$ for arbitrary fixed positive number $c$. In terms of the required number of steps, the labeled and unlabeled version have lower bounds $Omega(nd + nd{frac{log d}{log n}})$ and $Omega(nd)$, respectively.




tor

Space-Efficient Vertex Separators for Treewidth. (arXiv:1907.00676v3 [cs.DS] UPDATED)

For $n$-vertex graphs with treewidth $k = O(n^{1/2-epsilon})$ and an arbitrary $epsilon>0$, we present a word-RAM algorithm to compute vertex separators using only $O(n)$ bits of working memory. As an application of our algorithm, we give an $O(1)$-approximation algorithm for tree decomposition. Our algorithm computes a tree decomposition in $c^k n (log log n) log^* n$ time using $O(n)$ bits for some constant $c > 0$.

We finally use the tree decomposition obtained by our algorithm to solve Vertex Cover, Independent Set, Dominating Set, MaxCut and $3$-Coloring by using $O(n)$ bits as long as the treewidth of the graph is smaller than $c' log n$ for some problem dependent constant $0 < c' < 1$.




tor

Defending Hardware-based Malware Detectors against Adversarial Attacks. (arXiv:2005.03644v1 [cs.CR])

In the era of Internet of Things (IoT), Malware has been proliferating exponentially over the past decade. Traditional anti-virus software are ineffective against modern complex Malware. In order to address this challenge, researchers have proposed Hardware-assisted Malware Detection (HMD) using Hardware Performance Counters (HPCs). The HPCs are used to train a set of Machine learning (ML) classifiers, which in turn, are used to distinguish benign programs from Malware. Recently, adversarial attacks have been designed by introducing perturbations in the HPC traces using an adversarial sample predictor to misclassify a program for specific HPCs. These attacks are designed with the basic assumption that the attacker is aware of the HPCs being used to detect Malware. Since modern processors consist of hundreds of HPCs, restricting to only a few of them for Malware detection aids the attacker. In this paper, we propose a Moving target defense (MTD) for this adversarial attack by designing multiple ML classifiers trained on different sets of HPCs. The MTD randomly selects a classifier; thus, confusing the attacker about the HPCs or the number of classifiers applied. We have developed an analytical model which proves that the probability of an attacker to guess the perfect HPC-classifier combination for MTD is extremely low (in the range of $10^{-1864}$ for a system with 20 HPCs). Our experimental results prove that the proposed defense is able to improve the classification accuracy of HPC traces that have been modified through an adversarial sample generator by up to 31.5%, for a near perfect (99.4%) restoration of the original accuracy.




tor

A Reduced Basis Method For Fractional Diffusion Operators II. (arXiv:2005.03574v1 [math.NA])

We present a novel numerical scheme to approximate the solution map $smapsto u(s) := mathcal{L}^{-s}f$ to partial differential equations involving fractional elliptic operators. Reinterpreting $mathcal{L}^{-s}$ as interpolation operator allows us to derive an integral representation of $u(s)$ which includes solutions to parametrized reaction-diffusion problems. We propose a reduced basis strategy on top of a finite element method to approximate its integrand. Unlike prior works, we deduce the choice of snapshots for the reduced basis procedure analytically. Avoiding further discretization, the integral is interpreted in a spectral setting to evaluate the surrogate directly. Its computation boils down to a matrix approximation $L$ of the operator whose inverse is projected to a low-dimensional space, where explicit diagonalization is feasible. The universal character of the underlying $s$-independent reduced space allows the approximation of $(u(s))_{sin(0,1)}$ in its entirety. We prove exponential convergence rates and confirm the analysis with a variety of numerical examples.

Further improvements are proposed in the second part of this investigation to avoid inversion of $L$. Instead, we directly project the matrix to the reduced space, where its negative fractional power is evaluated. A numerical comparison with the predecessor highlights its competitive performance.




tor

Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. (arXiv:2005.03572v1 [cs.CV])

Deep learning-based object detection and instance segmentation have achieved unprecedented progress. In this paper, we propose Complete-IoU (CIoU) loss and Cluster-NMS for enhancing geometric factors in both bounding box regression and Non-Maximum Suppression (NMS), leading to notable gains of average precision (AP) and average recall (AR), without the sacrifice of inference efficiency. In particular, we consider three geometric factors, i.e., overlap area, normalized central point distance and aspect ratio, which are crucial for measuring bounding box regression in object detection and instance segmentation. The three geometric factors are then incorporated into CIoU loss for better distinguishing difficult regression cases. The training of deep models using CIoU loss results in consistent AP and AR improvements in comparison to widely adopted $ell_n$-norm loss and IoU-based loss. Furthermore, we propose Cluster-NMS, where NMS during inference is done by implicitly clustering detected boxes and usually requires less iterations. Cluster-NMS is very efficient due to its pure GPU implementation, , and geometric factors can be incorporated to improve both AP and AR. In the experiments, CIoU loss and Cluster-NMS have been applied to state-of-the-art instance segmentation (e.g., YOLACT), and object detection (e.g., YOLO v3, SSD and Faster R-CNN) models. Taking YOLACT on MS COCO as an example, our method achieves performance gains as +1.7 AP and +6.2 AR$_{100}$ for object detection, and +0.9 AP and +3.5 AR$_{100}$ for instance segmentation, with 27.1 FPS on one NVIDIA GTX 1080Ti GPU. All the source code and trained models are available at https://github.com/Zzh-tju/CIoU




tor

High Performance Interference Suppression in Multi-User Massive MIMO Detector. (arXiv:2005.03466v1 [cs.OH])

In this paper, we propose a new nonlinear detector with improved interference suppression in Multi-User Multiple Input, Multiple Output (MU-MIMO) system. The proposed detector is a combination of the following parts: QR decomposition (QRD), low complexity users sorting before QRD, sorting-reduced (SR) K-best method and minimum mean square error (MMSE) pre-processing. Our method outperforms a linear interference rejection combining (IRC, i.e. MMSE naturally) method significantly in both strong interference and additive white noise scenarios with both ideal and real channel estimations. This result has wide application importance for scenarios with strong interference, i.e. when co-located users utilize the internet in stadium, highway, shopping center, etc. Simulation results are presented for the non-line of sight 3D-UMa model of 5G QuaDRiGa 2.0 channel for 16 highly correlated single-antenna users with QAM16 modulation in 64 antennas of Massive MIMO system. The performance was compared with MMSE and other detection approaches.




tor

Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY])

Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm.




tor

DramaQA: Character-Centered Video Story Understanding with Hierarchical QA. (arXiv:2005.03356v1 [cs.CL])

Despite recent progress on computer vision and natural language processing, developing video understanding intelligence is still hard to achieve due to the intrinsic difficulty of story in video. Moreover, there is not a theoretical metric for evaluating the degree of video understanding. In this paper, we propose a novel video question answering (Video QA) task, DramaQA, for a comprehensive understanding of the video story. The DramaQA focused on two perspectives: 1) hierarchical QAs as an evaluation metric based on the cognitive developmental stages of human intelligence. 2) character-centered video annotations to model local coherence of the story. Our dataset is built upon the TV drama "Another Miss Oh" and it contains 16,191 QA pairs from 23,928 various length video clips, with each QA pair belonging to one of four difficulty levels. We provide 217,308 annotated images with rich character-centered annotations, including visual bounding boxes, behaviors, and emotions of main characters, and coreference resolved scripts. Additionally, we provide analyses of the dataset as well as Dual Matching Multistream model which effectively learns character-centered representations of video to answer questions about the video. We are planning to release our dataset and model publicly for research purposes and expect that our work will provide a new perspective on video story understanding research.




tor

Bitvector-aware Query Optimization for Decision Support Queries (extended version). (arXiv:2005.03328v1 [cs.DB])

Bitvector filtering is an important query processing technique that can significantly reduce the cost of execution, especially for complex decision support queries with multiple joins. Despite its wide application, however, its implication to query optimization is not well understood.

In this work, we study how bitvector filters impact query optimization. We show that incorporating bitvector filters into query optimization straightforwardly can increase the plan space complexity by an exponential factor in the number of relations in the query. We analyze the plans with bitvector filters for star and snowflake queries in the plan space of right deep trees without cross products. Surprisingly, with some simplifying assumptions, we prove that, the plan of the minimal cost with bitvector filters can be found from a linear number of plans in the number of relations in the query. This greatly reduces the plan space complexity for such queries from exponential to linear.

Motivated by our analysis, we propose an algorithm that accounts for the impact of bitvector filters in query optimization. Our algorithm optimizes the join order for an arbitrary decision support query by choosing from a linear number of candidate plans in the number of relations in the query. We implement our algorithm in Microsoft SQL Server as a transformation rule. Our evaluation on both industry standard benchmarks and customer workload shows that, compared with the original Microsoft SQL Server, our technique reduces the total CPU execution time by 22%-64% for the workloads, with up to two orders of magnitude reduction in CPU execution time for individual queries.




tor

Database Traffic Interception for Graybox Detection of Stored and Context-Sensitive XSS. (arXiv:2005.03322v1 [cs.CR])

XSS is a security vulnerability that permits injecting malicious code into the client side of a web application. In the simplest situations, XSS vulnerabilities arise when a web application includes the user input in the web output without due sanitization. Such simple XSS vulnerabilities can be detected fairly reliably with blackbox scanners, which inject malicious payload into sensitive parts of HTTP requests and look for the reflected values in the web output.

Contemporary blackbox scanners are not effective against stored XSS vulnerabilities, where the malicious payload in an HTTP response originates from the database storage of the web application, rather than from the associated HTTP request. Similarly, many blackbox scanners do not systematically handle context-sensitive XSS vulnerabilities, where the user input is included in the web output after a transformation that prevents the scanner from recognizing the original value, but does not sanitize the value sufficiently. Among the combination of two basic data sources (stored vs reflected) and two basic vulnerability patterns (context sensitive vs not so), only one is therefore tested systematically by state-of-the-art blackbox scanners.

Our work focuses on systematic coverage of the three remaining combinations. We present a graybox mechanism that extends a general purpose database to cooperate with our XSS scanner, reporting and injecting the test inputs at the boundary between the database and the web application. Furthermore, we design a mechanism for identifying the injected inputs in the web output even after encoding by the web application, and check whether the encoding sanitizes the injected inputs correctly in the respective browser context. We evaluate our approach on eight mature and technologically diverse web applications, discovering previously unknown and exploitable XSS flaws in each of those applications.




tor

Coding for Optimized Writing Rate in DNA Storage. (arXiv:2005.03248v1 [cs.IT])

A method for encoding information in DNA sequences is described. The method is based on the precision-resolution framework, and is aimed to work in conjunction with a recently suggested terminator-free template independent DNA synthesis method. The suggested method optimizes the amount of information bits per synthesis time unit, namely, the writing rate. Additionally, the encoding scheme studied here takes into account the existence of multiple copies of the DNA sequence, which are independently distorted. Finally, quantizers for various run-length distributions are designed.




tor

A Separation Theorem for Joint Sensor and Actuator Scheduling with Guaranteed Performance Bounds. (arXiv:2005.03143v1 [eess.SY])

We study the problem of jointly designing a sparse sensor and actuator schedule for linear dynamical systems while guaranteeing a control/estimation performance that approximates the fully sensed/actuated setting. We further prove a separation principle, showing that the problem can be decomposed into finding sensor and actuator schedules separately. However, it is shown that this problem cannot be efficiently solved or approximated in polynomial, or even quasi-polynomial time for time-invariant sensor/actuator schedules; instead, we develop deterministic polynomial-time algorithms for a time-varying sensor/actuator schedule with guaranteed approximation bounds. Our main result is to provide a polynomial-time joint actuator and sensor schedule that on average selects only a constant number of sensors and actuators at each time step, irrespective of the dimension of the system. The key idea is to sparsify the controllability and observability Gramians while providing approximation guarantees for Hankel singular values. This idea is inspired by recent results in theoretical computer science literature on sparsification.




tor

Near-optimal Detector for SWIPT-enabled Differential DF Relay Networks with SER Analysis. (arXiv:2005.03096v1 [cs.IT])

In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state informations (CSIs) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the approximate maximum-likelihood detector. Existing works rely on Monte-Carlo simulation to show that there exists an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an accurate approximate SER expression, based on which the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation.




tor

AIOps for a Cloud Object Storage Service. (arXiv:2005.03094v1 [cs.DC])

With the growing reliance on the ubiquitous availability of IT systems and services, these systems become more global, scaled, and complex to operate. To maintain business viability, IT service providers must put in place reliable and cost efficient operations support. Artificial Intelligence for IT Operations (AIOps) is a promising technology for alleviating operational complexity of IT systems and services. AIOps platforms utilize big data, machine learning and other advanced analytics technologies to enhance IT operations with proactive actionable dynamic insight.

In this paper we share our experience applying the AIOps approach to a production cloud object storage service to get actionable insights into system's behavior and health. We describe a real-life production cloud scale service and its operational data, present the AIOps platform we have created, and show how it has helped us resolving operational pain points.




tor

Robust Trajectory and Transmit Power Optimization for Secure UAV-Enabled Cognitive Radio Networks. (arXiv:2005.03091v1 [cs.IT])

Cognitive radio is a promising technology to improve spectral efficiency. However, the secure performance of a secondary network achieved by using physical layer security techniques is limited by its transmit power and channel fading. In order to tackle this issue, a cognitive unmanned aerial vehicle (UAV) communication network is studied by exploiting the high flexibility of a UAV and the possibility of establishing line-of-sight links. The average secrecy rate of the secondary network is maximized by robustly optimizing the UAV's trajectory and transmit power. Our problem formulation takes into account two practical inaccurate location estimation cases, namely, the worst case and the outage-constrained case. In order to solve those challenging non-convex problems, an iterative algorithm based on $mathcal{S}$-Procedure is proposed for the worst case while an iterative algorithm based on Bernstein-type inequalities is proposed for the outage-constrained case. The proposed algorithms can obtain effective suboptimal solutions of the corresponding problems. Our simulation results demonstrate that the algorithm under the outage-constrained case can achieve a higher average secrecy rate with a low computational complexity compared to that of the algorithm under the worst case. Moreover, the proposed schemes can improve the secure communication performance significantly compared to other benchmark schemes.




tor

A Multifactorial Optimization Paradigm for Linkage Tree Genetic Algorithm. (arXiv:2005.03090v1 [cs.NE])

Linkage Tree Genetic Algorithm (LTGA) is an effective Evolutionary Algorithm (EA) to solve complex problems using the linkage information between problem variables. LTGA performs well in various kinds of single-task optimization and yields promising results in comparison with the canonical genetic algorithm. However, LTGA is an unsuitable method for dealing with multi-task optimization problems. On the other hand, Multifactorial Optimization (MFO) can simultaneously solve independent optimization problems, which are encoded in a unified representation to take advantage of the process of knowledge transfer. In this paper, we introduce Multifactorial Linkage Tree Genetic Algorithm (MF-LTGA) by combining the main features of both LTGA and MFO. MF-LTGA is able to tackle multiple optimization tasks at the same time, each task learns the dependency between problem variables from the shared representation. This knowledge serves to determine the high-quality partial solutions for supporting other tasks in exploring the search space. Moreover, MF-LTGA speeds up convergence because of knowledge transfer of relevant problems. We demonstrate the effectiveness of the proposed algorithm on two benchmark problems: Clustered Shortest-Path Tree Problem and Deceptive Trap Function. In comparison to LTGA and existing methods, MF-LTGA outperforms in quality of the solution or in computation time.




tor

Exploratory Analysis of Covid-19 Tweets using Topic Modeling, UMAP, and DiGraphs. (arXiv:2005.03082v1 [cs.SI])

This paper illustrates five different techniques to assess the distinctiveness of topics, key terms and features, speed of information dissemination, and network behaviors for Covid19 tweets. First, we use pattern matching and second, topic modeling through Latent Dirichlet Allocation (LDA) to generate twenty different topics that discuss case spread, healthcare workers, and personal protective equipment (PPE). One topic specific to U.S. cases would start to uptick immediately after live White House Coronavirus Task Force briefings, implying that many Twitter users are paying attention to government announcements. We contribute machine learning methods not previously reported in the Covid19 Twitter literature. This includes our third method, Uniform Manifold Approximation and Projection (UMAP), that identifies unique clustering-behavior of distinct topics to improve our understanding of important themes in the corpus and help assess the quality of generated topics. Fourth, we calculated retweeting times to understand how fast information about Covid19 propagates on Twitter. Our analysis indicates that the median retweeting time of Covid19 for a sample corpus in March 2020 was 2.87 hours, approximately 50 minutes faster than repostings from Chinese social media about H7N9 in March 2013. Lastly, we sought to understand retweet cascades, by visualizing the connections of users over time from fast to slow retweeting. As the time to retweet increases, the density of connections also increase where in our sample, we found distinct users dominating the attention of Covid19 retweeters. One of the simplest highlights of this analysis is that early-stage descriptive methods like regular expressions can successfully identify high-level themes which were consistently verified as important through every subsequent analysis.




tor

Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality. (arXiv:2005.03074v1 [cs.CL])

We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality !L*, which has a limited edition of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality, very similar to the structure of a Differential Category. We instantiate this category to finite dimensional vector spaces and linear maps via "quantisation" functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrase one, using BERT, Word2Vec, and FastText vectors and Relational tensors.




tor

Football High: Garrett Harper's Story, Part II

The decisions coaches make on the sidelines about returning a concussed player to the game or not can be a "game changer" for that athlete's life.




tor

Football High: Garrett Harper's Story, Part I

For many competitive high school football players like Garrett Harper, the intensity of this contact sport has its price.




tor

Football High: Owen Thomas' Story

The issues of sports-related concussions and chronic traumatic encephalopathy were intensified when the brain of a deceased 21-year-old football player was examined.




tor

The Doctor Who Finally Said He Could Help

Retired soccer star Briana Scurry talks about finally finding hope and help after almost three years of being told she wouldn't get any better.




tor

5 Magnificent Examples of Websites That Convert Visitors into Customers

Need some inspiration to build a high converting website? Websites that convert persuade visitors to become customers. These websites drive more revenue, so if you want to increase your site’s revenue, use these examples of websites that convert as inspiration! We’ll go over what makes for the best converting websites and five examples of websites […]

The post 5 Magnificent Examples of Websites That Convert Visitors into Customers appeared first on WebFX Blog.




tor

The Complete Tutorial on the Top 5 Ways to Query Your Relational Database in JavaScript - Part 2

Welcome back! In the first part of this series, we looked at a very "low-level" way to interact with a relational database by sending it raw SQL strings and retrieving the results. We created a very simple Express application that we can use as an example and deployed it on Heroku with a Postgres database.

In this part, we're going to examine a few libraries which build on top of that foundation, adding layers of abstraction that let you read and manipulate database data in a more "JavaScript-like" way.




tor

Go Visitor Pattern

Summary

One feature that Go does not offer that is really useful in visitor patterns is overriding methods. The basic idea is to write a concrete class that contains all the VisitX methods with empty implementations, and a subclass can choose to only override the methods it cares about, ignoring the rest.

We'll see an example of how to implement this pattern in idiomatic Go code.





tor

A toker's musical guide through pop history

The Cannabis Issue People have been enjoying cannabis for recreational purposes for centuries, including in the United States since the early 1900s. That means weed was in America a good 50 years or so before the invention of rock 'n' roll.…




tor

UPDATED: Spokane Veterans Home isolated residents back in February due to respiratory illness — with no way to test

UPDATE: The Department of Veterans Affairs announced after this article was first published that Spokane Veterans Home residents with COVID-19 would be moved to the Mann-Grandstaff VA Medical Center.…



  • News/Local News

tor

Noah Baumbach's great Marriage Story finds comedy and empathy in the details of a painful divorce

[IMAGE-1] Noah Baumbach's Marriage Story begins as its central marriage is coming to an end. Our two protagonists are fiercely independent, articulate, opinionated creative types: Charlie (Adam Driver) is the director of an avant-garde theater troupe in New York City; Nicole (Scarlett Johansson) is an actress and one of his primary collaborators.…



  • Film/Film News

tor

Based on a powerful true story, Just Mercy examines racial injustice within the American legal system

[IMAGE-1] I honestly don't know how people like Bryan Stevenson keep up the fight. Just Mercy is the true origin story of a literal social justice warrior, a Harvard-educated lawyer who, in the late 1980s, launched the Equal Justice Initiative in Montgomery, Alabama, to take on the neediest, most desperate cases.…



  • Film/Film News

tor

Doom's new and improved storyline, Pearl Jams new album and more you need to know

PROPHET OF DOOM…



  • Culture/Arts & Culture

tor

Don't expect any socially distanced Zags games in the Kennel next year, and other thoughts from Gonzaga Athletic Director Mike Roth's online Q&A

Gonzaga Athletic Director Mike Roth took to the Zoom online meeting app Wednesday for a lengthy chat with members of the school community, fans and media to answer questions about college sports in the era of COVID-19. Like so many things regarding the coronavirus, there are a lot of hopes for a rapid return to normalcy — all of them couched in the reality that none of us really know how the pandemic is going to affect our lives three months from now, or six months down the line.…




tor

5 ways to entertain yourself online, from concerts and art shows to painting classes and story times

Here are a few ways to keep yourself entertained, and maybe even educate yourself a bit, while you're stuck at home:…



  • Arts & Culture

tor

Book recommendations from the pros: Auntie's Bookstore

At this point in our locked-down lives, it’s entirely possible many of us have exhausted our Netflix queue, completed every puzzle in our houses and perfected our sourdough loaves. OK, probably not.…



  • Culture/Arts & Culture

tor

Best Ski Instructor: Katrin Pardue, Mt. Spokane

[IMAGE-1] Katrin Pardue, as she says it, is "not your average kind of sports person." Pardue's been skiing since she was 2.…




tor

With a thriving collector's market and a rise in competitive leagues, pinball is cool again

Every serious pinball player remembers their first machine.…



  • Culture/Arts & Culture

tor

Los Angeles porn store owners get the spotlight in Netflix's new Circus of Books

The new documentary Circus of Books is predicated on an intriguing and admittedly amusing bit of cognitive dissonance: One of Los Angeles' premier adult emporiums was, for decades, operated by a buttoned-up, middle-aged Jewish couple, who kept the true nature of their jobs hidden from even their closest acquaintances.…



  • Film/Film News

tor

Combinatorial synthesis of libraries of macrocyclic compounds useful in drug discovery

A library of macrocyclic compounds of the formula (I) where part (A) is a bivalent radical, a —(CH2)y— bivalent radical or a covalent bond;where part (B) is a bivalent radical, a —(CH2)z— bivalent radical, or a covalent bond;where part (C) is a bivalent radical, a —(CH2)t— bivalent radical, or a covalent bond; andwhere part (T) is a —Y-L-Z— radical wherein Y is CH2 or CO, Z is NH or O and L is a bivalent radical. These compounds are useful for carrying out screening assays or as intermediates for the synthesis of other compounds of pharmaceutical interest. A process for the preparation of these compounds in a combinatorial manner, is also disclosed.




tor

Urban traffic state detection based on support vector machine and multilayer perceptron

A system and method that facilitates urban traffic state detection based on support vector machine (SVM) and multilayer perceptron (MLP) classifiers is provided. Moreover, the SVM and MLP classifiers are fused into a cascaded two-tier classifier that improves the accuracy of the traffic state classification. To further improve the accuracy, the cascaded two-tier classifier (e.g., MLP-SVM), a single SVM classifier and a single MLP classifier are fused to determine a final decision for a traffic state. In addition, fusion strategies are employed during training and implementation phases to compensate for data acquisition and classification errors caused by noise and/or outliers.




tor

Monitoring method and subsystem that detects abnormal system states

The current application is directed to monitoring subsystems, and monitoring methods incorporated within the monitoring subsystems, that monitor operation of devices and systems in order to identify normal states and to quickly determine when a device or system transitions from a normal state to an abnormal state. The methods and monitoring components to which the current application is directed employ self-organizing maps and moving-average self-organizing maps to both characterize normal system behavior and to identify transitions to abnormal system behaviors.




tor

Data mining and model generation using an in-database analytic flow generator

Embodiments are described for a system and method of providing a data miner that decouples the analytic flow solution components from the data source. An analytic-flow solution then couples with the target data source through a simple set of data source connector, table and transformation objects, to perform the requisite analytic flow function. As a result, the analytic-flow solution needs to be designed only once and can be re-used across multiple target data sources. The analytic flow can be modified and updated at one place and then deployed for use on various different target data sources.




tor

Mixture of an amine alkoxylate ester and a quaternary ammonium compound as a collector for minerals containing silicate

The invention relates to the use of a composition of A) at least one quaternary ammonia compound comprising at least one organic radical bonded to the ammonia nitrogen atom and optionally comprising heteroatoms and having 1 to 36 carbon atoms, and B) at least one amine alkoxylate ester of formula (1) or a salt thereof, where A, B are, independently of each other, a C2- through C5-alkylene radical R1, a C8- through C24-alkyl radical or alkenyl radical R2, R3, R4 independent of each other, H, or a C8- through C24-acyl radical, with the stipulation that at least one of the radicals R2, R3 or R4 stands for a C8- through C24-acyl radical, and x, y, z, independently of each other, stand for a whole number from 0 through 50, with the stipulation that x+y+z is a whole number from 1 through 100, in quantities of 10 through 5000 g/tonne of ore as a collector in silicate floation.




tor

Castor oil derivatives and method for the production thereof

Novel compounds of formula (1) wherein: A is especially a linear or branched divalent alkylene radical having between 1 and 10 carbon atoms, and Y is especially a hydrogen atom.




tor

Processes for making compounds useful as inhibitors of ATR kinase

The present invention relates to processes and intermediates for preparing compounds useful as inhibitors of ATR kinase, such as aminopyrazine-isoxazole derivatives and related molecules. The present invention also relates to compounds useful as inhibitors of ATR protein kinase. The invention relates to pharmaceutically acceptable compositions comprising the compounds of this invention; methods of treating of various diseases, disorders, and conditions using the compounds of this invention; processes for preparing the compounds of this invention; intermediates for the preparation of the compounds of this invention; and solid forms of the compounds of this invention. The compounds of this invention have formula I or II: wherein the variables are as defined herein.




tor

Beta-lactamase inhibitors

Described herein are compounds and compositions that modulate the activity of beta-lactamases. In some embodiments, the compounds described herein inhibit beta-lactamase. In certain embodiments, the compounds described herein are useful in the treatment of bacterial infections.




tor

6-(5-hydroxy-1H-pyrazol-1-yl)nicotinamide inhibitors of PHD

The present invention provides compounds of the formula: which are useful as inhibitors of PHD and pharmaceutical compositions thereof.




tor

Benzylpyrrolidinone derivatives as modulators of chemokine receptor activity

The present application describes modulators of MCP-1 or CCR-2 of formula or stereoisomers or prodrugs or pharmaceutically acceptable salts thereof, wherein m, n, W, X, R1 and R6, are defined herein. In addition, methods of treating and preventing inflammatory diseases such as asthma and allergic diseases, as well as autoimmune pathologies such as rheumatoid arthritis and transplant rejection using modulators of formula (I) are disclosed.




tor

Pyrimidinediamine kinase inhibitors

Disclosed embodiments provide pyrimidinediamine compounds useful for inhibiting kinase activity, including the activity of polo-like kinase 1 (PLK1). Also disclosed are pharmaceutical compositions comprising these compounds and methods of treating diseases associated with kinase activity, in particular enhanced PLK1 catalytic activity, such as diseases associated with abnormal cell proliferation, including neoplastic disorders.




tor

4-phenylamino-pyrimidine derivatives having protein kinase inhibitor activity

The invention relates compounds of general formula (I) and pharmaceutically acceptable salts and solvates thereof wherein R1 is halogen, vinylene-aryl, substituted aryl, heteroaryl or a benzo[1,3]dioxolil group,W is a group of formula —NH—SO2—R2 or heteroaryl group or NHR3 group where R3 is hydrogen or heteroaryl; and n is 1, 2, 3 or 4. Furthermore, the present invention is directed to pharmaceutical composition containing at least one compound of general formula (I) and/or pharmaceutically acceptable salts or solvates thereof and for the use of them for the preparation of pharmaceutical compositions for the prophylaxis and/or the treatment of protein kinase related, especially CDK9-related diseases e.g. cell proliferative disease, infectious disease, pain, cardiovascular disease and inflammation.




tor

1,2,4-triazine-6-carboxamide kinase inhibitors

Provided are triazine compounds for inhibiting of Syk kinase, intermediates used in making such compounds, methods for their preparation, pharmaceutical compositions thereof, methods for inhibiting Syk kinase activity, and methods for treating conditions mediated at least in part by Syk kinase activity.