framework

2014 SCIENCE POLICY SYMPOSIUM to support the implementation of the 2020 Biodiversity strategy and the EU Water Framework Directive

The 2014 SCIENCE POLICY SYMPOSIUM to support the implementation of the 2020 Biodiversity strategy and the EU Water Framework Directive will be held between 29-30 Jan 2014 in the Museum of Natural Sciences (RBINS), Brussels. The symposium is jointly organised by the EU FP7 funded projects BioFresh and REFRESH.

Numerous EU biodiversity and water related policies have been designed to protect freshwater ecosystems and ensure their sustainable use. However, major challenges still persist in the implementation of these policies. Freshwater ecosystems support 10% of all animal species on Earth and provide a diverse array of functions and services that contribute to human well-being. In recent decades global freshwater biodiversity has declined at a greater rate compared to terrestrial and marine ecosystems.

The Science Policy Symposium for Freshwater Life is organised with the aim of bringing together policy makers and stakeholders from the water, energy and conservation sector, NGOs, the scientific community and selected experts to discuss challenges to implementing the 2020 Biodiversity strategy and the EU Water Framework Directive.

Contact: waterlives.commitee@freshwaterbiodiversity.eu





framework

Online consultation to fill gaps in the global indicator framework for the Aichi Biodiversity Targets

The Biodiversity Indicators Partnership (BIP) Secretariat is looking for indicators to fill gaps in the global suite of biodiversity indicators and allow a full understanding of progress towards globally agreed targets.

They are inviting experts and organisations to participate in an open online consultation to fill the gaps in the global indicator framework for the Strategic Plan for Biodiversity 2011-2020. Through this short online survey they want to hear about any existing indicators (both global and sub-global in scale), indicators under development, potentially useful datasets or key experts or organisations in the fields. The main focus is on indicators that respond to the gaps in the global framework, which are listed on the attached flyer, but they are also keen to hear about any other indicators that could potentially enhance the existing indicator suite.

The consultation is open until 30 June 2016. Further information on the consultation is available in the attached flyer, the BIP website http://www.bipindicators.net/gaps, and the CBD notification SCBD/OES/RH/KNM/85710.





framework

2014 SCIENCE POLICY SYMPOSIUM to support the implementation of the 2020 Biodiversity strategy and the EU Water Framework Directive

The 2014 SCIENCE POLICY SYMPOSIUM to support the implementation of the 2020 Biodiversity strategy and the EU Water Framework Directive will be held between 29-30 Jan 2014 in the Museum of Natural Sciences (RBINS), Brussels. The symposium is jointly organised by the EU FP7 funded projects BioFresh and REFRESH.

Numerous EU biodiversity and water related policies have been designed to protect freshwater ecosystems and ensure their sustainable use. However, major challenges still persist in the implementation of these policies. Freshwater ecosystems support 10% of all animal species on Earth and provide a diverse array of functions and services that contribute to human well-being. In recent decades global freshwater biodiversity has declined at a greater rate compared to terrestrial and marine ecosystems.

The Science Policy Symposium for Freshwater Life is organised with the aim of bringing together policy makers and stakeholders from the water, energy and conservation sector, NGOs, the scientific community and selected experts to discuss challenges to implementing the 2020 Biodiversity strategy and the EU Water Framework Directive.

 

 





framework

Using the essential biodiversity variables framework to measure biodiversity change at national scale




framework

Anticipating species distributions: handling sampling effort bias under a Bayesian framework.




framework

i-PRO Establishes Pioneering AI Governance Framework and Ethics Committee

With the rapid spread of AI products and services, i-PRO said there has been a worldwide demand for companies to utilize AI responsibly.




framework

Workers and the general public need separate frameworks for respiratory protection: report

Washington — The National Academies of Sciences, Engineering and Medicine is calling for two separate respiratory protection frameworks – one for workers, and one for the public – amid the COVID-19 pandemic and beyond, in a recently published report.




framework

Smithfield Foods Establishes New Framework for Greenhouse Gas Reporting

Smithfield's new reporting framework will utilize improved data to calculate its GHG inventory in alignment with the Greenhouse Gas Protocol.




framework

Trapped Mobility: a theoretical framework and literature review focusing on displaced youth at the borders between the Global South and Global North.

Children's Geographies; 02/01/2022
(AN 154441555); ISSN: 14733285
Academic Search Premier




framework

Exploring children's participation in the framework of early childhood environmental education.

Children's Geographies; 06/01/2023
(AN 164286250); ISSN: 14733285
Academic Search Premier




framework

An urban neighbourhood framework for realising progress towards the New Urban Agenda for equitable early childhood development.

Children's Geographies; 12/01/2023
(AN 174964051); ISSN: 14733285
Academic Search Premier









framework

Narrative construction of vocational identity in university students: The role of influential experiences and significant others in the framework of cultural psychology

Culture &Psychology, Ahead of Print. This study sought to understand the process of construction of the vocational identity of university students. Assuming cultural psychology as a theoretical reference, a qualitative methodology was adopted, with a narrative perspective. In-depth interviews were conducted with 20 participants, male and female engineering, and psychology students from two universities in […]

The post Narrative construction of vocational identity in university students: The role of influential experiences and significant others in the framework of cultural psychology was curated by information for practice.



  • Journal Article Abstracts

framework

Lean Hypotheses and Effectual Commitments: An Integrative Framework Delineating the Methods of Science and Entrepreneurship




framework

The Lean Impact Start-Up Framework: Fueling Innovation for Positive Societal Change




framework

United Nations Ratifies Framework to Protect People on Cash Apps

University of Florida cybersecurity professor Kevin Butler developed the framework, which spells out guidance for countries to prevent fraud and abuse on mobile cash apps.




framework

A new modular framework for high-level application development at HEPS

As a representative of the fourth-generation light sources, the High Energy Photon Source (HEPS) in Beijing, China, utilizes a multi-bend achromat lattice to obtain an approximately 100 times emittance reduction compared with third-generation light sources. New technologies bring new challenges to operate the storage ring. In order to meet the beam commissioning requirements of HEPS, a new framework for the development of high-level applications (HLAs) has been created. The key part of the new framework is a dual-layer physical module to facilitate the seamless fusion of physical simulation models with the real machine, allowing for fast switching between different simulation models to accommodate the various simulation scenarios. As a framework designed for development of physical applications, all variables are based on physical quantities. This allows physicists to analytically assess measurement parameters and optimize machine parameters in a more intuitive manner. To enhance both extensibility and adaptability, a modular design strategy is utilized, partitioning the entire framework into discrete modules in alignment with the requirements of HLA development. This strategy not only facilitates the independent development of each module but also minimizes inter-module coupling, thereby simplifying the maintenance and expansion of the entire framework. To simplify the development complexity, the design of the new framework is implemented using Python and is called Python-based Accelerator Physics Application Set (Pyapas). Taking advantage of Python's flexibility and robust library support, we are able to develop and iterate quickly, while also allowing for seamless integration with other scientific computing applications. HLAs for both the HEPS linac and booster have been successfully developed. During the beam commissioning process at the linac, Pyapas's ease of use and reliability have significantly reduced the time required for the beam commissioning operators. As a development framework for HLA designed for the new-generation light sources, Pyapas has the versatility to be employed with HEPS, as well as with other comparable light sources, due to its adaptability.




framework

DOMAS: a data management software framework for advanced light sources

In recent years, China's advanced light sources have entered a period of rapid construction and development. As modern X-ray detectors and data acquisition technologies advance, these facilities are expected to generate massive volumes of data annually, presenting significant challenges in data management and utilization. These challenges encompass data storage, metadata handling, data transfer and user data access. In response, the Data Organization Management Access Software (DOMAS) has been designed as a framework to address these issues. DOMAS encapsulates four fundamental modules of data management software, including metadata catalogue, metadata acquisition, data transfer and data service. For light source facilities, building a data management system only requires parameter configuration and minimal code development within DOMAS. This paper firstly discusses the development of advanced light sources in China and the associated demands and challenges in data management, prompting a reconsideration of data management software framework design. It then outlines the architecture of the framework, detailing its components and functions. Lastly, it highlights the application progress and effectiveness of DOMAS when deployed for the High Energy Photon Source (HEPS) and Beijing Synchrotron Radiation Facility (BSRF).




framework

The role of carboxyl­ate ligand orbitals in the breathing dynamics of a metal-organic framework by resonant X-ray emission spectroscopy

Metal-organic frameworks (MOFs) exhibit structural flexibility induced by temperature and guest adsorption, as demonstrated in the structural breathing transition in certain MOFs between narrow-pore and large-pore phases. Soft modes were suggested to entropically drive such pore breathing through enhanced vibrational dynamics at high temperatures. In this work, oxygen K-edge resonant X-ray emission spectroscopy of the MIL-53(Al) MOF was performed to selectively probe the electronic perturbation accompanying pore breathing dynamics at the ligand carboxyl­ate site for metal–ligand interaction. It was observed that the temperature-induced vibrational dynamics involves switching occupancy between antisymmetric and symmetric configurations of the carboxyl­ate oxygen lone pair orbitals, through which electron density around carboxyl­ate oxygen sites is redistributed and metal–ligand interactions are tuned. In turn, water adsorption involves an additional perturbation of π orbitals not observed in the structural change solely induced by temperature.




framework

Toward a quantitative description of solvation structure: a framework for differential solution scattering measurements

Appreciating that the role of the solute–solvent and other outer-sphere interactions is essential for understanding chemistry and chemical dynamics in solution, experimental approaches are needed to address the structural consequences of these interactions, complementing condensed-matter simulations and coarse-grained theories. High-energy X-ray scattering (HEXS) combined with pair distribution function analysis presents the opportunity to probe these structures directly and to develop quantitative, atomistic models of molecular systems in situ in the solution phase. However, at concentrations relevant to solution-phase chemistry, the total scattering signal is dominated by the bulk solvent, prompting researchers to adopt a differential approach to eliminate this unwanted background. Though similar approaches are well established in quantitative structural studies of macromolecules in solution by small- and wide-angle X-ray scattering (SAXS/WAXS), analogous studies in the HEXS regime—where sub-ångström spatial resolution is achieved—remain underdeveloped, in part due to the lack of a rigorous theoretical description of the experiment. To address this, herein we develop a framework for differential solution scattering experiments conducted at high energies, which includes concepts of the solvent-excluded volume introduced to describe SAXS/WAXS data, as well as concepts from the time-resolved X-ray scattering community. Our theory is supported by numerical simulations and experiment and paves the way for establishing quantitative methods to determine the atomic structures of small molecules in solution with resolution approaching that of crystallography.




framework

Texture tomography, a versatile framework to study crystalline texture in 3D

Crystallographic texture is a key organization feature of many technical and biological materials. In these materials, especially hierarchically structured ones, the preferential alignment of the nano constituents heavily influences the macroscopic behavior of the material. To study local crystallographic texture with both high spatial and angular resolution, we developed Texture Tomography (TexTOM). This approach allows the user to model the diffraction data of polycrystalline materials using the full reciprocal space of the crystal ensemble and describe the texture in each voxel via an orientation distribution function, hence it provides 3D reconstructions of the local texture by measuring the probabilities of all crystal orientations. The TexTOM approach addresses limitations associated with existing models: it correlates the intensities from several Bragg reflections, thus reducing ambiguities resulting from symmetry. Further, it yields quantitative probability distributions of local real space crystal orientations without further assumptions about the sample structure. Finally, its efficient mathematical formulation enables reconstructions faster than the time scale of the experiment. This manuscript presents the mathematical model, the inversion strategy and its current experimental implementation. We show characterizations of simulated data as well as experimental data obtained from a synthetic, inorganic model sample: the silica–witherite biomorph. TexTOM provides a versatile framework to reconstruct 3D quantitative texture information for polycrystalline samples; it opens the door for unprecedented insights into the nanostructural makeup of natural and technical materials.




framework

Crystal structure, Hirshfeld surface analysis, inter­molecular inter­action energies, energy frameworks and DFT calculations of 4-amino-1-(prop-2-yn-1-yl)pyrimidin-2(1H)-one

In the title mol­ecule, C7H7N3O, the pyrimidine ring is essentially planar, with the propynyl group rotated out of this plane by 15.31 (4)°. In the crystal, a tri-periodic network is formed by N—H⋯O, N—H⋯N and C—H⋯O hydrogen-bonding and slipped π–π stacking inter­actions, leading to narrow channels extending parallel to the c axis. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.9%), H⋯O/O⋯H (17.8%) and H⋯N/N⋯H (12.2%) inter­actions, showing that hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions. The mol­ecular structure optimized by density functional theory (DFT) calculations at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was also elucidated to determine the energy gap.




framework

Crystal structure, Hirshfeld surface analysis and energy frameworks of 1-[(E)-2-(2-fluoro­phen­yl)diazan-1-yl­idene]naphthalen-2(1H)-one

The title compound, C16H11N2OF, is a member of the azo dye family. The dihedral angle subtended by the benzene ring and the naphthalene ring system measures 18.75 (7)°, indicating that the compound is not perfectly planar. An intra­molecular N—H⋯O hydrogen bond occurs between the imino and carbonyl groups. In the crystal, the mol­ecules are linked into inversion dimers by C—H⋯O inter­actions. Aromatic π–π stacking between the naphthalene ring systems lead to the formation of chains along [001]. A Hirshfeld surface analysis was undertaken to investigate and qu­antify the inter­molecular inter­actions. In addition, energy frameworks were used to examine the cooperative effect of these inter­molecular inter­actions across the crystal, showing dispersion energy to be the most influential factor in the crystal organization of the compound.




framework

(E)-N,N-Diethyl-4-{[(4-meth­oxy­phen­yl)imino]­meth­yl}aniline: crystal structure, Hirshfeld surface analysis and energy framework

In the title benzyl­ideneaniline Schiff base, C18H22N2O, the aromatic rings are inclined to each other by 46.01 (6)°, while the Car—N= C—Car torsion angle is 176.9 (1)°. In the crystal, the only identifiable directional inter­action is a weak C—H⋯π hydrogen bond, which generates inversion dimers that stack along the a-axis direction.




framework

Crystal structure, Hirshfeld surface analysis, crystal voids, inter­action energy calculations and energy frameworks and DFT calculations of ethyl 2-cyano-3-(3-hy­droxy-5-methyl-1H-pyrazol-4-yl)-3-phen­yl­propano­ate

The title compound, C16H17N3O3, is racemic as it crystallizes in a centrosymmetric space group (Poverline{1}), although the trans disposition of substituents about the central C—C bond is established. The five- and six-membered rings are oriented at a dihedral angle of 75.88 (8)°. In the crystal, N—H⋯N hydrogen bonds form chains of mol­ecules extending along the c-axis direction that are connected by inversion-related pairs of O—H⋯N into ribbons. The ribbons are linked by C—H⋯π(ring) inter­actions, forming layers parallel to the ab plane. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (45.9%), H⋯N/N⋯H (23.3%), H⋯C/C⋯H (16.2%) and H⋯O/O⋯H (12.3%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 100.94 Å3 and 13.20%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




framework

Crystal structure, Hirshfeld surface analysis, crystal voids, inter­action energy calculations and energy frameworks, and DFT calculations of 1-(4-methyl­benz­yl)in­do­line-2,3-dione

The in­do­line portion of the title mol­ecule, C16H13NO2, is planar. In the crystal, a layer structure is generated by C—H⋯O hydrogen bonds and C—H⋯π(ring), π-stacking and C=O⋯π(ring) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.0%), H⋯C/C⋯H (25.0%) and H⋯O/O⋯H (22.8%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 120.52 Å3 and 9.64%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6-311G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state.




framework

Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, inter­action energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)eth­yl]-5,5-di­phenyl­imidazolidine

In the title mol­ecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of mol­ecules extending parallel to the c axis that are connected by C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized mol­ecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap.




framework

Crystal structure, Hirshfeld surface analysis, calculations of inter­molecular inter­action energies and energy frameworks and the DFT-optimized mol­ecular structure of 1-[(1-butyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(prop-1-en-2-yl)-1H-b

The benzimidazole entity of the title mol­ecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C—H⋯O hydrogen bonds link individual mol­ecules into layers extending parallel to the ac plane. Two weak C—H⋯π(ring) inter­actions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state.




framework

Crystal structure determination and analyses of Hirshfeld surface, crystal voids, inter­molecular inter­action energies and energy frameworks of 1-benzyl-4-(methyl­sulfan­yl)-3a,7a-di­hydro-1H-pyrazolo­[3,4-d]pyrimidine

The pyrazolo­pyrimidine moiety in the title mol­ecule, C13H12N4S, is planar with the methyl­sulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the mol­ecule an approximate L shape. In the crystal, C—H⋯π(ring) inter­actions and C—H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π–π inter­actions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions.




framework

Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aqua­bis­(μ3-carba­moyl­cyano­nitro­somethanido)barium] monohydrate] and its thermal decomposition

In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water mol­ecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water mol­ecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coord­ination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water mol­ecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoyl­cyano­nitro­somethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyano­nitroso anions can be utilized as bridging ligands for the supra­molecular synthesis of MOF solids. Such an outcome may be anti­cipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K.




framework

Crystal structure, Hirshfeld surface analysis, and calculations of inter­molecular inter­action energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(1-methyl­ethen­yl)-benzimidazol-2-one

The benzimidazole moiety in the title mol­ecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a network structure. There are no π–π inter­actions present but two weak C—H⋯π(ring) inter­actions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) inter­actions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound.




framework

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­molecular inter­action energies and energy frameworks of 3-benzyl-1-(3-bromoprop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

The title mol­ecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions form helical chains of mol­ecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) inter­actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.




framework

Low-dose electron microscopy imaging for beam-sensitive metal–organic frameworks

Metal–organic frameworks (MOFs) have garnered significant attention in recent years owing to their exceptional properties. Understanding the intricate relationship between the structure of a material and its properties is crucial for guiding the synthesis and application of these materials. (Scanning) Transmission electron microscopy (S)TEM imaging stands out as a powerful tool for structural characterization at the nanoscale, capable of detailing both periodic and aperiodic local structures. However, the high electron-beam sensitivity of MOFs presents substantial challenges in their structural characterization using (S)TEM. This paper summarizes the latest advancements in low-dose high-resolution (S)TEM imaging technology and its application in MOF material characterization. It covers aspects such as framework structure, defects, and surface and interface analysis, along with the distribution of guest molecules within MOFs. This review also discusses emerging technologies like electron ptychography and outlines several prospective research directions in this field.




framework

New Report Proposes Framework To Encourage Fluency With Information Technology

The explosive growth of information technology is having a profound impact on our lives.




framework

Report Offers New Framework to Guide K-12 Science Education, Calls for Shift in the Way Science Is Taught in U.S.

A report released today by the National Research Council presents a new framework for K-12 science education that identifies the key scientific ideas and practices all students should learn by the end of high school.




framework

Report Recommends New Framework for Estimating the Social Cost of Carbon

To estimate the social cost of carbon dioxide for use in regulatory impact analyses, the federal government should use a new framework that would strengthen the scientific basis, provide greater transparency, and improve characterization of the uncertainties of the estimates, says a new report by the National Academies of Sciences, Engineering, and Medicine.




framework

New Report Proposes Framework to Identify Vulnerabilities Posed by Synthetic Biology

Given the possible security vulnerabilities related to developments in synthetic biology – a field that uses technologies to modify or create organisms or biological components – a new report by the National Academies of Sciences, Engineering, and Medicine proposes a framework to identify and prioritize potential areas of concern associated with the field.




framework

Substantial Gap Exists Between Demand for Organ Transplants in U.S. and Number of Transplants Performed - New Report Offers Ethical, Regulatory, and Policy Framework for Research to Increase Quantity & Quality of Organs For Transplantation, Save Lives

The number of patients in the U.S. awaiting organ transplantation outpaces the amount of transplants performed in the U.S., and many donated organs are not transplanted each year due to several factors, such as poor organ function, says a new report from the National Academies of Sciences, Engineering, and Medicine.




framework

Report Offers Framework to Guide Decisions About Spirit Lake and Toutle River System at Mount St. Helens - Inclusive Decision-Making Process Is Needed

A new report from the National Academies of Sciences, Engineering, and Medicine offers a framework to guide federal, tribal, state and local agencies, community groups, and other interested and affected parties in making decisions about the Spirit Lake and Toutle River system, near Mount St. Helens in southwest Washington state.




framework

New Report Proposes Framework for Policymakers to Address Debate Over Encryption

A new report by the National Academies of Sciences, Engineering, and Medicine proposes a framework for evaluating proposals to provide authorized government agencies with access to unencrypted versions of encrypted communications and other data.




framework

New Report Says Individual Research Results Should Be Shared With Participants More Often - Recommends Framework for Decision-Making

When conducting research involving the testing of human biospecimens, investigators and their institutions should routinely consider whether and how to return individual research results on a study-specific basis through an informed decision-making process, says a new report from the National Academies of Sciences, Engineering, and Medicine.




framework

Report Proposes Recommendations and New Framework to Speed Progress Toward Open Science

While significant progress has been made in providing open access to scientific research, a range of challenges -- including the economics of scientific publication and cultural barriers in the research enterprise -- must be overcome to further advance the openness of science, says a new report from the National Academies of Sciences, Engineering, and Medicine.




framework

Statement on Call for Moratorium on and International Governance Framework for Clinical Uses of Heritable Genome Editing

A commentary published in Nature calls for a moratorium on clinical uses of heritable human genome editing and the establishment of an international governance framework.




framework

New Report Offers Framework for Developing Evidence-Based Opioid Prescribing Guidelines for Common Medical Conditions, Surgical Procedures

For severe acute pain due to surgeries and medical conditions, there is a lack of guidance on the appropriate type, strength, and amount of opioid medication that clinicians should prescribe to patients, says a new report from the National Academies of Sciences, Engineering, and Medicine.




framework

New Report Recommends National Framework to Strengthen Evidence on Effective Responses to Public Health Emergencies, Says Current Evidence Base Is Deficient

Research and funding priorities tend to shift from one disaster to the next, which has resulted in a sparse evidence base and hampers the nation’s ability to respond to public health emergencies in the most effective way, says a new report from the National Academies of Sciences, Engineering, and Medicine.




framework

National Academies to Seek Public Comment, Hold Listening Session on Draft Framework for Equitable Allocation of a COVID-19 Vaccine – Week of Aug. 31

A National Academies of Sciences, Engineering, and Medicine committee tasked with developing an overarching framework to assist policymakers in planning for equitable allocation of a vaccine against COVID-19 will issue a discussion draft of the preliminary framework for public comment on Sept. 1.