framework

The Adoption of Single Sign-On and Multifactor Authentication in Organisations: A Critical Evaluation Using TOE Framework




framework

A Framework for Using Cost-Benefit Analysis in Making the Case for Software Upgrade




framework

Software Engineering Frameworks: Perceptions of Second-Semester Students




framework

Multi-Agent Framework for Social Customer Relationship Management Systems




framework

Navigating the Framework Jungle for Teaching Web Application Development




framework

A Framework for Using Questions as Meta-tags to Enhance Knowledge Support Services as Part of a Living Lab Environment




framework

A Collaborative Framework for a Cross-Institutional Assessment to Shape Future IT Professionals




framework

Technological Entrepreneurship Framework for University Commercialization of Information Technology

One effective way of accelerating the commercialization of university innovations (inventions) is to execute a “Technological Entrepreneurship” framework that helps the execution of agreements between universities and industry for commercialization. Academics have been encouraged to commercialize their research and findings yet the level of success of commercialization of inventions (innovations) in industry is questionable. As there is no agreed commercialization framework to guide the execution of processes to support inventions moving from laboratories to the right market. The lack of capabilities of appropriate processes have undermined the turning of innovation and products into wealth. The research questions are designed to identify the constraints and hindrances of commercialization and the characteristics of successful processes built from framework based on selected case studies of incubation capabilities within universities commercialization program.




framework

A Data Science Enhanced Framework for Applied and Computational Math

Aim/Purpose: The primary objective of this research is to build an enhanced framework for Applied and Computational Math. This framework allows a variety of applied math concepts to be organized into a meaningful whole. Background: The framework can help students grasp new mathematical applications by comparing them to a common reference model. Methodology: In this research, we measure the most frequent words used in a sample of Math and Computer Science books. We combine these words with those obtained in an earlier study, from which we constructed our original Computational Math scale. Contribution: The enhanced framework improves the Computational Math scale by integrating selected concepts from the field of Data Science. Findings: The resulting enhanced framework better explains how abstract mathematical models and algorithms are tied to real world applications and computer implementations. Future Research: We want to empirically test our enhanced Applied and Computational Math framework in a classroom setting. Our goal is to measure how effective the use of this framework is in improving students’ understanding of newly introduced Math concepts.




framework

From Ignorance Map to Informing PKM4E Framework: Personal Knowledge Management for Empowerment

Aim/Purpose: The proposed Personal Knowledge Management (PKM) for Empowerment (PKM4E) Framework expands on the notions of the Ignorance Map and Matrix to support the educational and informing concept of a PKM system-in-progress. Background: The accelerating information abundance is depleting the very attention our cognitive capabilities are able to master, contributing to widening individual and collective opportunity divides. Support is urgently needed to benefit Knowledge Workers irrespective of space (developed/developing countries), time (study or career phase), discipline (natural or social science), or role (student, professional, leader). Methodology: The Design Science Research (DSR) project conceptualizing the PKM System (PKMS) aims to support a scenario of a ‘Decentralizing KM Revolution’ giving more power and autonomy to individuals and self-organized groups. Contribution: The informing-science-related approach synthesizes and visualizes concepts related to ignorance and entropy, learning and innovation, chance discovery and abduction to inform diverse audiences and potential beneficiaries. Findings: see Recommendation for Researchers Recommendations for Practitioners: The PKM4E learning cycles and workflows apply ‘cumulative synthesis’, a concept which convincingly couples the activities of researchers and entrepreneurs and assists users to advance their capability endowments via applied learning. Recommendation for Researchers: In substituting document-centric with meme-based knowledge bases, the PKMS approach merges distinctive voluntarily shared knowledge objects/assets of diverse disciplines into a single unified digital knowledge repository and provides the means for advancing current metrics and reputation systems. Impact on Society: The PKMS features provide the means to tackle the widening opportunity divides by affording knowledge workers with continuous life-long support from trainee, student, novice, or mentee towards professional, expert, mentor, or leader. Future Research: After completing the test phase of the PKMS prototype, its transformation into a viable PKM system and cloud-based server based on a rapid development platform and a noSQL-database is estimated to take 12 months.




framework

A Framework for Designing Nursing Knowledge Management Systems




framework

A Generic Agent Framework to Support the Various Software Project Management Processes




framework

Designing an ‘Electronic Village’ of Local Interest on Tourism: The eKoNES Framework




framework

An Integrated ICT Management Framework for Commercial Banking Organisations




framework

Framework for Quality Metrics in Mobile-Wireless Information Systems




framework

The Application of a Knowledge Management Framework to Automotive Original Component Manufacturers

Aim/Purpose: This paper aims to present an example of the application of a Knowledge Man-agement (KM) framework to automotive original component manufacturers (OEMs). The objective is to explore KM according to the four pillars of a selected KM framework. Background: This research demonstrates how a framework, namely the George Washington University’s Four Pillar Framework, can be used to determine the KM status of the automotive OEM industry, where knowledge is complex and can influence the complexity of the KM system (KMS) used. Methodology: An empirical study was undertaken using a questionnaire to gather quantitative data. There were 38 respondents from the National Association of Automotive Component and Allied Manufacturers (NAACAM) and suppliers from three major automotive OEMs. The respondents were required to be familiar with the company’s KMS. Contribution: Currently there is a limited body of research available on the KM implementation frameworks for the automotive industry. This study presents a novel approach to the use of a KM framework to reveal the status of KM in automotive OEMs. At the time of writing, the relationship between the four pillars and the complexity of KMS had not yet been determined. Findings: The results indicate that there is a need to improve KM in the automotive OEM industry. According to the relationships investigated, the four pillars, namely leadership, organization, technology and learning, are considered important for KM, regardless of the level of KMS complexity, Recommendations for Practitioners: Automotive OEMs need to ensure that the KM aspects are established and should be periodically evaluated by using a KM framework such as the George Washington University’s Four Pillar Framework to identify KM weaknesses. Recommendation for Researchers: The establishment and upkeep of a successful KM environment is challenging due to the complexity involved with various influencing aspects. To ensure that all aspects are considered in KM environments, comprehensive KM frameworks, such as the George Washington University’s Four Pillar Framework, need to be applied. Impact on Society: The status of KM management and accessibility of knowledge in organizations needs to be periodically examined, in order to improve supplier and OEM knowledge sharing. Future Research: Although the framework used provides a process for KM status determination, this study could be extended by investigating a methodology that includes KMS best practice and tools. This study could be repeated at a national and international level to provide an indication of KM practice within the entire automotive industry.




framework

A Cognitive Knowledge-based Framework for Social and Metacognitive Support in Mobile Learning

Aim/Purpose: This work aims to present a knowledge modeling technique that supports the representation of the student learning process and that is capable of providing a means for self-assessment and evaluating newly acquired knowledge. The objective is to propose a means to address the pedagogical challenges in m-learning by aiding students’ metacognition through a model of a student with the target domain and pedagogy. Background: This research proposes a framework for social and meta-cognitive support to tackle the challenges raised. Two algorithms are introduced: the meta-cognition algorithm for representing the student’s learning process, which is capable of providing a means for self-assessment, and the social group mapping algorithm for classifying students according to social groups. Methodology : Based on the characteristics of knowledge in an m-learning system, the cognitive knowledge base is proposed for knowledge elicitation and representation. The proposed technique allows a proper categorization of students to support collaborative learning in a social platform by utilizing the strength of m-learning in a social context. The social group mapping and metacognition algorithms are presented. Contribution: The proposed model is envisaged to serve as a guide for developers in implementing suitable m-learning applications. Furthermore, educationists and instructors can devise new pedagogical practices based on the possibilities provided by the proposed m-learning framework. Findings: The effectiveness of any knowledge management system is grounded in the technique used in representing the knowledge. The CKB proposed manipulates knowledge as a dynamic concept network, similar to human knowledge processing, thus, providing a rich semantic capability, which provides various relationships between concepts. Recommendations for Practitioners: Educationist and instructors need to develop new pedagogical practices in line with m-learning. Recommendation for Researchers: The design and implementation of an effective m-learning application are challenging due to the reliance on both pedagogical and technological elements. To tackle this challenge, frameworks which describe the conceptual interaction between the various components of pedagogy and technology need to be proposed. Impact on Society: The creation of an educational platform that provides instant access to relevant knowledge. Future Research: In the future, the proposed framework will be evaluated against some set of criteria for its effectiveness in acquiring and presenting knowledge in a real-life scenario. By analyzing real student interaction in m-learning, the algorithms will be tested to show their applicability in eliciting student metacognition and support for social interactivity.




framework

An Overlapless Incident Management Maturity Model for Multi-Framework Assessment (ITIL, COBIT, CMMI-SVC)

Aim/Purpose: This research aims to develop an information technology (IT) maturity model for incident management (IM) process that merges the most known IT frameworks’ practices. Our proposal intends to help organizations overcome the current limitations of multiframework implementation by informing organizations about frameworks’ overlap before their implementation. Background: By previously identifying frameworks’ overlaps it will assist organizations during the multi-framework implementation in order to save resources (human and/or financial). Methodology: The research methodology used is design science research (DSR). Plus, the authors applied semi-structured interviews in seven different organizations to demonstrate and evaluate the proposal. Contribution: This research adds a new and innovative artefact to the body of knowledge. Findings: The proposed maturity model is seen by the practitioners as complete and useful. Plus, this research also reinforces the frameworks’ overlap issue and concludes that some organizations are unaware of their actual IM maturity level; some organizations are unaware that they have implemented practices of other frameworks besides the one that was officially adopted. Recommendations for Practitioners: Practitioners may use this maturity model to assess their IM maturity level before multi-framework implementation. Moreover, practitioners are also incentivized to communicate further requirements to academics regarding multi-framework assessment maturity models. Recommendation for Researchers: Researchers may explore and develop multi-frameworks maturity models for the remaining processes of the main IT frameworks. Impact on Society: This research findings and outcomes are a step forward in the development of a unique overlapless maturity model covering the most known IT frameworks in the market thus helping organizations dealing with the increasing frameworks’ complexity and overlap. Future Research: Overlapless maturity models for the remaining IT framework processes should be explored.




framework

The Adoption of CRM Initiative among Palestinian Enterprises: A Proposed Framework

Aim/Purpose: This study aimed to examine the relationships among compatibility, relative advantage, complexity, IT Infrastructure, security, top Management Support, financial Support, information Policies, employee engagement, customer pressure, competitive pressure, information integrity, information sharing, attitude toward adopting technology factors, and CRM adoption Background: Customer relationship management (CRM) refers to the use of the process, information, technology, and people for the management of the interactions between the organization and its customers. Therefore, there is a need for SMEs to implement CRM practices in their businesses for competitive advantage. However, in developing nations, the adoption rate of such practices remains low. This low rate may be attributed to the lack of important factors that guide CRM adoption, and as such, the present study attempts to investigate the factors affecting CRM adoption in Palestinian SMEs. This paper used the Diffusion of Innovation Theory (DOI), Resource-Based View (RBV), and Technology, Organization, and Environment Framework (TOE) framework to identify the determinant factors from the technological, organizational, environmental, and information culture perspectives. Methodology: This study uses a quantitative approach to investigate the relationships between the variables. A questionnaire was designed to collect data from 420 SMEs in Palestine. 331respondents completed and returned the survey. The Partial Least Square-Structural Equation Model (PLS-SEM) approach was used to assess both the measurement and structural models. Contribution: This study contributes to both theory and practitioners by providing insights into factors that affect CRM adoption in Palestinian SMEs, which did not explore before. Future research suggestions are also provided. Findings: The results of the study prove that the adoption of CRM depends on compatibility (CMP), security (SEC), top management support (TMS), information policies (INP), financial resources (FR), employee engagement (EEN), competitive pressure (COP), customers pressure (CUP), attitude toward adopting technology (ATA), information integrity (INI), and information sharing (INS). Surprisingly, complexity (CMX), IT infrastructure (ITI), and relative advantage (RLA) do not play any role in CRM adoption in Palestine. Recommendations for Practitioners: This study provides practitioners with the important factors for CRM adoption upon its successful implementation in the context of Palestinian SMEs. Recommendation for Researchers: Our findings may be used to conduct further studies about compatibility, security, top management support, information policies, financial resources, employee engagement, competitive pressure, customers pressure, attitude toward adopting technology, information integrity, information sharing factors, and CRM adoption by using different countries, procedure, and context. Impact on Society: The proposed framework provides insights for SMEs which have significant effects for research and practice to help facilitate the adoption of CRM Future Research: The findings may also be compared to other studies conducted in different contexts and provide deeper insights into the influence of the examined contexts on the employees’ intention toward CRM adoption in banking and universities. It would be fruitful to test whether the results hold true in developed and developing countries.




framework

Establishing a Security Control Framework for Blockchain Technology

Aim/Purpose: The aim of this paper is to propose a new information security controls framework for blockchain technology, which is currently absent from the National and International Information Security Standards. Background: Blockchain technology is a secure and relatively new technology of distributed digital ledgers, which is based on inter-linked blocks of transactions, providing great benefits such as decentralization, transparency, immutability, and automation. There is a rapid growth in the adoption of blockchain technology in different solutions and applications and within different industries throughout the world, such as finance, supply chain, digital identity, energy, healthcare, real estate, and the government sector. Methodology: Risk assessment and treatments were performed on five blockchain use cases to determine their associated risks with respect to security controls. Contribution: The significance of the proposed security controls is manifested in complementing the frameworks that were already established by the International and National Information Security Standards in order to keep pace with the emerging blockchain technology and prevent/reduce its associated information security risks. Findings: The analysis results showed that the proposed security controls herein can mitigate relevant information security risks in blockchain-based solutions and applications and, consequently, protect information and assets from unauthorized disclosure, modification, and destruction. Recommendations for Practitioners: The performed risk assessment on the blockchain use cases herein demonstrates that blockchain can involve security risks that require the establishment of certain measures in order to avoid them. As such, practitioners should not blindly assume that through the use of blockchain all security threats are mitigated. Recommendation for Researchers: The results from our study show that some security risks not covered by existing Standards can be mitigated and reduced when applying our proposed security controls. In addition, researchers should further justify the need for such additional controls and encourage the standardization bodies to incorporate them in their future editions. Impact on Society: Similar to any other emerging technology, blockchain has several drawbacks that, in turn, could have negative impacts on society (e.g., individuals, entities and/or countries). This is mainly due to the lack of a solid national and international standards for managing and mitigating risks associated with such technology. Future Research: The majority of the blockchain use cases in this study are publicly published papers. Therefore, one limitation of this study is the lack of technical details about these respective solutions, resulting in the inability to perform a comprehensive risk identification properly. Hence, this area will be expanded upon in our future work. In addition, covering other standardization bodies in the area of distributed ledger in blockchain technology would also prove fruitful, along with respective future design of relevant security architectures.




framework

A Framework for Ranking Critical Success Factors of Business Intelligence Based on Enterprise Architecture and Maturity Model

Aim/Purpose: The aim of this study is to identify Critical Success Factors (CSF) of Business Intelligence (BI) and provide a framework to classify CSF into layers or perspectives using an enterprise architecture approach, then rank CSF within each perspective and evaluate the importance of each perspective at different BI maturity levels as well. Background: Although the implementation of the BI project has a significant impact on creating analytical and competitive capabilities, the lack of evaluation of CSF holistically is still a challenge. Moreover, the BI maturity level of the organization has not been considered in the BI implementation project. Identifying BI critical success factors and their importance can help the project team to move to a higher maturity level in the organization. Methodology: First, a list of distinct CSF is identified through a literature review. Second, a framework is provided for categorizing these CSF using enterprise architecture. Interviewing is the research method used to evaluate the importance of CSF and framework layers with two questionnaires among experts. The first questionnaire was done by Analytical Hierarchy Process (AHP), a quantitative method of decision-making to calculate the weight of the CSF according to the importance of CSF in each of the framework layers. The second one was conducted to evaluate framework layers at different BI maturity levels using a Likert scale. Contribution: This paper contributes to the implementation of BI projects by identifying a comprehensive list of CSF in the form of a holistic multi-layered framework and ranking the importance of CSF and layers at BI maturity levels. Findings: The most important CSF in BI implementation projects include senior management support, process identification, data quality, analytics quality, hardware quality, security standards, scope management, documentation, project team skills, and customer needs transformation, which received the highest scores in framework layers. In addition, it was observed that as the organization moves to higher levels of maturity, the average importance of strategic business and security perspectives or layers increases. But the average importance of data, applications, infrastructure, and network, the project management layers in the proposed framework is the same regardless of the level of business intelligence maturity. Recommendations for Practitioners: The results of this paper can be used by academicians and practitioners to improve BI project implementation through understanding a comprehensive list of CSF and their importance. This awareness causes us to focus on the most important CSF and have better planning to reach higher levels of maturity according to the maturity level of the organization. Future Research: For future research, the interaction of critical success factors of business intelligence and framework layers can be examined with different methods.




framework

A Systematic Literature Review of Business Intelligence Framework for Tourism Organizations: Functions and Issues

Aim/Purpose: The main goal of this systematic literature review was to look for studies that provide information relevant to business intelligence’s (BI) framework development and implementation in the tourism sector. This paper tries to classify the tourism sectors where BI is implemented, group various BI functionalities, and identify common problems encountered by previous research. Background: There has been an increased need for BI implementation to support decision-making in the tourism sector. Tourism stakeholders such as management of destination, accommodation, transportation, and public administration need a guideline to understand functional requirements before implementation. This paper addresses the problem by comprehensively reviewing the functionalities and issues that need to be considered based on previous business intelligence framework development and implementation in tourism sectors. Methodology: We have conducted a systematic literature review using the Preferred Reporting Items for Systematic Reviews and Guidelines for Meta-Analysis (PRISMA) method. The search is conducted using online academic database platforms, resulting in 543 initial articles published from 2002 to 2022. Contribution: The paper could be of interest to relevant stakeholders in the tourism industry because it provides an overview of the capabilities and limitations of business intelligence for tourism. To our knowledge, this is the first study to identify and classify the BI functionalities needed for tourism sectors and implementation issues related to organizations, people, and technologies that need to be considered. Findings: BI functionalities identified in this study include basic functions such as data analysis, reports, dashboards, data visualization, performance metrics, and key performance indicator, and advanced functions such as predictive analytics, trend indicators, strategic planning tools, profitability analysis, benchmarking, budgeting, and forecasting. When implementing BI, the issues that need to be considered include organizational, people and process, and technological issues. Recommendations for Practitioners: As data is a major issue in BI implementation, tourism stakeholders, especially in developing countries, may need to build a tourism data center or centralized coordination regulated by the government. They can implement basic functions first before implementing more advanced features later. Recommendation for Researchers: We recommend further studying the BI implementation barriers by employing a perspective of an adoption framework such as the technology, organization, and environment (TOE) framework. Impact on Society: This research has a potential impact on improving the tourism industry’s performance by providing insight to stakeholders about what is needed to help them make more accurate decisions using business intelligence. Future Research: Future research may involve collaboration between practitioners and academics in developing various BI architectures specific to each tourism industry, such as destination management, hospitality, or transportation.




framework

Towards a Framework on the Use of Infomediaries in Maternal mHealth in Rural Malawi

Aim/Purpose: The aim of the study is to explore factors that affect how healthcare clients in rural areas use infomediaries in maternal mHealth interventions. The study focuses on maternal healthcare clients who do not own mobile phones but use the mHealth intervention. Background: Maternal mHealth interventions in poor-resource settings are bedevilled by inequalities in mobile phone ownership. Clients who do not own mobile phones risk being excluded from benefiting from the interventions. Some maternal mHealth providers facilitate the access of mobile phones for those who do not own them using “infomediaries”. Infomediaries, in this case, refer to individuals who have custody of mobile phones that other potential beneficiaries may use. However, the use of infomediaries to offer access to the “have nots” may be influenced by a number of factors. Methodology: The study uses a case of a maternal mHealth intervention project in Malawi, as well as a qualitative research method and interpretive paradigm. Data was collected using secondary data from the implementing agency, semi-structured interviews, and focus group discussions. Empirical data was collected from maternal healthcare clients who do not own mobile phones and infomediaries. Data were analysed inductively using thematic analysis. Contribution: The study proposed a theoretical framework for studying infomediaries in ICT4D. The study may inform mHealth designers, implementers, and policymakers on how infomediaries could be implemented in a rural setting. Consequently, understanding the factors that affect the use of infomediaries may inform mHealth intervention implementers on how they could overcome the challenges by implementing mHealth interventions that reduce the challenges on the mHealth infomediaries side, and the maternal healthcare clients’ side. Findings: Characteristics of the maternal healthcare client, characteristics of the mHealth infomediary, perceived value of mHealth intervention, and socio-environmental factors affect maternal healthcare clients’ use of mHealth infomediaries. Recommendations for Practitioners: Implementers of interventions ought to manage the use of infomediaries to avoid volunteer fatigue and infomediaries who may not be compatible with the potential users of the intervention. Implementers could leverage traditional systems of identifying and using infomediaries instead of reinventing the wheel. Recommendation for Researchers: This research adopted a single case study to develop the theoretical framework for mHealth infomediary use. We recommend future studies are conducted in order to test and develop this framework further, not only in ICT4D, but also in other areas of application. Impact on Society: People still lack access. The lack of ownership of technology may still exclude them from participating in an information society. The use of infomediaries may help to provide access to technologies to those who do not have them thereby bridging the digital divide gap. Future Research: We propose herein that traditional systems may offer a good starting point for designing a system that would work for communities. We, therefore, recommend that future research may explore these possibilities.




framework

Antecedents of Business Analytics Adoption and Impacts on Banks’ Performance: The Perspective of the TOE Framework and Resource-Based View

Aim/Purpose: This study utilized a comprehensive framework to investigate the adoption of Business Analytics (BA) and its effects on performance in commercial banks in Jordan. The framework integrated the Technological-Organizational-Environmental (TOE) model, the Diffusion of Innovation (DOI) theory, and the Resource-Based View (RBV). Background: The recent trend of utilizing data for business operations and decision-making has positively impacted organizations. Business analytics (BA) is a leading technique that generates valuable insights from data. It has gained considerable attention from scholars and practitioners across various industries. However, guidance is lacking for organizations to implement BA effectively specific to their business contexts. This research aims to evaluate factors influencing BA adoption by Jordanian commercial banks and examine how its implementation impacts bank performance. The goal is to provide needed empirical evidence surrounding BA adoption and outcomes in the Jordanian banking sector. Methodology: The study gathered empirical data by conducting an online questionnaire survey with senior and middle managers from 13 commercial banks in Jordan. The participants were purposefully selected, and the questionnaire was designed based on relevant and well-established literature. A total of 307 valid questionnaires were collected and considered for data analysis. Contribution: This study makes a dual contribution to the BA domain. Firstly, it introduces a research model that comprehensively examines the factors that influence the adoption of BA. The proposed model integrates the TOE framework, DOI theory, and RBV theory. Combining these frameworks allows for a comprehensive examination of BA adoption in the banking industry. By analyzing the technological, organizational, and environmental factors through the TOE framework, understanding the diffusion process through the DOI theory, and assessing the role of resources and capabilities through the RBV theory, researchers and practitioners can better understand the complex dynamics involved. This integrated approach enables a more nuanced assessment of the factors that shape BA adoption and its subsequent impact on business performance within the banking industry. Secondly, it uncovers the effects of BA adoption on business performance. These noteworthy findings stem from a rigorous analysis of primary data collected from commercial banks in Jordan. By presenting a holistic model and delving into the implications for business performance, this research offers valuable insights to researchers and practitioners alike in the field of BA. Findings: The findings revealed that various technological (data quality, complexity, compatibility, relative advantage), organizational (top management support, organizational readiness), and environmental (external support) factors are crucial in shaping the decision to adopt BA. Furthermore, the study findings demonstrated a positive relationship between BA adoption and performance outcomes in Jordanian commercial banks. Recommendations for Practitioners: The findings suggest that Jordanian commercial banks should enforce data quality practices, provide clear standards, invest in data quality tools and technologies, and conduct regular data audits. Top management support is crucial for fostering a data-driven decision-making culture. Organizational readiness involves having the necessary resources and skilled personnel, as well as promoting continuous learning and improvement. Highlighting the benefits of BA helps overcome resistance to technological innovation and encourages adoption by demonstrating improved decision-making processes and operational efficiency. Furthermore, external support is crucial for banks to adopt Business Analytics (BA). Banks should partner with experienced vendors to gain expertise and incorporate best practices. Vendors also provide training and technical support to overcome technological barriers. Compatibility is essential for optimal performance, requiring managers to modify workflows and IT infrastructure. Complexity, including data, organizational, and technical complexities, is a major obstacle to BA adoption. Banks should take a holistic approach, focusing on people, processes, and technology, and prioritize data quality and governance. Building a skilled team, fostering a data-driven culture, and investing in technology and infrastructure are essential. Recommendation for Researchers: The integration of the TOE framework, the DOI theory, and the RBV theory can prove to be a powerful approach for comprehensively analyzing the various factors that influence BA adoption within the dynamic banking industry. Furthermore, this combined framework enables us to gain deeper insights into the subsequent impact of BA adoption on overall business performance. Impact on Society: Examining the factors influencing BA adoption in the banking industry and its subsequent impact on business performance can have wide-ranging societal implications. It can promote data-driven decision-making, enhance customer experiences, strengthen fraud detection, foster financial inclusion, contribute to economic growth, and trigger discussions on ethical considerations. Future Research: To further advance future research, there are several avenues to consider. One option is to broaden the scope by including a larger sample size, allowing for a more comprehensive analysis. Another possibility is to investigate the impact of BA adoption on various performance indicators beyond the ones already examined. Additionally, incorporating qualitative research methods would provide a more holistic understanding of the organizational dynamics and challenges associated with the adoption of BA in Jordanian commercial banks.




framework

Student Acceptance of LMS in Indonesian High Schools: The SOR and Extended GETAMEL Frameworks

Aim/Purpose: This study aims to develop a theoretical model based on the SOR (Stimulus – Organism – Response) framework and GETAMEL, which cover environmental, personal, and learning quality aspects to identify factors influencing students’ acceptance of the use of LMS in high schools, especially after COVID-19 pandemic. Background: After the COVID-19 pandemic, many high schools reopened for in-person classes, which led to a decreased reliance on e-learning. The shift from online to traditional face-to-face learning has influenced students’ perceptions of the importance of e-learning in their academic activities. Consequently, high schools are facing the challenge of ensuring that LMS can still be integrated into the teaching-learning process even after the pandemic ends. Therefore, this study proposes a model to investigate the factors that affect students’ actual use of LMS in the high school environment. Methodology: This study used 890 high school students to validate the theoretical model using Structural Equation Modeling (SEM) analysis to deliver direct, indirect, and moderating effect analysis. Contribution: This study combines SOR and acceptance theory to provide a model to explain high school students’ intention to use technology. The involvement of direct, indirect, and moderating effects analysis offers an alternative result and discussion and is considered another contribution of this study from a technical perspective. Findings: The findings show that perceived satisfaction is the most influential factor affecting the use of LMS, followed by perceived usefulness. Meanwhile, from indirect effect analysis, subjective norms and computer self-efficacy were found to indirectly affect actual use through perceived usefulness as a mediator. Content quality was also an indirect predictor of the actual use of LMS through perceived satisfaction. Further, the moderating effect of age influenced perceived satisfaction’s direct effect on actual use. Recommendations for Practitioners: This study provides practical recommendations that can be useful to high schools and other stakeholders in improving the use of LMS in educational environments. Specifically, exploring the implementation of LMS in high schools prior to and following the COVID-19 outbreak can offer valuable insights into the changing educational environment. Recommendation for Researchers: The results of this study present a significant theoretical contribution by employing a comprehensive approach to explain the adoption of LMS among high school students after the COVID-19 pandemic. This contribution extends the GETAMEL framework by incorporating environmental, personal, and learning quality aspects while also analyzing both direct and indirect effects, which have not been previously explored in this context. Impact on Society: This study provides knowledge to high schools for improving the use of LMS in educational environments post-COVID-19, leading to an enhanced teaching-learning process. Future Research: This study, however, is limited to collecting responses exclusively from Indonesian respondents. Therefore, the replication of the finding needs to consider the characteristics and culture similar to Indonesian students, which is regarded as the limitation of this study.




framework

A Smart Agricultural Knowledge Management Framework to Support Emergent Farmers in Developmental Settings

Aim/Purpose: This research aims to develop a smart agricultural knowledge management framework to empower emergent farmers and extension officers (advisors to farmers) in developing countries as part of a smart farming lab (SFL). The framework utilizes knowledge objects (KOs) to capture information and knowledge of different forms, including indigenous knowledge. It builds upon a foundation of established agricultural knowledge management (AKM) models and serves as the cornerstone for an envisioned SFL. This framework facilitates optimal decision support by fostering linkages between these KOs and relevant organizations, knowledge holders, and knowledge seekers within the SFL environment. Background: Emergent farmers and extension officers encounter numerous obstacles in their knowledge operations and decision-making. This includes limited access to agricultural information and difficulties in applying it effectively. Many lack reliable sources of support, and even when information is available, understanding and applying it to specific situations can be challenging. Additionally, extension offices struggle with operational decisions and knowledge management due to agricultural organizations operating isolated in silos, hindering their access to necessary knowledge. This research introduces an SFL with a proposed AKM process model aimed at transforming emergent farmers into smart, innovative entities by addressing these challenges. Methodology: This study is presented as a theory-concept paper and utilizes a literature review to evaluate and synthesize three distinct AKM models using several approaches. The results of the analysis are used to design a new AKM process model. Contribution: This research culminates in a new AKM process framework that incorporates the strengths of various existing AKM models and supports emergent farmers and extension officers to become smart, innovative entities. One main difference between the three models analyzed, and the one proposed in this research, is the deployment and use of knowledge assets in the form of KOs. The proposed framework also incorporates metadata and annotations to enhance knowledge discoverability and enable AI-powered applications to leverage captured knowledge effectively. In practical terms, it contributes by further motivating the use of KOs to enable the transfer and the capturing of organizational knowledge. Findings: A model for an SFL that incorporates the proposed agricultural knowledge management framework is presented. This model is part of a larger knowledge factory (KF). It includes feedback loops, KOs, and mechanisms to facilitate intelligent decision-making. The significance of fostering interconnected communities is emphasized through the creation of linkages. These communities consist of knowledge seekers and bearers, with information disseminated through social media and other communication integration platforms. Recommendations for Practitioners: Practitioners and other scholars should consider implementing the proposed AKM process model as part of a larger SFL to support emergent farmers and extension officers in making operational decisions and applying knowledge management strategies. Recommendation for Researchers: The AKM process model is only presented in conceptual form. Therefore, researchers can practically test and assess the new framework in an agricultural setting. They can also further explore the potential of social media integration platforms to connect knowledge seekers with knowledge holders. Impact on Society: The proposed AKM process model has the potential to support emergent farmers and extension officers in becoming smart, innovative entities, leading to improved agricultural practices and potentially contributing to food security. Future Research: This paper discusses the AKM process model in an agrarian setting, but it can also be applied in other domains, such as education and the healthcare sector. Future research can evaluate the model’s effectiveness and explore and further investigate the semantic web and social media integration.




framework

Impact of User Satisfaction With E-Government Services on Continuance Use Intention and Citizen Trust Using TAM-ISSM Framework

Aim/Purpose: This study investigates the drivers of user satisfaction in e-government services and its influence on continued use intention and citizen trust in government. It employs the integration of the Technology Acceptance Model (TAM) and the Information System Success Model (ISSM). Background: Electronic government, transforming citizen-state interactions, has gained momentum worldwide, including in India, where the aim is to leverage technology to improve citizen services, streamline administration, and engage the public. While prior research has explored factors influencing citizen satisfaction with e-government services globally, this area of study has been relatively unexplored in India, particularly in the post-COVID era. Challenges to widespread e-government adoption in India include a large and diverse population, limited digital infrastructure in rural areas, low digital literacy, and weak data protection regulations. Additionally, global declines in citizen trust, attributed to economic concerns, corruption, and information disclosures, further complicate the scenario. This study seeks to investigate the influence of various factors on user satisfaction and continuance usage of e-government services in India. It also aims to understand how these services contribute to building citizens’ trust in government. Methodology: The data were collected by utilizing survey items on drivers of e-government services, user satisfaction, citizen trust, and continuance use intention derived from existing literature on information systems and e-government. Responses from 501 Indian participants, collected using an online questionnaire, were analyzed using PLS-SEM. Contribution: This study makes a dual contribution to the e-government domain. First, it introduces a comprehensive research model that examines factors influencing users’ satisfaction and continuance intention with e-government services. The proposed model integrates the TAM and ISSM. Combining these models allows for a comprehensive examination of e-government satisfaction and continued intention. By analyzing the impact of user satisfaction on continuance intention and citizen trust through an integrated model, researchers and practitioners gain insights into the complex dynamics involved. Second, the study uncovers the effects of residential status on user satisfaction, trust, and continuance intention regarding e-government services. Findings reveal disparities in the influence of system and service quality on user satisfaction across different user segments. Researchers and policymakers should consider these insights when designing e-government services to ensure user satisfaction, continuance intention, and the building of citizen trust. Findings: The findings indicate that the quality of information, service, system, and perceived usefulness play important roles in user satisfaction with e-government services. All hypothesized paths were significant, except for perceived ease of use. Furthermore, the study highlights that user satisfaction significantly impacts citizen trust and continuance use intention. Recommendations for Practitioners: The findings suggest that government authorities should focus on delivering accurate, comprehensive, and timely information in a secure, glitch-free, and user-friendly digital environment. Implementing an interactive and accessible interface, ensuring compatibility across devices, and implementing swift query resolution mechanisms collectively contribute to improving users’ satisfaction. Conducting awareness and training initiatives, providing 24×7 access to online tutorials, helpdesks, technical support, clear FAQs, and integrating AI-driven customer service support can further ensure a seamless user experience. Government institutions should leverage social influence, community engagement, and social media campaigns to enhance user trust. Promotional campaigns, incentive programs, endorsements, and user testimonials should be used to improve users’ satisfaction and continuance intention. Recommendation for Researchers: An integrated model combining TAM and ISSM offers a robust approach for thoroughly analyzing the diverse factors influencing user satisfaction and continuance intention in the evolving digitalization landscape of e-government services. This expansion, aligning with ISSM’s perspective, enhances the literature by demonstrating how user satisfaction impacts continuance usage intention and citizen trust in e-government services in India and other emerging economies. Impact on Society: Examining the factors influencing user satisfaction and continuance intention in e-government services and their subsequent impact on citizen trust carries significant societal implications. The findings can contribute to the establishment of transparent and accountable governance practices, fostering a stronger connection between governments and their citizens. Future Research: There are several promising avenues to explore to enhance future research. Expanding the scope by incorporating a larger sample size could enable a more thorough analysis. Alternatively, delving into the performance of specific e-government services would offer greater precision, considering that this study treats e-government services generically. Additionally, incorporating in-depth interviews and longitudinal studies would yield a more comprehensive understanding of the dynamic evolution of digitalization.




framework

An integrated framework for the alignment of stakeholder expectations with student learning outcomes

In this paper, two hypothetical frameworks are proposed through the application of quality function deployment (QFD) to integrate the current institutional level and program level student learning focus areas with the relevant institutional and program specific stakeholder expectations. A generic skillset proficiency expected of all the graduating students at the institutional level by the stakeholders is considered in the first QFD application example and a program specific knowledge proficiency expected at the program level by the stakeholders is considered in the second QFD application example. Operations management major/option is considered for illustration purposes at the program level. In addition, an assurance of learning based approach rooted in continuous improvement philosophy is proposed to align the stakeholder expectations with the relevant student learning outcomes at different learning tiers.




framework

Resource monitoring framework for big raw data processing

Scientific experiments, simulations, and modern applications generate large amounts of data. Analysing resources required to process such big datasets is essential to identify application running costs for cloud or in-house deployments. Researchers have proposed keeping data in raw formats to avoid upfront utilisation of resources. However, it poses reparsing issues for frequently accessed data. The paper discusses detailed comparative analysis of resources required by in-situ engines and traditional database management systems to process a real-world scientific dataset. A resource monitoring framework has been developed and incorporated into the raw data query processing framework to achieve this goal. The work identified different query types best suited to a given data processing tool in terms of data to result time and resource requirements. The analysis of resource utilisation patterns has led to the development of query complexity aware (QCA) and resource utilisation aware (RUA) data partitioning techniques to process big raw data efficiently. Resource utilisation data have been analysed to estimate the data processing capacity of a given machine.




framework

A Framework for Metadata Creation Tools




framework

Scoping and Sequencing Educational Resources and Speech Acts: A Unified Design Framework for Learning Objects and Educational Discourse




framework

Addressing the eLearning Contradiction: A Collaborative Approach for Developing a Conceptual Framework Learning Object




framework

An Engagement Model for Learning: Providing a Framework to Identify Technology Services




framework

Building a Framework to Support Project-Based Collaborative Learning Experiences in an Asynchronous Learning Network




framework

A Framework for Assessing the Pedagogical Effectiveness of Wiki-Based Collaborative Writing: Results and Implications




framework

Developing a Conceptual Framework for Evaluation of E-Content of Virtual Courses: E-Learning Center of an Iranian University Case Study




framework

Toward a Theoretical Framework for Information Science




framework

A Framework for Effective User Interface Design for Web-Based Electronic Commerce Applications




framework

Web-enabled Information and Referral Services: A Framework for Analysis




framework

Developing a Framework for Assessing Information Quality on the World Wide Web




framework

Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem




framework

Online Learning and Case Teaching: Implications in an Informing Systems Framework




framework

Shifting Paradigms in Information Flow: An Open Science Framework (OSF) for Knowledge Sharing Teams

Aim/Purpose: This paper explores the implications of machine-mediated communication on human interaction in cross-disciplinary teams. The authors explore the relationships between Open Science Theory, its contributions to team science, and the opportunities and challenges associated with adopting open science principles. Background: Open Science Theory impacts many aspects of human interaction throughout the scholarly life cycle and can be seen in action through various technologies, which each typically touch only one such aspect. By serving multiple aspects of Open Science Theory at once, the Open Science Framework (OSF) serves as an exemplar technology. As such it illustrates how Open Science Theory can inform and expand cognitive and behavioral dynamics in teams at multiple levels in a single tool. Methodology: This concept paper provides a theoretical rationale for recommendations for exploring the connections between an open science paradigm and the dynamics of team communication. As such theory and evidence have been culled to initiate a synthesis of the nascent literature, current practice and theory. Contribution: This paper aims to illuminate the shared goals between open science and the study of teams by focusing on science team activities (data management, methods, algorithms, and outputs) as focal objects for further combined study. Findings: Team dynamics and characteristics that will affect successful human/machine assisted interactions through mediators of workflow culture, attitudes about ownership of knowledge, readiness to share openly, shifts from group-driven to user-driven functionality, group-organizing to self-organizing structures, and the development of trust as teams regulate between traditional and open science dissemination. Recommendations for Practitioners: Participation in open science practices through machine-assisted technologies in team projects/scholarship should be encouraged. Recommendation for Researchers: The information provided highlights areas in need of further study in team science as well as new primary sources of material in the study of teams utilizing machine-assisted methods in their work. Impact on Society: As researchers take on more complex social problems, new technology and open science practices can complement the work of diverse stakeholders while also providing opportunities to broaden impact and intensify scholarly contributions. Future Research: Future investigation into the cognitive and behavioral research conducted with teams that employ machine-assisted technologies in their workflows would offer researchers the opportunity to understand better the relationships between intelligent machines and science teams’ impacts on their communities as well as the necessary paradigmatic shifts inherent when utilizing these technologies.




framework

University-Industry Collaboration in Higher Education: Exploring the Informing Flows Framework in Industrial PhD Education

Aim/Purpose: The aim is to explore the informing flows framework as interactions within a PhD education practicing a work-integrated learning approach in order to reveal both the perspectives of industrial PhD students and of industry. Background: An under-researched field of university-industry collaboration is explored revealing both the perspectives of industrial PhD students and of industry. Methodology: Qualitative methods were applied including interviews and document studies. In total ten semi-structured interviews in two steps were conducted. The empirical context is a Swedish PhD program in informatics with a specialization in work-integrated learning. Contribution: By broadening the concept of work-integrated learning, this paper contributes empirical results on benefits and challenges in university-industry collaboration focusing on industrial PhD students and industry by applying the informing flows framework. Findings: Findings expose novel insights for industry as well as academia. The industrial PhD students are key stakeholders and embody the informing flows between practice and university and between practice and research. They are spanning boundaries between university and industry generating continuous opportunities for validation and testing of empirical results and models in industry. This may enable increased research quality and short-lag dissemination of research results as well as strengthened organizational legitimacy. Recommendation for Researchers: Academia is recommended to recognize the value of the industrial PhD students’ pre-understanding of the industry context in the spirit of work-integrated learning approach. The conditions for informing flows between research and practice need to continuously be maintained to enable short-term societal impact of research for both academia and industry. For practitioners: This explorative study show that it is vital for practice to recognize that challenges do exist and need to be considered to strengthen industrial PhD pro-grams as well as university-industry collaborations. Additionally, it is of importance to formalize a continuously dissemination of research in the industries. Future Research: Future international and/or transdisciplinary research within this field is encouraged to include larger samples covering other universities and a mix of industrial contexts or comparing industrial PhD students in different phases of their PhD education.




framework

Organizing Information Obtained From Literature Reviews – A Framework for Information System Area Researchers

Aim/Purpose: A literature review is often criticized for the absence of coherent construction, synthesis of topics, and well-reasoned analysis. A framework is needed for novice researchers to organize and present information obtained from the literature review. Background: Information and communication technologies advancement have yielded overwhelming information. The massive availability of information poses several challenges, including storage, processing, meaningful organization, and presentation for future consumption. Information System Researchers have developed frameworks, guidelines, and tools for gathering, filtering, processing, storing, and organizing information. Interestingly, information system researchers have vast information that needs meaningful organization and presentation to the research fraternity while conducting a literature review on a research topic. Methodology: This paper describes a framework called LACTiC (Location, Author, Continuum, Time, and Category) that we adapted from another framework called LATCH (Location, Alphabetical, Time, Category, and Hierarchy). LATCH was used to organize and present information on e-commerce websites for seamless navigation. We evaluated the LACTiC framework. Contribution: Information System Researchers can use the LACTiC framework to organize information obtained from literature review. Findings: The evaluation reveals that most researchers from information systems organize information obtained from the literature review category-wise, followed by continuum, author, time, and location. Recommendation for Researchers: Overall, the framework works well and can be helpful for researchers for an initial idea for organizing information obtained from the literature review. Future Research: To conceptualize the framework, the study was carried out using Information Systems related literature. To generalize the proposed framework, we may suggest that the study can be extended to other areas of business management, such as marketing, finance, operation, decision sciences, accounting, and economics.




framework

Q-DenseNet for heart disease prediction in spark framework

This paper presents a novel deep learning technique called quantum dilated convolutional neural network-DenseNet (Q-DenseNet) for prediction of heart disease in spark framework. At first, the input data taken from the database is allowed for data partitioning using fast fuzzy C-means clustering (FFCM). The partitioned data is fed into spark framework, where pre-processed by missing data imputation and quantile normalisation. The pre-processed data is further allowed for selection of suitable features. Then, the selected features from the slave nodes are merged and fed into master node. The Q-DenseNet is used in master node for the prediction of heart disease. The performance improvement of the designed Q-DenseNet model is validated by comparing with traditional prediction models. Here, the Q-DenseNet method achieved superior performance with maximum of 92.65% specificity, 91.74% sensitivity, and 90.15% accuracy.




framework

ORGANIZATIONAL HOSTILITY: A FRAMEWORK OF ATYPICAL COMPETITIVE ENGAGEMENTS

Competitive dynamics theory overlooks an entire class of attackers who pose a serious threat to commercial firms—nonmarket players (NMPs) such as activists, environmentalists, social entrepreneurs, and NGOs. Using an institutional perspective, this conceptual manuscript advances competitive dynamics theory by developing a framework of organizational hostility. The framework profiles NMPs according to their propensity to engage firms; it also classifies firms based on their vulnerability and initial reaction to NMP attacks. Corroborated with a mathematical model (Appendix), the conceptual framework explains which NMPs are most hostile to firms; why some NMPs issue threats whereas others quickly strike commercial firms; and which firms are most vulnerable to such hostility.




framework

An Approach/Avoidance Framework of Workplace Aggression

The number of constructs developed to assess workplace aggression has flourished in recent years, leading to confusion over what meaningful differences exist (if any) between the constructs. We argue that one way to frame the field of workplace aggression is via approach/avoidance principles, with various workplace aggression constructs (e.g., abusive supervision, supervisor undermining, and workplace ostracism) differentially predicting specific approach or avoidance emotions and behaviors. Using two multi-wave field sample of employees, we demonstrate the utility of approach/avoidance principles in conceptualizing workplace aggression constructs, as well as the processes and boundary conditions through which they uniquely influence outcomes. Implications for the workplace aggression literature are discussed.




framework

BSP finalizing framework for clearing switch operations

The Bangko Sentral ng Pilipinas is finalizing a regulatory framework to ensure the efficiency of clearing switch operations within the national payment system, particularly the automated clearing houses under the National Retail Payment System.




framework

New framework to deliver biodiversity knowledge

Global Biodiversity Informatics Outlook sets out key steps to harness IT and open data to inform better decisions

Copenhagen, Denmark – A new initiative launched today (2 Oct) aims to coordinate global efforts and funding to deliver the best possible information about life on Earth, and our impacts upon it.

The Global Biodiversity Informatics Outlook sets out a framework to harness the immense power of information technology and an open data culture to gather unprecedented evidence about biodiversity and to inform better decisions.

The framework is outlined in a document and website entitled Delivering Biodiversity Knowledge in the Information Age, inviting policy makers, funders, researchers, informatics specialists, data holders and others to unite around four key focus areas where progress is needed.

The focus areas, each consisting of several specific components, are:

  • Culture – promoting practices and infrastructure for sharing data, using common standards and persistent archives, backed up by strong policy incentives and a community of willing specialists;
  • Data – addressing the need to transform all data about species, past and present, into usable and accessible digital formats; from historic collections and literature to citizen science observations, remote sensors and gene sequencing;
  • Evidence – organizing and assessing data from all sources to provide clear, consistent views giving them context; including taxonomic organization, integrated occurrences in time and space, capturing information about species interactions, and improving data quality through collaborative curation; and
  • Understanding – building models from recorded measurements and observations to support data-driven research and evidence-based planning, including predictive tools, better visualization and feedbacks to prioritize new data capture.

The document is being promoted through a number of upcoming events this month, including the Governing Board of the Global Biodiversity Information Facility and the Subsidiary Body on Scientific, Technical and Technological Advice of the Convention on Biological Diversity (CBD SBSTTA) where it forms part of the discussion on meeting global targets to end biodiversity loss.

The framework arose from the Global Biodiversity Informatics Conference which gathered around 100 experts in Copenhagen in July, 2012, to identify critical questions relating to biodiversity and tools needed answer them. Workshop leaders at that conference went on to draw up and author the current document.

The Global Biodiversity Informatics Outlook includes examples of projects and initiatives contributing to its objectives, and the accompanying website www.biodiversityinformatics.org invites feedback from others wishing to align their own activities to the framework.

A deck of slides for presentations about GBIO is available at http://www.slideshare.net/GBIF/global-biodiversity-informatics-outlook