unc

Paysend launches instant cross-border payouts to China UnionPay cards

Paysend has launched instant and simple cross-border payouts to China UnionPay cards for its Enterprise customers.




unc

British retail B2B companies take 42 days to collect and enrich data needed for new product launches, hampering UK productivity, according to Akeneo’s research

British Business-to-Business (B2B) companies take on average 32 days to collect, collate and enrich all the necessary data for a new product launch, significantly impacting UK productivity and go-to-market times, according to research conducted by Akeneo, the Product Experience (PX) Company and leading provider of Product Information Management (PIM) solutions.




unc

Paynetics and tell.money announce joint implementation of Confirmation of Payee (CoP) service

Paynetics, provider of embedded finance services, has entered into a strategic partnership with tell.money to implement the Confirmation of Payee (CoP) service. The collaboration ensures that Paynetics will take advantage of tell.money CoP service, allowing partners to embed financial services while staying fully CoP covered with minimal effort.




unc

Precision Retail launches rewards-based survey plugin to capture consent-based consumer data

The Golden Quarter of retail is approaching. Perfect time for retailers to gather mounds of consumer data. But how to do so compliantly? Two Toronto-based marketing specialists have an answer: Precision Retail, a new venture offering what they believe to be the world's first and only rewards-based post-purchase survey plugin to capture 0PD.




unc

Paysend launches ‘Paysend Libre’ in Mexico powered by Mastercard

Paysend and Mastercard have partnered to launch Paysend Libre in Mexico in a move to drive financial inclusion in a region where the majority of the population is still underbanked or unbanked.




unc

Lab-Grown Human Immune System Uncovers Weakened Response in Cancer Patients

These miniature immune system models -- known as human immune organoids -- mimic the real-life environment where immune cells learn to recognize and attack harmful invaders and respond to vaccines. Not only are these organoids powerful new tools for studying and observing immune function in cancer, their use is likely to accelerate vaccine development, better predict disease treatment response for patients, and even speed up clinical trials.




unc

Lab-Grown Human Immune System Uncovers Weakened Response in Cancer Patients

These miniature immune system models -- known as human immune organoids -- mimic the real-life environment where immune cells learn to recognize and attack harmful invaders and respond to vaccines. Not only are these organoids powerful new tools for studying and observing immune function in cancer, their use is likely to accelerate vaccine development, better predict disease treatment response for patients, and even speed up clinical trials.




unc

New Digital Dome launches in Joburg

After major refurbishments, the old Johannesburg Planetarium has been transformed into the state-of-the-art Wits Anglo American Digital Dome.




unc

Abductees’ Families Call Off Anti-Pyongyang Balloon Launch in Border City

[Inter-Korea] :
A group representing families of South Koreans abducted by North Korea called off plans to send anti-Pyongyang propaganda leaflets north of the border, amid opposition from residents and the presence of law enforcement officers. Choi Seong-ryong, the head of the association, announced the decision Thursday ...

[more...]




unc

JSC: N. Korea Presumably Used 600-Millimeter Multiple Rocket Launchers to Fire Missiles

[Inter-Korea] :
North Korea is presumed to have used its KN-25 600-millimeter multiple rocket launch system to fire off short-range ballistic missiles into the East Sea on Tuesday ahead of the U.S. presidential election. According to South Korea's Joint Chiefs of Staff(JCS), the missiles appeared to have reached ...

[more...]




unc

Gov't to Announce Interim Results from Audit into KFA, Nat'l Team Head Coach Appointment

[Sports] :
The government is expected to announce next Wednesday interim results from an audit into the Korea Football Association's(KFA) appointment of Hong Myung-bo as head coach of the men's national team. Yu In-chon, minister of culture, sports and tourism, told the parliamentary culture and sports ...

[more...]




unc

S. Korea to Launch Third Military Spy Satellite in December

[Science] :
South Korea will launch its third military spy satellite in December from the United States. The Defense Acquisition Program Administration said Wednesday that it plans to launch the satellite in the third or fourth week of December, adding that it is discussing the schedule with SpaceX, an American ...

[more...]




unc

S. Korea, US to Launch Solar Observation Instrument to Int’l Space Station

[Science] :
South Korea and the United States will launch a jointly developed instrument to the International Space Station(ISS) to help scientists learn more about the solar wind.  According to the Korea AeroSpace Administration and the Korea Astronomy and Space Science Institute, the Coronal Diagnostic ...

[more...]




unc

S. Korea’s Telecom Satellite Koreasat-6A Launched from US Space Center

[Science] :
A telecommunication satellite from the South Korean telecom giant KT has been launched into space and is now in orbit.  According to a launch video from SpaceX, the Koreasat-6A, a geostationary satellite for communication services, was launched aboard SpaceX’s Falcon 9 rocket from the Kennedy Space ...

[more...]




unc

S. Korea, US, Japan Launch Massive Freedom Edge Multidomain Exercise

[Politics] :
Anchor: South Korea, the United States and Japan are conducting their second trilateral multidomain exercise in international waters south of South Korea’s Jeju Island. The U.S. Navy’s USS George Washington aircraft carrier, South Korea’s ROKS Seoae Ryu Seong-ryong destroyer and Japan’s JS Haguro ...

[more...]




unc

Archangel Gabriel: Messenger and Angel of the Annunciation

Archangel Gabriel is one of the most revered and influential figures in religious traditions across the world, often seen as a messenger of divine will and a guide to those seeking spiritual clarity.




unc

Korean Pianist Lim Yunchan Wins Gramophone Classical Music Award

[Culture] :
Anchor: South Korean Pianist Lim Yunchan has won the Gramophone Classical Music Award in the piano category. This marks the first time that a Korean pianist has received the prestigious prize, often called the Oscars of the classical music world. Kim Bum-soo has more.   Report:   [Sound bite: Lim ...

[more...]




unc

H1-Key to Launch First Fan Concert Next Month


H1-Key is set to embark on its first fan concert tour next month. The group will kick off the tour called “Find My KEY” in Hong Kong on Nov. 16 and will travel to other regions...

[more...]




unc

Lunchboxes of Love♡ with the Korea Legacy Committee


Mike Kim, founder of Korea Legacy Committee, brought super good vibes for this week's Good Vibes Only! Mike shared the activities of the nonprofit organization dedicated to combating the national...

[more...]




unc

How to Create Your Own Podcast: From Concept to Launch

Podcasting may be the ultimate democratization of radio. Anyone with an Internet connection and some inexpensive audio equipment can produce their own podcast and make it available online.




unc

S. Korea, Britain Launch Third Round of Talks to Upgrade FTA

[Economy] :
South Korea and Britain have launched the third round of negotiations to upgrade their bilateral free trade agreement(FTA).  The Ministry of Trade, Industry and Energy said the two sides kicked off the three-day talks in Seoul on Monday, with about 60 officials from the two nations taking part.  The ...

[more...]




unc

Unionized Seoul Subway Workers to Vote Friday Whether to Launch Strike

[Economy] :
Unionized Seoul subway workers will vote on Friday to decide whether they should launch a general strike as labor and management of Seoul's city-run subway operator are facing difficulty in negotiating wages and new hires. According to Seoul Metro, which operates subway Lines One through Eight and ...

[more...]










unc

Density functional theory investigation of the phase transition, elastic and thermal characteristics for AuMTe2(M = Ga, In) chalcopyrite compounds

This study presents the first theoretical predictions of the phase transitions, elastic properties, and thermal behavior of AuMTe2 (M = Ga, In) chalcopyrite compounds. Using density functional theory and the quasi-harmonic Debye model, key mechanical and thermodynamic properties are analyzed, offering insights valuable for future experimental validation.




unc

ClusterFinder: a fast tool to find cluster structures from pair distribution function data

A novel automated high-throughput screening approach, ClusterFinder, is reported for finding candidate structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF refinements is notoriously difficult when the PDF originates from nanoclusters or small nanoparticles. The reported ClusterFinder algorithm can screen 104 to 105 candidate structures from structural databases such as the Inorganic Crystal Structure Database (ICSD) in minutes, using the crystal structures as templates in which it looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank-ordered list of clusters for further assessment by the user. The algorithm has performed well for simulated and measured PDFs of metal–oxido clusters such as Keggin clusters. This is therefore a powerful approach to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters.




unc

Instrumental broadening and the radial pair distribution function with 2D detectors

The atomic pair distribution function (PDF) is a real-space representation of the structure of a material. Experimental PDFs are obtained using a Fourier transform from total scattering data which may or may not have Bragg diffraction peaks. The determination of Bragg peak resolution in scattering data from the fundamental physical parameters of the diffractometer used is well established, but after the Fourier transform from reciprocal to direct space, these contributions are harder to identify. Starting from an existing definition of the resolution function of large-area detectors for X-ray diffraction, this approach is expanded into direct space. The effect of instrumental parameters on PDF peak resolution is developed mathematically, then studied with modelling and comparison with experimental PDFs of LaB6 from measurements made in different-sized capillaries.




unc

The smearing function for a multi-slit very small angle neutron scattering instrument

This study validates the feasibility of applying a smearing method for the multi-slit very small angle neutron scattering instrument (MS-VSANS) at the China Spallation Neutron Source. Through analysis limited to a vertical range of 8 mm, the study demonstrates consistency between the predicted smearing function and experimental data, marking a significant milestone in utilizing real data from such instruments.




unc

Towards expansion of the MATTS data bank with heavier elements: the influence of the wavefunction basis set on the multipole model derived from the wavefunction

This study examines the quality of charge density obtained by fitting the multipole model to wavefunctions in different basis sets. The complex analysis reveals that changing the basis set quality from double- to triple-zeta can notably improve the charge density related properties of a multipole model.




unc

The smearing function for a multi-slit very small angle neutron scattering instrument

Besides traditional pinhole geometry, the multi-slit very small angle neutron scattering instrument (MS-VSANS) at the China Spallation Neutron Source also utilizes a multi-slit collimation system to focus neutrons. Using the special focusing structures, the minimum scattering vector magnitude (q) can reach 0.00028 Å−1. The special structures also lead to a significantly different smearing function. By comparing the results of theoretical calculations with experimental data, we have validated the feasibility of a smearing method based on a mature theory for slit smearing. We use the weight-averaged intensity of neutron wavelength as a representative to evaluate the effect from a broad wavelength distribution, concentrating on the effect from the geometry of the multi-slit structures and the detector. The consistency of the theoretical calculation of the smearing function with experimental VSANS scattering profiles for a series of polystyrene standards of different diameters proves the feasibility of the smearing method. This marks the inaugural use of real experimental data from an instrument employing a multi-slit collimation system.




unc

Quantifying bunch-mode influence on photon-counting detectors at SPring-8

Count-loss characteristics of photon-counting 2D detectors are demonstrated for eight bunch-modes at SPring-8 through Monte Carlo simulations. As an indicator, the effective maximum count rate was introduced to signify the X-ray intensity that the detector can count with a linearity of 1% or better after applying a count-loss correction in each bunch-mode. The effective maximum count rate is revealed to vary depending on the bunch-mode and the intrinsic dead time of the detectors, ranging from 0.012 to 0.916 Mcps (megacounts per second) for a 120 ns dead time, 0.009 to 0.807 Mcps for a 0.5 µs dead time and 0.020 to 0.273 Mcps for a 3 µs intrinsic detector dead time. Even with equal-interval bunch-modes at SPring-8, the effective maximum count rate does not exceed 1 Mcps pixel−1. In other words, to obtain data with a linearity better than 1%, the maximum intensity of X-rays entering the detector should be reduced to 1 Mcps pixel−1 or less, and, in some cases, even lower, depending on the bunch-mode. When applying count-loss correction using optimized dead times tailored to each bunch-mode, the effective maximum count rate exceeds the values above. However, differences in the effective maximum count rate due to bunch-modes persist. Users of photon-counting 2D detectors are encouraged to familiarize themselves with the count-loss characteristics dependent on bunch-mode, and to conduct experiments accordingly. In addition, when designing the time structure of bunch-modes at synchrotron radiation facilities, it is essential to take into account the impact on experiments using photon-counting 2D detectors.




unc

Hyperspectral full-field quick-EXAFS imaging at the ROCK beamline for monitoring micrometre-sized heterogeneity of functional materials under process conditions

Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK–SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150 µm × 150 µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000 eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed.




unc

AlphaFold-assisted structure determination of a bacterial protein of unknown function using X-ray and electron crystallography

Macromolecular crystallography generally requires the recovery of missing phase information from diffraction data to reconstruct an electron-density map of the crystallized molecule. Most recent structures have been solved using molecular replacement as a phasing method, requiring an a priori structure that is closely related to the target protein to serve as a search model; when no such search model exists, molecular replacement is not possible. New advances in computational machine-learning methods, however, have resulted in major advances in protein structure predictions from sequence information. Methods that generate predicted structural models of sufficient accuracy provide a powerful approach to molecular replacement. Taking advantage of these advances, AlphaFold predictions were applied to enable structure determination of a bacterial protein of unknown function (UniProtKB Q63NT7, NCBI locus BPSS0212) based on diffraction data that had evaded phasing attempts using MIR and anomalous scattering methods. Using both X-ray and micro-electron (microED) diffraction data, it was possible to solve the structure of the main fragment of the protein using a predicted model of that domain as a starting point. The use of predicted structural models importantly expands the promise of electron diffraction, where structure determination relies critically on molecular replacement.




unc

New insights into the domain of unknown function (DUF) of EccC5, the pivotal ATPase providing the secretion driving force to the ESX-5 secretion system

Type VII secretion (T7S) systems, also referred to as ESAT-6 secretion (ESX) systems, are molecular machines that have gained great attention due to their implications in cell homeostasis and in host–pathogen interactions in mycobacteria. The latter include important human pathogens such as Mycobacterium tuberculosis (Mtb), the etiological cause of human tuberculosis, which constitutes a pandemic accounting for more than one million deaths every year. The ESX-5 system is exclusively found in slow-growing pathogenic mycobacteria, where it mediates the secretion of a large family of virulence factors: the PE and PPE proteins. The secretion driving force is provided by EccC5, a multidomain ATPase that operates using four globular cytosolic domains: an N-terminal domain of unknown function (EccC5DUF) and three FtsK/SpoIIIE ATPase domains. Recent structural and functional studies of ESX-3 and ESX-5 systems have revealed EccCDUF to be an ATPase-like fold domain with potential ATPase activity, the functionality of which is essential for secretion. Here, the crystal structure of the MtbEccC5DUF domain is reported at 2.05 Å resolution, which reveals a nucleotide-free structure with degenerated cis-acting and trans-acting elements involved in ATP binding and hydrolysis. This crystallographic study, together with a biophysical assessment of the interaction of MtbEccC5DUF with ATP/Mg2+, supports the absence of ATPase activity proposed for this domain. It is shown that this degeneration is also present in DUF domains from other ESX and ESX-like systems, which are likely to exhibit poor or null ATPase activity. Moreover, based on an in silico model of the N-terminal region of MtbEccC5DUF, it is hypothesized that MtbEccC5DUF is a degenerated ATPase domain that may have retained the ability to hexamerize. These observations draw attention to DUF domains as structural elements with potential implications in the opening and closure of the membrane pore during the secretion process via their involvement in inter-protomer interactions.




unc

Crystallographic fragment-binding studies of the Mycobacterium tuberculosis trifunctional enzyme suggest binding pockets for the tails of the acyl-CoA substrates at its active sites and a potential substrate-channeling path between them

The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2β2 tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site. These studies also identified three additional CoA binding sites on the surface of MtTFE that are different from the active sites. It has been proposed that one of these additional sites could be of functional relevance for the substrate channeling (by surface crawling) of reaction intermediates between the three active sites. Here, 226 fragments were screened in a crystallographic fragment-binding study of MtTFE crystals, resulting in the structures of 16 MtTFE–fragment complexes. Analysis of the 121 fragment-binding events shows that the ECH active site is the `binding hotspot' for the tested fragments, with 41 binding events. The mode of binding of the fragments bound at the active sites provides additional insight into how the long-chain acyl moiety of the substrates can be accommodated at their proposed binding pockets. In addition, the 20 fragment-binding events between the active sites identify potential transient binding sites of reaction intermediates relevant to the possible channeling of substrates between these active sites. These results provide a basis for further studies to understand the functional relevance of the latter binding sites and to identify substrates for which channeling is crucial.




unc

Structural analysis of nanocrystals by pair distribution function combining electron diffraction with crystal tilting

As an important characterization method, pair distribution function (PDF) has been extensively used in structural analysis of nanomaterials, providing key insights into the degree of crystallinity, atomic structure, local disorder etc. The collection of scattering signals with good statistics is necessary for a reliable structural analysis. However, current conventional electron diffraction experiments using PDF (ePDF) are limited in their ability to acquire continuous diffraction rings for large nanoparticles. Herein, a new method – tilt-ePDF – is proposed to improve the data quality and compatibility of ePDF by a combination of electron diffraction and specimen tilting. In the present work, a tilt-series of electron diffraction patterns was collected from gold nanoparticles with three different sizes and a standard sample polycrystalline aluminium film for ePDF analysis. The results show that tilt-ePDF can not only enhance the continuity of diffraction rings, but can also improve the signal-to-noise ratio in the high scattering angle range. As a result, compared with conventional ePDF data, tilt-ePDF data provide structure parameters with a better accuracy and lower residual factors in the refinement against the crystal structure. This method provides a new way of utilizing ePDF to obtain accurate local structure information from nanoparticles.




unc

Nanostructure and dynamics of N-truncated copper amyloid-β peptides from advanced X-ray absorption fine structure

An X-ray absorption spectroscopy (XAS) electrochemical cell was used to collect high-quality XAS measurements of N-truncated Cu:amyloid-β (Cu:Aβ) samples under near-physiological conditions. N-truncated Cu:Aβ peptide complexes contribute to oxidative stress and neurotoxicity in Alzheimer's patients' brains. However, the redox properties of copper in different Aβ peptide sequences are inconsistent. Therefore, the geometry of binding sites for the copper binding in Aβ4–8/12/16 was determined using novel advanced extended X-ray absorption fine structure (EXAFS) analysis. This enables these peptides to perform redox cycles in a manner that might produce toxicity in human brains. Fluorescence XAS measurements were corrected for systematic errors including defective-pixel data, monochromator glitches and dispersion of pixel spectra. Experimental uncertainties at each data point were measured explicitly from the point-wise variance of corrected pixel measurements. The copper-binding environments of Aβ4–8/12/16 were precisely determined by fitting XAS measurements with propagated experimental uncertainties, advanced analysis and hypothesis testing, providing a mechanism to pursue many similarly complex questions in bioscience. The low-temperature XAS measurements here determine that CuII is bound to the first amino acids in the high-affinity amino-terminal copper and nickel (ATCUN) binding motif with an oxygen in a tetragonal pyramid geometry in the Aβ4–8/12/16 peptides. Room-temperature XAS electrochemical-cell measurements observe metal reduction in the Aβ4–16 peptide. Robust investigations of XAS provide structural details of CuII binding with a very different bis-His motif and a water oxygen in a quasi-tetrahedral geometry. Oxidized XAS measurements of Aβ4–12/16 imply that both CuII and CuIII are accommodated in an ATCUN-like binding site. Hypotheses for these CuI, CuII and CuIII geometries were proven and disproven using the novel data and statistical analysis including F tests. Structural parameters were determined with an accuracy some tenfold better than literature claims of past work. A new protocol was also developed using EXAFS data analysis for monitoring radiation damage. This gives a template for advanced analysis of complex biosystems.




unc

An octa­nuclear nickel(II) pyrazolate cluster with a cubic Ni8 core and its methyl- and n-octyl-functionalized derivatives

The mol­ecular and crystal structure of a discrete [Ni8(μ4-OH)6(μ-4-Rpz)12]2− (R = H; pz = pyrazolate anion, C3H3N2−) cluster with an unprecedented, perfectly cubic arrangement of its eight Ni centers is reported, along with its lower-symmetry alkyl-functionalized (R = methyl and n-oct­yl) derivatives. Crystals of the latter two were obtained with two identical counter-ions (Bu4N+), whereas the crystal of the complex with the parent pyrazole ligand has one Me4N+ and one Bu4N+ counter-ion. The methyl derivative incorporates 1,2-di­chloro­ethane solvent mol­ecules in its crystal structure, whereas the other two are solvent-free. The compounds are tetra­butyl­aza­nium tetra­methyl­aza­nium hexa-μ4-hydroxido-dodeca-μ2-pyrazolato-hexa­hedro-octa­nickel, (C16H36N)(C4H12N)[Ni8(C3H3N2)12(OH)6] or (Bu4N)(Me4N)[Ni8(μ4-OH)6(μ-pz)12] (1), bis­(tetra­butyl­aza­nium) hexa-μ4-hydroxido-dodeca-μ2-(4-methyl­pyrazolato)-hexa­hedro-octa­nickel 1,2-di­chloro­ethane 7.196-solvate, (C16H36N)2[Ni8(C4H5N2)12(OH)6]·7.196C2H4Cl2 or (Bu4N)2[Ni8(μ4-OH)6(μ-4-Mepz)12]·7.196(ClCH2CH2Cl) (2), and bis­(tetra­butyl­aza­nium) hexa-μ4-hydroxido-dodeca-μ2-(4-octylpyrazolato)-hexa­hedro-octa­nickel, (C16H36N)2[Ni8(C11H19N2)12(OH)6] or (Bu4N)2[Ni8(μ4-OH)6(μ-4-nOctpz)12] (3). All counter-ions are disordered (with the exception of one Bu4N+ in 3). Some of the octyl chains of 3 (the crystal is twinned by non-merohedry) are also disordered. Various structural features are discussed and contrasted with those of other known [Ni8(μ4-OH)6(μ-4-Rpz)12]2− complexes, including extended three-dimensional metal–organic frameworks. In all three structures, the Ni8 units are lined up in columns.




unc

Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, inter­action energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)eth­yl]-5,5-di­phenyl­imidazolidine

In the title mol­ecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of mol­ecules extending parallel to the c axis that are connected by C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized mol­ecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap.




unc

Crystal structure and supra­molecular features of a host–guest inclusion complex based on A1/A2-hetero-difunctionalized pillar[5]arene

A host–guest supra­molecular inclusion complex was obtained from the co-crystallization of A1/A2-bromo­but­oxy-hy­droxy difunctionalized pillar[5]arene (PilButBrOH) with adipo­nitrile (ADN), C47H53.18Br0.82O10·C6H8N2. The adipo­nitrile guest is stabilized within the electron-rich cavity of the pillar[5]arene host via multiple C—H⋯O and C—H⋯π inter­actions. Both functional groups on the macrocyclic rim are engaged in supra­molecular inter­actions with an adjacent inclusion complex via hydrogen-bonding (O—H⋯N or C—H⋯Br) inter­actions, resulting in the formation of a supra­molecular dimer in the crystal structure.




unc

Enhancing the Efficiency of a Wavelength-Dispersive Spectrometer based upon a Slit-less Design Using a Single-Bounce Monocapillary

A slit-less wavelength-dispersive spectrometer design using a single-bounce monocapillary that aligns the sample on the Rowland circle, enhancing photon throughput and maintaining resolution. The compact design supports flexibility and reconfiguration in facilities without complex beamline infrastructure, significantly improving detection efficiency.




unc

POMFinder: identifying polyoxometallate cluster structures from pair distribution function data using explainable machine learning

Characterization of a material structure with pair distribution function (PDF) analysis typically involves refining a structure model against an experimental data set, but finding or constructing a suitable atomic model for PDF modelling can be an extremely labour-intensive task, requiring carefully browsing through large numbers of possible models. Presented here is POMFinder, a machine learning (ML) classifier that rapidly screens a database of structures, here polyoxometallate (POM) clusters, to identify candidate structures for PDF data modelling. The approach is shown to identify suitable POMs from experimental data, including in situ data collected with fast acquisition times. This automated approach has significant potential for identifying suitable models for structure refinement to extract quantitative structural parameters in materials chemistry research. POMFinder is open source and user friendly, making it accessible to those without prior ML knowledge. It is also demonstrated that POMFinder offers a promising modelling framework for combined modelling of multiple scattering techniques.




unc

Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2

An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1–103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure.




unc

The pypadf package: computing the pair angle distribution function from fluctuation scattering data

The pair angle distribution function (PADF) is a three- and four-atom correlation function that characterizes the local angular structure of disordered materials, particles or nanocrystalline materials. The PADF can be measured using X-ray or electron fluctuation diffraction data, which can be collected by scanning or flowing a structurally disordered sample through a focused beam. It is a natural generalization of established pair distribution methods, which do not provide angular information. The software package pypadf provides tools to calculate the PADF from fluctuation diffraction data. The package includes tools for calculating the intensity correlation function, which is a necessary step in the PADF calculation and also the basis for other fluctuation scattering analysis techniques.




unc

The master key: structural science in unlocking functional materials advancements

From the historical roots of metalworking to the forefront of modern nanotechnology, functional materials have played a pivotal role in transforming societies, and their influence is poised to persist into the future. Encompassing a wide array of solid-state materials, spanning semiconductors to polymers, molecular crystals to nanoparticles, functional materials find application in critical sectors such as electronics, computers, information, communication, bio­technology, aerospace, defense, environment, energy, medicine and consumer products. This feature article delves into diverse instances of functional materials, exploring their structures, their properties and the underlying mechanisms that contribute to their outstanding performance across fields like batteries, photovoltaics, magnetics and heterogeneous catalysts. The field of structural sciences serves as the cornerstone for unraveling the intricate relationship between structure, dynamics and function. Acting as a bridge, it connects the fundamental understanding of materials to their practical applications.




unc

On the analysis of two-time correlation functions: equilibrium versus non-equilibrium systems

X-ray photon correlation spectroscopy (XPCS) is a powerful tool for the investigation of dynamics covering a broad range of timescales and length scales. The two-time correlation function (TTC) is commonly used to track non-equilibrium dynamical evolution in XPCS measurements, with subsequent extraction of one-time correlations. While the theoretical foundation for the quantitative analysis of TTCs is primarily established for equilibrium systems, where key parameters such as the diffusion coefficient remain constant, non-equilibrium systems pose a unique challenge. In such systems, different projections (`cuts') of the TTC may lead to divergent results if the underlying fundamental parameters themselves are subject to temporal variations. This article explores widely used approaches for TTC calculations and common methods for extracting relevant information from correlation functions, particularly in the light of comparing dynamics in equilibrium and non-equilibrium systems.