ic

A study of stress, composition and grain interaction gradients in energy-dispersive X-ray stress analysis on materials with cubic symmetry

The influence of various combinations of residual stress, composition and grain interaction gradients in polycrystalline materials with cubic symmetry on energy-dispersive X-ray stress analysis is theoretically investigated. For the evaluation of the simulated sin2ψ distributions, two different strategies are compared with regard to their suitability for separating the individual gradients. It is shown that the separation of depth gradients of the strain-free lattice parameter a0(z) from residual stress gradients σ(z) is only possible if the data analysis is carried out in section planes parallel to the surface. The impact of a surface layer z* that is characterized by a direction-dependent grain interaction model in contrast to the volume of the material is quantified by comparing a ferritic and an austenitic steel, which feature different elastic anisotropy. It is shown to be of minor influence on the resulting residual stress depth profiles if the data evaluation is restricted to reflections hkl with orientation factors Γhkl close to the model-independent orientation Γ*. Finally, a method is proposed that allows the thickness of the anisotropic surface layer z* to be estimated on the basis of an optimization procedure.




ic

Automated pipeline processing X-ray diffraction data from dynamic compression experiments on the Extreme Conditions Beamline of PETRA III

Presented and discussed here is the implementation of a software solution that provides prompt X-ray diffraction data analysis during fast dynamic compression experiments conducted within the dynamic diamond anvil cell technique. It includes efficient data collection, streaming of data and metadata to a high-performance cluster (HPC), fast azimuthal data integration on the cluster, and tools for controlling the data processing steps and visualizing the data using the DIOPTAS software package. This data processing pipeline is invaluable for a great number of studies. The potential of the pipeline is illustrated with two examples of data collected on ammonia–water mixtures and multiphase mineral assemblies under high pressure. The pipeline is designed to be generic in nature and could be readily adapted to provide rapid feedback for many other X-ray diffraction techniques, e.g. large-volume press studies, in situ stress/strain studies, phase transformation studies, chemical reactions studied with high-resolution diffraction etc.




ic

A simple protocol for determining the zone axis direction from selected-area electron diffraction spot patterns of cubic materials

Using the well known Rn ratio method, a protocol has been elaborated for determining the lattice direction for the 15 most common cubic zone axis spot patterns. The method makes use of the lengths of the three shortest reciprocal-lattice vectors in each pattern and the angles between them. No prior pattern calibration is required for the method to work, as the Rn ratio method is based entirely on geometric relationships. In the first step the pattern is assigned to one of three possible pattern types according to the angles that are measured between the three reciprocal-lattice vectors. The lattice direction [uvw] and possible Bravais type(s) and Laue indices of the corresponding reflections can then be determined by using lookup tables. In addition to determining the lattice direction, this simple geometric analysis allows one to distinguish between the P, I and F Bravais lattices for spot patterns aligned along [013], [112], [114] and [233]. Moreover, the F lattice can always be uniquely identified from the [011] and [123] patterns.




ic

Evolution of elliptical SAXS patterns in aligned systems

Small-angle X-ray and neutron scattering (SAXS and SANS) patterns from certain semicrystalline polymers and liquid crystals contain discrete reflections from ordered assemblies and central diffuse scattering (CDS) from uncorrelated structures. Systems with imperfectly ordered lamellar structures aligned by stretching or by a magnetic field produce four distinct SAXS patterns: two-point `banana', four-point pattern, four-point `eyebrow' and four-point `butterfly'. The peak intensities of the reflections lie not on a layer line, or the arc of a circle, but on an elliptical trajectory. Modeling shows that randomly placed lamellar stacks modified by chain slip and stack rotation or interlamellar shear can create these forms. On deformation, the isotropic CDS becomes an equatorial streak with an oval, diamond or two-bladed propeller shape, which can be analyzed by separation into isotropic and oriented components. The streak has elliptical intensity contours, a natural consequence of the imperfect alignment of the elongated scattering objects. Both equatorial streaks and two- and four-point reflections can be fitted in elliptical coordinates with relatively few parameters. Equatorial streaks can be analyzed to obtain the size and orientation of voids, fibrils or surfaces. Analyses of the lamellar reflection yield lamellar spacing, stack orientation (interlamellar shear) angle α and chain slip angle ϕ, as well as the size distribution of the lamellar stacks. Currently available computational tools allow these microstructural parameters to be rapidly refined.




ic

Accurate space-group prediction from composition

Predicting crystal symmetry simply from chemical composition has remained challenging. Several machine-learning approaches can be employed, but the predictive value of popular crystallographic databases is relatively modest due to the paucity of data and uneven distribution across the 230 space groups. In this work, virtually all crystallographic information available to science has been compiled and used to train and test multiple machine-learning models. Composition-driven random-forest classification relying on a large set of descriptors showed the best performance. The predictive models for crystal system, Bravais lattice, point group and space group of inorganic compounds are made publicly available as easy-to-use software downloadable from https://gitlab.com/vishsoft/cosy.




ic

Mix and measure II: joint high-energy laboratory powder diffraction and microtomography for cement hydration studies

Portland cements (PCs) and cement blends are multiphase materials of different fineness, and quantitatively analysing their hydration pathways is very challenging. The dissolution (hydration) of the initial crystalline and amorphous phases must be determined, as well as the formation of labile (such as ettringite), reactive (such as portlandite) and amorphous (such as calcium silicate hydrate gel) components. The microstructural changes with hydration time must also be mapped out. To address this robustly and accurately, an innovative approach is being developed based on in situ measurements of pastes without any sample conditioning. Data are sequentially acquired by Mo Kα1 laboratory X-ray powder diffraction (LXRPD) and microtomography (µCT), where the same volume is scanned with time to reduce variability. Wide capillaries (2 mm in diameter) are key to avoid artefacts, e.g. self-desiccation, and to have excellent particle averaging. This methodology is tested in three cement paste samples: (i) a commercial PC 52.5 R, (ii) a blend of 80 wt% of this PC and 20 wt% quartz, to simulate an addition of supplementary cementitious materials, and (iii) a blend of 80 wt% PC and 20 wt% limestone, to simulate a limestone Portland cement. LXRPD data are acquired at 3 h and 1, 3, 7 and 28 days, and µCT data are collected at 12 h and 1, 3, 7 and 28 days. Later age data can also be easily acquired. In this methodology, the amounts of the crystalline phases are directly obtained from Rietveld analysis and the amorphous phase contents are obtained from mass-balance calculations. From the µCT study, and within the attained spatial resolution, three components (porosity, hydrated products and unhydrated cement particles) are determined. The analyses quantitatively demonstrate the filler effect of quartz and limestone in the hydration of alite and the calcium aluminate phases. Further hydration details are discussed.




ic

Coherent X-ray diffraction imaging of single particles: background impact on 3D reconstruction

Coherent diffractive imaging with X-ray free-electron lasers could enable structural studies of macromolecules at room temperature. This type of experiment could provide a means to study structural dynamics on the femtosecond timescale. However, the diffraction from a single protein is weak compared with the incoherent scattering from background sources, which negatively affects the reconstruction analysis. This work evaluates the effects of the presence of background on the analysis pipeline. Background measurements from the European X-ray Free-Electron Laser were combined with simulated diffraction patterns and treated by a standard reconstruction procedure, including orientation recovery with the expand, maximize and compress algorithm and 3D phase retrieval. Background scattering did have an adverse effect on the estimated resolution of the reconstructed density maps. Still, the reconstructions generally worked when the signal-to-background ratio was 0.6 or better, in the momentum transfer shell of the highest reconstructed resolution. The results also suggest that the signal-to-background requirement increases at higher resolution. This study gives an indication of what is possible at current setups at X-ray free-electron lasers with regards to expected background strength and establishes a target for experimental optimization of the background.




ic

Revealing nanoscale sorption mechanisms of gases in a highly porous silica aerogel

Geological formations provide a promising environment for the long-term and short-term storage of gases, including carbon dioxide, hydrogen and hydro­carbons, controlled by the rock-specific small-scale pore structure. This study investigates the nanoscale structure and gas uptake in a highly porous silica aerogel (a synthetic proxy for natural rocks) using transmission electron microscopy, X-ray diffraction, and small-angle and ultra-small-angle neutron scattering with a tracer of deuterated methane (CD4) at pressures up to 1000 bar. The results show that the adsorption of CD4 in the porous silica matrix is scale dependent. The pore space of the silica aerogel is fully accessible to the invading gas, which quickly equilibrates with the external pressure and shows no condensation on the sub-nanometre scale. In the 2.5–50 nm pore size region a classical two-phase adsorption behaviour is observed. The structure of the aerogel returns to its original state after the CD4 pressure has been released.




ic

Ptychographic phase retrieval via a deep-learning-assisted iterative algorithm

Ptychography is a powerful computational imaging technique with microscopic imaging capability and adaptability to various specimens. To obtain an imaging result, it requires a phase-retrieval algorithm whose performance directly determines the imaging quality. Recently, deep neural network (DNN)-based phase retrieval has been proposed to improve the imaging quality from the ordinary model-based iterative algorithms. However, the DNN-based methods have some limitations because of the sensitivity to changes in experimental conditions and the difficulty of collecting enough measured specimen images for training the DNN. To overcome these limitations, a ptychographic phase-retrieval algorithm that combines model-based and DNN-based approaches is proposed. This method exploits a DNN-based denoiser to assist an iterative algorithm like ePIE in finding better reconstruction images. This combination of DNN and iterative algorithms allows the measurement model to be explicitly incorporated into the DNN-based approach, improving its robustness to changes in experimental conditions. Furthermore, to circumvent the difficulty of collecting the training data, it is proposed that the DNN-based denoiser be trained without using actual measured specimen images but using a formula-driven supervised approach that systemically generates synthetic images. In experiments using simulation based on a hard X-ray ptychographic measurement system, the imaging capability of the proposed method was evaluated by comparing it with ePIE and rPIE. These results demonstrated that the proposed method was able to reconstruct higher-spatial-resolution images with half the number of iterations required by ePIE and rPIE, even for data with low illumination intensity. Also, the proposed method was shown to be robust to its hyperparameters. In addition, the proposed method was applied to ptychographic datasets of a Simens star chart and ink toner particles measured at SPring-8 BL24XU, which confirmed that it can successfully reconstruct images from measurement scans with a lower overlap ratio of the illumination regions than is required by ePIE and rPIE.




ic

Practical courses on advanced methods in macromolecular crystallization: 20 years of history and future perspectives

The first Federation of European Biochemical Societies Advanced Course on macromolecular crystallization was launched in the Czech Republic in October 2004. Over the past two decades, the course has developed into a distinguished event, attracting students, early career postdoctoral researchers and lecturers. The course topics include protein purification, characterization and crystallization, covering the latest advances in the field of structural biology. The many hands-on practical exercises enable a close interaction between students and teachers and offer the opportunity for students to crystallize their own proteins. The course has a broad and lasting impact on the scientific community as participants return to their home laboratories and act as nuclei by communicating and implementing their newly acquired knowledge and skills.




ic

Energy-dispersive Laue diffraction analysis of the influence of statherin and histatin on the crystallographic texture during human dental enamel demineralization

Energy-dispersive Laue diffraction (EDLD) is a powerful method to obtain position-resolved texture information in inhomogeneous biological samples without the need for sample rotation. This study employs EDLD texture scanning to investigate the impact of two salivary peptides, statherin (STN) and histatin-1 (HTN) 21 N-terminal peptides (STN21 and HTN21), on the crystallographic structure of dental enamel. These proteins are known to play crucial roles in dental caries progression. Three healthy incisors were randomly assigned to three groups: artificially demineralized, demineralized after HTN21 peptide pre-treatment and demineralized after STN21 peptide pre-treatment. To understand the micro-scale structure of the enamel, each specimen was scanned from the enamel surface to a depth of 250 µm using microbeam EDLD. Via the use of a white beam and a pixelated detector, where each pixel functions as a spectrometer, pole figures were obtained in a single exposure at each measurement point. The results revealed distinct orientations of hydroxyapatite crystallites and notable texture variation in the peptide-treated demineralized samples compared with the demineralized control. Specifically, the peptide-treated demineralized samples exhibited up to three orientation populations, in contrast to the demineralized control which displayed only a single orientation population. The texture index of the demineralized control (2.00 ± 0.21) was found to be lower than that of either the STN21 (2.32 ± 0.20) or the HTN21 (2.90 ± 0.46) treated samples. Hence, texture scanning with EDLD gives new insights into dental enamel crystallite orientation and links the present understanding of enamel demineralization to the underlying crystalline texture. For the first time, the feasibility of EDLD texture measurements for quantitative texture evaluation in demineralized dental enamel samples is demonstrated.




ic

Low-dose electron microscopy imaging for beam-sensitive metal–organic frameworks

Metal–organic frameworks (MOFs) have garnered significant attention in recent years owing to their exceptional properties. Understanding the intricate relationship between the structure of a material and its properties is crucial for guiding the synthesis and application of these materials. (Scanning) Transmission electron microscopy (S)TEM imaging stands out as a powerful tool for structural characterization at the nanoscale, capable of detailing both periodic and aperiodic local structures. However, the high electron-beam sensitivity of MOFs presents substantial challenges in their structural characterization using (S)TEM. This paper summarizes the latest advancements in low-dose high-resolution (S)TEM imaging technology and its application in MOF material characterization. It covers aspects such as framework structure, defects, and surface and interface analysis, along with the distribution of guest molecules within MOFs. This review also discusses emerging technologies like electron ptychography and outlines several prospective research directions in this field.




ic

Coordinate-based simulation of pair distance distribution functions for small and large molecular assemblies: implementation and applications

X-ray scattering has become a major tool in the structural characterization of nanoscale materials. Thanks to the widely available experimental and computational atomic models, coordinate-based X-ray scattering simulation has played a crucial role in data interpretation in the past two decades. However, simulation of real-space pair distance distribution functions (PDDFs) from small- and wide-angle X-ray scattering, SAXS/WAXS, has been relatively less exploited. This study presents a comparison of PDDF simulation methods, which are applied to molecular structures that range in size from β-cyclo­dextrin [1 kDa molecular weight (MW), 66 non-hydrogen atoms] to the satellite tobacco mosaic virus capsid (1.1 MDa MW, 81 960 non-hydrogen atoms). The results demonstrate the power of interpretation of experimental SAXS/WAXS from the real-space view, particularly by providing a more intuitive method for understanding of partial structure contributions. Furthermore, the computational efficiency of PDDF simulation algorithms makes them attractive as approaches for the analysis of large nanoscale materials and biological assemblies. The simulation methods demonstrated in this article have been implemented in stand-alone software, SolX 3.0, which is available to download from https://12idb.xray.aps.anl.gov/solx.html.




ic

In situ counter-diffusion crystallization and long-term crystal preservation in microfluidic fixed targets for serial crystallography

Compared with batch and vapor diffusion methods, counter diffusion can generate larger and higher-quality protein crystals yielding improved diffraction data and higher-resolution structures. Typically, counter-diffusion experiments are conducted in elongated chambers, such as glass capillaries, and the crystals are either directly measured in the capillary or extracted and mounted at the X-ray beamline. Despite the advantages of counter-diffusion protein crystallization, there are few fixed-target devices that utilize counter diffusion for crystallization. In this article, different designs of user-friendly counter-diffusion chambers are presented which can be used to grow large protein crystals in a 2D polymer microfluidic fixed-target chip. Methods for rapid chip fabrication using commercially available thin-film materials such as Mylar, propyl­ene and Kapton are also detailed. Rules of thumb are provided to tune the nucleation and crystal growth to meet users' needs while minimizing sample consumption. These designs provide a reliable approach to forming large crystals and maintaining their hydration for weeks and even months. This allows ample time to grow, select and preserve the best crystal batches before X-ray beam time. Importantly, the fixed-target microfluidic chip has a low background scatter and can be directly used at beamlines without any crystal handling, enabling crystal quality to be preserved. The approach is demonstrated with serial diffraction of photoactive yellow protein, yielding 1.32 Å resolution at room temperature. Fabrication of this standard microfluidic chip with commercially available thin films greatly simplifies fabrication and provides enhanced stability under vacuum. These advances will further broaden microfluidic fixed-target utilization by crystallographers.




ic

Free tools for crystallographic symmetry handling and visualization

Online courses and innovative teaching methods have triggered a trend in education, where the integration of multimedia, online resources and interactive tools is reshaping the view of both virtual and traditional classrooms. The use of interactive tools extends beyond the boundaries of the physical classroom, offering students the flexibility to access materials at their own speed and convenience and enhancing their learning experience. In the field of crystallography, there are a wide variety of free online resources such as web pages, interactive applets, databases and programs that can be implemented in fundamental crystallography courses for different academic levels and curricula. This paper discusses a variety of resources that can be helpful for crystallographic symmetry handling and visualization, discussing four specific resources in detail: the Bilbao Crystallographic Server, the Cambridge Structural Database, VESTA and Jmol. The utility of these resources is explained and shown by several illustrative examples.




ic

Use of a confocal optical device for centring a diamond anvil cell in single-crystal X-ray diffraction experiments

High-pressure crystallographic data can be measured using a diamond anvil cell (DAC), which allows the sample to be viewed only along a cell vector which runs perpendicular to the diamond anvils. Although centring a sample perpendicular to this direction is straightforward, methods for centring along this direction often rely on sample focusing, measurements of the direct beam or short data collections followed by refinement of the crystal offsets. These methods may be inaccurate, difficult to apply or slow. Described here is a method based on precise measurement of the offset in this direction using a confocal optical device, whereby the cell centre is located at the mid-point of two measurements of the distance between a light source and the external faces of the diamond anvils viewed along the forward and reverse directions of the cell vector. It is shown that the method enables a DAC to be centred to within a few micrometres reproducibly and quickly.




ic

The AUREX cell: a versatile operando electrochemical cell for studying catalytic materials using X-ray diffraction, total scattering and X-ray absorption spectroscopy under working conditions

Understanding the structure–property relationship in electrocatalysts under working conditions is crucial for the rational design of novel and improved catalytic materials. This paper presents the Aarhus University reactor for electrochemical studies using X-rays (AUREX) operando electrocatalytic flow cell, designed as an easy-to-use versatile setup with a minimal background contribution and a uniform flow field to limit concentration polarization and handle gas formation. The cell has been employed to measure operando total scattering, diffraction and absorption spectroscopy as well as simultaneous combinations thereof on a commercial silver electrocatalyst for proof of concept. This combination of operando techniques allows for monitoring of the short-, medium- and long-range structure under working conditions, including an applied potential, liquid electrolyte and local reaction environment. The structural transformations of the Ag electrocatalyst are monitored with non-negative matrix factorization, linear combination analysis, the Pearson correlation coefficient matrix, and refinements in both real and reciprocal space. Upon application of an oxidative potential in an Ar-saturated aqueous 0.1 M KHCO3/K2CO3 electrolyte, the face-centered cubic (f.c.c.) Ag gradually transforms first to a trigonal Ag2CO3 phase, followed by the formation of a monoclinic Ag2CO3 phase. A reducing potential immediately reverts the structure to the Ag (f.c.c.) phase. Following the electrochemical-reaction-induced phase transitions is of fundamental interest and necessary for understanding and improving the stability of electrocatalysts, and the operando cell proves a versatile setup for probing this. In addition, it is demonstrated that, when studying electrochemical reactions, a high energy or short exposure time is needed to circumvent beam-induced effects.




ic

Towards dynamically configured databases for CIFs: the new modulated structures open database at the Bilbao Crystallographic Server

This article presents a web-based framework to build a database without in-depth programming knowledge given a set of CIF dictionaries and a collection of CIFs. The framework consists of two main elements: the public site that displays the information contained in the CIFs in an ordered manner, and the restricted administrative site which defines how that information is stored, processed and, eventually, displayed. Thus, the web application allows users to easily explore, filter and access the data, download the original CIFs, and visualize the structures via JSmol. The modulated structures open database B-IncStrDB, the official International Union of Crystallography repository for this type of material and available through the Bilbao Crystallographic Server, has been re-implemented following the proposed framework.




ic

Measurable structure factors of dense dispersions containing polydisperse optically inhomogeneous particles

Here, it is investigated how optical properties of single scatterers in interacting multi-particle systems influence measurable structure factors. Both particles with linear gradients of their scattering length density and core–shell structures evoke characteristic deviations between the weighted sum 〈S(Q)〉 of partial structure factors in a multi-component system and experimentally accessible measurable structure factors SM(Q). While 〈S(Q)〉 contains only the structural information of self-organizing systems, SM(Q) is additionally influenced by the optical properties of their constituents, resulting in features such as changing amplitudes, additional peaks in the low-wavevector region or splitting of higher-order maxima, which are not related to structural reasons. It is shown that these effects can be systematically categorized according to the qualitative behaviour of the form factor in the Guinier region, which enables assessing the suitability of experimentally obtained structure factors to genuinely represent the microstructure of complex systems free from any particular model assumption. Hence, a careful data analysis regarding size distribution and optical properties of single scatterers is mandatory to avoid a misinterpretation of measurable structure factors.




ic

SUBGROUPS: a computer tool at the Bilbao Crystallographic Server for the study of pseudo-symmetric or distorted structures

SUBGROUPS is a free online program at the Bilbao Crystallographic Server (https://www.cryst.ehu.es/). It permits the exploration of all possible symmetries resulting from the distortion of a higher-symmetry parent structure, provided that the relation between the lattices of the distorted and parent structures is known. The program calculates all the subgroups of the parent space group which comply with this relation. The required minimal input is the space-group information of the parent structure and the relation of the unit cell of the distorted or pseudo-symmetric structure with that of the parent structure. Alternatively, the wavevector(s) observed in the diffraction data characterizing the distortion can be introduced. Additional conditions can be added, including filters related to space-group representations. The program provides very detailed information on all the subgroups, including group–subgroup hierarchy graphs. If a Crystallographic Information Framework (CIF) file of the parent high-symmetry structure is uploaded, the program generates CIF files of the parent structure described under each of the chosen lower symmetries. These CIF files may then be used as starting points for the refinement of the distorted structure under these possible symmetries. They can also be used for density functional theory calculations or for any other type of analysis. The power and efficiency of the program are illustrated with a few examples.




ic

Twinning and homo-epitaxy cooperation in the already rich growth morphology of CaCO3 polymorphs. II. Calcite

The two most abundant CaCO3 polymorphs, calcite and aragonite, are universally recognized for the richness of their morphology to which different twins make relevant contributions. The epitaxial transformation calcite ↔ aragonite has long been debated. While the twinning has been thoroughly treated, the homo-epitaxy occurring within each of these minerals has, inexplicably, been overlooked to date, both experimentally and theoretically. Twinning can be deceptive to the point where it can be mistaken for homo-epitaxy, thus making the proposed growth mechanism in the crystal aggregate wrong. Within the present work, the first aim is a theoretical investigation of the homo-epitaxies among the three {10.4}-cleavage, {01.2}-steep and {01.8}-flat rhombohedra of calcite. Accordingly, the specific adhesion energies were calculated between facing crystal forms, unequivocally showing that the {01.2}/{01.8} homo-epitaxy competes with the generation of both {01.2} and {01.8} contact twins. Secondly, the calculation of the specific adhesion energy was extended to consider homo-epitaxy for the {10.4} rhombohedron. The two-dimensional geometric lattice coincidence has been tried for the {00.1} pinacoidal form as well.




ic

Deconstructing 3D growth rates from transmission microscopy images of facetted crystals as captured in situ within supersaturated aqueous solutions

Here, a morphologically based approach is used for the in situ characterization of 3D growth rates of facetted crystals from the solution phase. Crystal images of single crystals of the β-form of l-glutamic acid are captured in situ during their growth at a relative supersaturation of 1.05 using transmission optical microscopy. The crystal growth rates estimated for both the {101} capping and {021} prismatic faces through image processing are consistent with those determined using reflection light mode [Jiang, Ma, Hazlehurst, Ilett, Jackson, Hogg & Roberts (2024). Cryst. Growth Des. 24, 3277–3288]. The growth rate in the {010} face is, for the first time, estimated from the shadow widths of the {021} prismatic faces and found to be typically about half that of the {021} prismatic faces. Analysis of the 3D shape during growth reveals that the initial needle-like crystal morphology develops during the growth process to become more tabular, associated with the Zingg factor evolving from 2.9 to 1.7 (>1). The change in relative solution supersaturation during the growth process is estimated from calculations of the crystal volume, offering an alternative approach to determine this dynamically from visual observations.




ic

Electronic angle focusing for neutron time-of-flight powder diffractometers

A neutron time-of-flight (TOF) powder diffractometer with a continuous wide-angle array of detectors can be electronically focused to make a single pseudo-constant wavelength diffraction pattern, thus facilitating angle-dependent intensity corrections. The resulting powder diffraction peak profiles are affected by the neutron source emission profile and resemble the function currently used for TOF diffraction.




ic

Characterization of sub-micrometre-sized voids in fixed human brain tissue using scanning X-ray microdiffraction

Using a 5 µm-diameter X-ray beam, we collected scanning X-ray microdiffraction in both the small-angle (SAXS) and the wide-angle (WAXS) regimes from thin sections of fixed human brain tissue from Alzheimer's subjects. The intensity of scattering in the SAXS regime of these patterns exhibits essentially no correlation with the observed intensity in the WAXS regime, indicating that the structures responsible for these two portions of the diffraction patterns, which reflect different length scales, are distinct. SAXS scattering exhibits a power-law behavior in which the log of intensity decreases linearly with the log of the scattering angle. The slope of the log–log curve is roughly proportional to the intensity in the SAXS regime and, surprisingly, inversely proportional to the intensity in the WAXS regime. We interpret these observations as being due to the presence of sub-micrometre-sized voids formed during dehydration of the fixed tissue. The SAXS intensity is due largely to scattering from these voids, while the WAXS intensity derives from the secondary structures of macromolecular material surrounding the voids. The ability to detect and map the presence of voids within thin sections of fixed tissue has the potential to provide novel information on the degradation of human brain tissue in neurodegenerative diseases.




ic

VMXm – A sub-micron focus macromolecular crystallography beamline at Diamond Light Source

VMXm joins the suite of operational macromolecular crystallography beamlines at Diamond Light Source. It has been designed to optimize rotation data collections from protein crystals less than 10 µm and down to below 1 µm in size. The beamline has a fully focused beam of 0.3 × 2.3 µm (vertical × horizontal) with a tuneable energy range (6–28 keV) and high flux (1.6 × 1012 photons s−1 at 12.5 keV). The crystals are housed within a vacuum chamber to minimize background scatter from air. Crystals are plunge-cooled on cryo-electron microscopy grids, allowing much of the liquid surrounding the crystals to be removed. These factors improve the signal-to-noise during data collection and the lifetime of the microcrystals can be prolonged by exploiting photoelectron escape. A novel in vacuo sample environment has been designed which also houses a scanning electron microscope to aid with sample visualization. This combination of features at VMXm allows measurements at the physical limits of X-ray crystallography on biomacromolecules to be explored and exploited.




ic

Correlative X-ray micro-nanotomography with scanning electron microscopy at the Advanced Light Source

Geological samples are inherently multi-scale. Understanding their bulk physical and chemical properties requires characterization down to the nano-scale. A powerful technique to study the three-dimensional microstructure is X-ray tomography, but it lacks information about the chemistry of samples. To develop a methodology for measuring the multi-scale 3D microstructure of geological samples, correlative X-ray micro- and nanotomography were performed on two rocks followed by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) analysis. The study was performed in five steps: (i) micro X-ray tomography was performed on rock sample cores, (ii) samples for nanotomography were prepared using laser milling, (iii) nanotomography was performed on the milled sub-samples, (iv) samples were mounted and polished for SEM analysis and (v) SEM imaging and compositional mapping was performed on micro and nanotomography samples for complimentary information. Correlative study performed on samples of serpentine and basalt revealed multiscale 3D structures involving both solid mineral phases and pore networks. Significant differences in the volume fraction of pores and mineral phases were also observed dependent on the imaging spatial resolution employed. This highlights the necessity for the application of such a multiscale approach for the characterization of complex aggregates such as rocks. Information acquired from the chemical mapping of different phases was also helpful in segmentation of phases that did not exhibit significant contrast in X-ray imaging. Adoption of the protocol used in this study can be broadly applied to 3D imaging studies being performed at the Advanced Light Source and other user facilities.




ic

Mitigation of DMM-induced stripe patterns in synchrotron X-ray radiography through dynamic tilting

In synchrotron X-ray radiography, achieving high image resolution and an optimal signal-to-noise ratio (SNR) is crucial for the subsequent accurate image analysis. Traditional methods often struggle to balance these two parameters, especially in situ applications where rapid data acquisition is essential to capture specific dynamic processes. For quantitative image data analysis, using monochromatic X-rays is essential. A double multilayer monochromator (DMM) is successfully used for this aim at the BAMline, BESSY II (Helmholtz Zentrum Berlin, Germany). However, such DMMs are prone to producing an unstable horizontal stripe pattern. Such an unstable pattern renders proper signal normalization difficult and thereby causes a reduction of the SNR. We introduce a novel approach to enhance SNR while preserving resolution: dynamic tilting of the DMM. By adjusting the orientation of the DMM during the acquisition of radiographic projections, we optimize the X-ray imaging quality, thereby enhancing the SNR. The corresponding shift of the projection during this movement is corrected in post-processing. The latter correction allows a good resolution to be preserved. This dynamic tilting technique enables the homogenization of the beam profile and thereby effectively reduces noise while maintaining high resolution. We demonstrate that data captured using this proposed technique can be seamlessly integrated into the existing radiographic data workflow, as it does not need hardware modifications to classical X-ray imaging beamline setups. This facilitates further image analysis and processing using established methods.




ic

Development of crystal optics for X-ray multi-projection imaging for synchrotron and XFEL sources

X-ray multi-projection imaging (XMPI) is an emerging experimental technique for the acquisition of rotation-free, time-resolved, volumetric information on stochastic processes. The technique is developed for high-brilliance light-source facilities, aiming to address known limitations of state-of-the-art imaging methods in the acquisition of 4D sample information, linked to their need for sample rotation. XMPI relies on a beam-splitting scheme, that illuminates a sample from multiple, angularly spaced viewpoints, and employs fast, indirect, X-ray imaging detectors for the collection of the data. This approach enables studies of previously inaccessible phenomena of industrial and societal relevance such as fractures in solids, propagation of shock waves, laser-based 3D printing, or even fast processes in the biological domain. In this work, we discuss in detail the beam-splitting scheme of XMPI. More specifically, we explore the relevant properties of X-ray splitter optics for their use in XMPI schemes, both at synchrotron insertion devices and XFEL facilities. Furthermore, we describe two distinct XMPI schemes, designed to faciliate large samples and complex sample environments. Finally, we present experimental proof of the feasibility of MHz-rate XMPI at the European XFEL. This detailed overview aims to state the challenges and the potential of XMPI and act as a stepping stone for future development of the technique.




ic

distect: automatic sample-position tracking for X-ray experiments using computer vision algorithms

Soft X-ray spectroscopy is an important technique for measuring the fundamental properties of materials. However, for measurements of samples in the sub-millimetre range, many experimental setups show limitations. Position drifts on the order of hundreds of micrometres during thermal stabilization of the system can last for hours of expensive beam time. To compensate for drifts, sample tracking and feedback systems must be used. However, in complex sample environments where sample access is very limited, many existing solutions cannot be applied. In this work, we apply a robust computer vision algorithm to automatically track and readjust the sample position in the dozens of micrometres range. Our approach is applied in a complex sample environment, where the sample is in an ultra-high vacuum chamber, surrounded by cooled thermal shields to reach sample temperatures down to 2.5 K and in the center of a superconducting split coil. Our implementation allows sample-position tracking and adjustment in the vertical direction since this is the dimension where drifts occur during sample temperature change in our setup. The approach can be easily extended to 2D. The algorithm enables a factor of ten improvement in the overlap of a series of X-ray absorption spectra in a sample with a vertical size down to 70 µm. This solution can be used in a variety of experimental stations, where optical access is available and sample access by other means is reduced.




ic

Development of hard X-ray photoelectron spectroscopy in liquid cells using optimized microfabricated silicon nitride membranes

We present first hard X-ray photoelectron spectroscopy (HAXPES) results of aqueous salt solutions and dispersions of gold nanoparticles in liquid cells equipped with specially designed microfabricated thin silicon nitride membranes, with thickness in the 15–25 nm range, mounted in a high-vacuum-compatible environment. The experiments have been performed at the HAXPES endstation of the GALAXIES beamline at the SOLEIL synchrotron radiation facility. The low-stress membranes are fabricated from 100 mm silicon wafers using standard lithography techniques. Platinum alignment marks are added to the chips hosting the membranes to facilitate the positioning of the X-ray beam on the membrane by detecting the corresponding photoemission lines. Two types of liquid cells have been used, a static one built on an Omicron-type sample holder with the liquid confined in the cell container, and a circulating liquid cell, in which the liquid can flow in order to mitigate the effects due to beam damage. We demonstrate that the membranes are mechanically robust and able to withstand 1 bar pressure difference between the liquid inside the cell and vacuum, and the intense synchrotron radiation beam during data acquisition. This opens up new opportunities for spectroscopic studies of liquids.




ic

High-transmission spectrometer for rapid resonant inelastic soft X-ray scattering (rRIXS) maps

The design and first results of a high-transmission soft X-ray spectrometer operated at the X-SPEC double-undulator beamline of the KIT Light Source are presented. As a unique feature, particular emphasis was placed on optimizing the spectrometer transmission by maximizing the solid angle and the efficiencies of spectrometer gratings and detector. A CMOS detector, optimized for soft X-rays, allows for quantum efficiencies of 90% or above over the full energy range of the spectrometer, while simultaneously offering short readout times. Combining an optimized control system at the X-SPEC beamline with continuous energy scans (as opposed to step scans), the high transmission of the spectrometer, and the fast readout of the CMOS camera, enable the collection of entire rapid resonant inelastic soft X-ray scattering maps in less than 1 min. Series of spectra at a fixed energy can be taken with a frequency of up to 5 Hz. Furthermore, the use of higher-order reflections allows a very wide energy range (45 to 2000 eV) to be covered with only two blazed gratings, while keeping the efficiency high and the resolving power E/ΔE above 1500 and 3000 with low- and high-energy gratings, respectively.




ic

Formulation of perfect-crystal diffraction from Takagi–Taupin equations: numerical implementation in the crystalpy library

The Takagi–Taupin equations are solved in their simplest form (zero deformation) to obtain the Bragg-diffracted and transmitted complex amplitudes. The case of plane-parallel crystal plates is discussed using a matrix model. The equations are implemented in an open-source Python library crystalpy adapted for numerical applications such as crystal reflectivity calculations and ray tracing.




ic

Mirror-centered representation of a focusing hyperbolic mirror for X-ray beamlines

Conic sections are commonly used in reflective X-ray optics. Hyperbolic mirrors can focus a converging light source and are frequently paired with elliptical or parabolic mirrors in Wolter type configurations. This paper derives the closed-form expression for a mirror-centered hyperbolic shape, with zero-slope at the origin. Combined with the slope and curvature, such an expression facilitates metrology, manufacturing and mirror-bending calculations. Previous works consider ellipses, parabolas, magnifying hyperbolas or employ lengthy approximations. Here, the exact shape function is given in terms of the mirror incidence angle and the source and image distances.




ic

Synchrotron CT dosimetry for wiggler operation at reduced magnetic field and spatial modulation with bow tie filters

The Australian Synchrotron Imaging and Medical Beamline (IMBL) uses a superconducting multipole wiggler (SCMPW) source, dual crystal Laue monochromator and 135 m propagation distance to enable imaging and computed tomography (CT) studies of large samples with mono-energetic radiation. This study aimed to quantify two methods for CT dose reduction: wiggler source operation at reduced magnetic field strength, and beam modulation with spatial filters placed upstream from the sample. Transmission measurements with copper were used to indirectly quantify the influence of third harmonic radiation. Operation at lower wiggler magnetic field strength reduces dose rates by an order of magnitude, and suppresses the influence of harmonic radiation, which is of significance near 30 keV. Beam shaping filters modulate the incident beam profile for near constant transmitted signal, and offer protection to radio-sensitive surface organs: the eye lens, thyroid and female breast. Their effect is to reduce the peripheral dose and the dose to the scanned volume by about 10% for biological samples of 35–50 mm diameter and by 20–30% for samples of up to 160 mm diameter. CT dosimetry results are presented as in-air measurements that are specific to the IMBL, and as ratios to in-air measurements that may be applied to other beamlines. As CT dose calculators for small animals are yet to be developed, results presented here and in a previous study may be used to estimate absorbed dose to organs near the surface and the isocentre.




ic

Foreword to the special virtual issue on X-ray spectroscopy to understand functional materials: instrumentation, applications, data analysis




ic

Foreword to the special virtual issue dedicated to the proceedings of the PhotonMEADOW2023 Joint Workshop




ic

Tranglo expands payment services to Oman, Qatar, and Bahrain

Tranglo, a global cross-border payments company, has expanded...




ic

Satispay raises EUR 60 million to further drive its service expansion

Italy-based unicorn Satispay has announced...




ic

Emerging Technologies and Trends in Identity Verification, KYC, and KYB Report 2024

The inaugural edition of the Emerging Technologies and Trends in Identity Verification (IDV), KYC, and KYB Report 2024 offers a comprehensive overview of the key technology trends and best practices in digital onboarding for consumers and businesses in 2024.




ic

Embedded Finance and Banking-as-a-Service Report 2024

Unlock unparalleled insights into the transformative world of Embedded Finance and Banking-as-a-Service (BaaS) with The Paypers' latest report. Dive deep into essential business models, key players, and the latest trends reshaping industries with our comprehensive guide, curated by industry experts and leading companies.




ic

Shein partners with Stori to launch a credit card in Mexico

Chinese fast-fashion retailer Shein has introduced its first...




ic

FilmWeek: ‘The Courier,’ ‘Zack Snyder’s Justice League,’ ‘City Of Lies’ And More

Benedict Cumberbatch in “The Courier”; Credit: LIAM DANIEL / LIONSGATE / ROADSIDE ATTRACTIONS

FilmWeek Marquee

Larry Mantle and KPCC film critics Tim Cogshell, Lael Loewenstein and Andy Klein review this weekend’s new movie releases.

This content is from Southern California Public Radio. View the original story at SCPR.org.




ic

Federal Trade Commission introduces final click-to-cancel rule

The Federal Trade Commission (FTC) has...




ic

B89 and PagBrasil partner to expand Pix across Latin America

Peruvian fintech B89 has announced a partnership with Brazil-based...




ic

Africhange secures IMTO licence to streamline remittance to Nigeria

Africhange has announced that its Nigerian branch, Currenzo,...




ic

October Report Highlights Big Gains in Crypto Mining Efficiency and Expansion

Source: Streetwise Reports 11/06/2024

Terawulf Inc. (WULF:NASDAQ) has reported its October 2024 production and operations. Read more about the companys mining efficiency gains, expansion plans, and high-performance computing initiatives.

Terawulf Inc. (WULF:NASDAQ) has reported its October 2024 production and operations. The report included significant advancements in self-mining with an operational capacity reaching 8.1 exahash per second (EH/s). This marks a 62% increase from the prior year. The company mined a total of 150 bitcoins during the month, averaging approximately 4.8 bitcoins per day, at a power cost of US$36,789 per bitcoin mined or about US$0.048 per kWh (kilowatt-hour). To improve efficiency, TeraWulf continued its miner refresh program at its Lake Mariner facility, replacing older models with upgraded S19 XP miners following its sale of interest in the Nautilus Cryptomine facility, which enabled additional hardware acquisitions.

Focusing on high-performance computing (HPC) infrastructure, TeraWulf's aim is to establish 72.5 MW HPC hosting capacity at Lake Mariner by Q2 2025. October's operational hash rate averaged 6.8 EH/s, with adjustments made for demand response events and performance optimization measures to enhance profitability. Construction on the company's 20 MW HPC hosting facility, CB-1, remains on schedule for Q1 2025, and a larger 50 MW HPC facility, CB-2, is expected by Q2 2025. The recent sale of TeraWulf's equity interest in Nautilus and new financing through convertible notes are anticipated to support these growth initiatives.

Sean Farrell, Senior Vice President of Operations at TeraWulf, explained in the press release, "October marked another productive month, with TeraWulf mining 150 bitcoin and sustaining an average daily production of around 5 bitcoin . . . In line with our previously outlined plans, we are accelerating the transition to more efficient mining hardware by replacing older miners at Lake Mariner with S19 XP models. We are also working closely with Bitmain's warranty department on a recovery plan to repair and replace 1.5 EH of mining equipment with a target completion by the end of the year. Furthermore, we have established a dedicated Business Development and Performance Optimization team focused on integrating advanced IT and software solutions to improve our operational hash rate and overall efficiency. Building 5, which has been designed to handle higher heat exhaust of the latest generation miners, remains on track to be operational in Q1 2025."

Why Crypto Mining?

The cryptocurrency mining sector has seen recent momentum, bolstered by the U.S. election results and the evolving landscape for Bitcoin. As Benzinga reported on November 6, bitcoin mining stocks experienced notable gains following the U.S. presidential election, which led to Bitcoin reaching record highs. The outcome was anticipated to benefit U.S.-focused mining companies as pro-crypto policies, including a preference for domestic bitcoin production, gained prominence. Benzinga noted that Trump had previously expressed support for more bitcoin mining within the U.S., a stance that influenced broader market optimism in the days following his election.

On November 4, Yahoo! Finance highlighted the growing trend among Bitcoin miners to integrate artificial intelligence (AI) to power a "new industrial revolution." As described by Rob Nelson, who emphasized the impact of cryptocurrency mining as a vehicle for both economic and technological change. This trend has driven miners to secure deals within the AI sector, given the synergies in computational power required for both cryptocurrency and AI initiatives. Nelson projected that this cross-industry expansion could have far-reaching effects, creating value for both miners and AI-focused enterprises.

Additionally, a November 6 report from Time explored the significance of the recent Presidential election outcome for the crypto industry's future regulatory environment. According to Time, Trump's support for the industry included ambitions to boost the country's bitcoin mining footprint, which aligned with crypto PACs' efforts to secure pro-crypto candidates. The article reported that these advocacy groups saw the election as an opportunity to reshape crypto regulation and encourage growth in U.S.-based bitcoin mining.

TeraWulf's Catalysts

TeraWulf's recent initiatives set a foundation for further growth and operational efficiency. According to the company's investor presentation, the sale of its 25% equity interest in the Nautilus facility enhances liquidity. This enables TeraWulf to reinvest in its flagship Lake Mariner site for both HPC and AI expansion.

The transaction also reduces exposure to the expiring Nautilus 2¢ power contract by 2027, positioning the company to benefit from projected power price increases at Lake Mariner. This strategic realignment is anticipated to improve fleet efficiency, with an upgraded mining fleet targeting 13 EH/s by Q1 2025, supported by the deployment of next-gen S21 Pro miners.

What Experts Are Saying...

On November 5, 2024, Roth MKM analyst Darren Aftahi assigned TeraWulf a "Buy" rating and set a price target of US$7.50. Roth highlighted optimism around the company's expansion and potential in high-performance computing (HPC) and bitcoin mining. Roth noted that TeraWulf's planned 72.5 MW of HPC capacity by Q2 2025 could generate annualized revenue of approximately US$90 million, with over US$60 million in profit. [OWNERSHIP_CHART-11184]

The report highlighted the completion of TeraWulf's initial 2.5 MW HPC project and its upcoming 20 MW facility, which remains on track for Q1 2025. Roth analysts pointed to the operational progress at TeraWulf's Lake Mariner facility, emphasizing the company's improvements in mining efficiency with new S19 XP models, which brought its machine efficiency to 22 J/TH.

Ownership and Share Structure

According to Refinitiv, management and insiders hold 6.67% of TeraWulf. Of them, Co-founder, COO, and CTO Nazar M. Khan holds the most, with 4.43%.

Strategic investors hold 21.37%. Of them, Riesling Power LLC holds the most at 5.23%, Baryshore Capital LLC holds 4.77%, Revolve Capital LLC has 4.67%, Opportunity Four of Parabolic Ventures owns 2.46%, and Lake Harriet Holdings LLC has 1.90%.

Institutions have 45.11%. The largest holders there are The Vanguard Group at 6.12%, BlackRock Instituional Trust with 4.22%, Two Sigma Investments LP at 2.28%, Beryl Capital Management LLC holds 1.74%, and Geode Capital Management LLC has 1.66%. The rest is retail.

TeraWulf has a market cap of US$2,375.93 million and 275.29 million free float shares. Their 52-week range is US$ 0.8911 - 7.28.
Sign up for our FREE newsletter at: www.streetwisereports.com/get-news

Important Disclosures:

1) James Guttman wrote this article for Streetwise Reports LLC and provides services to Streetwise Reports as an employee.

2) This article does not constitute investment advice and is not a solicitation for any investment. Streetwise Reports does not render general or specific investment advice and the information on Streetwise Reports should not be considered a recommendation to buy or sell any security. Each reader is encouraged to consult with his or her personal financial adviser and perform their own comprehensive investment research. By opening this page, each reader accepts and agrees to Streetwise Reports' terms of use and full legal disclaimer. Streetwise Reports does not endorse or recommend the business, products, services or securities of any company.

For additional disclosures, please click here.

( Companies Mentioned: WULF:NASDAQ, )




ic

Gold Co. Starts Drilling at Claim Block in West Africa

Source: Streetwise Reports 11/07/2024

Its objective is to discover multimillion-ounce gold deposits at this property in a prolific gold mining district in Guinea. Find out what experts are saying about the gold market.

Sanu Gold Corp. (SANU:CSE; SNGCF:OTCQB; L73:FRA) commenced inaugural phase one drilling, to comprise about 19 holes for up to 2,000 meters (2,000m), at its Diguifara project in Guinea, as announced in a news release. Diguifara is one of this Canadian mineral explorer's three claim blocks totaling 280 square kilometers in the country's Siguiri Basin, a prolific gold district in West Africa. The other two assets are Daina and Bantabaye.

The company plans to drill test three priority targets, Dig 1, Dig 2, and Dig 3, which cover a cumulative strike length of 3.2 kilometers (3.2 km). Auger-in-saprolite samples from these targets showed gold grades up to 4.8 grams per ton (4.8 g/t). Along with auger sampling of bedrock, Sanu previously completed extensive and systematic surface geochemistry and ground geophysical surveys at Diguifara.

Capital Ltd. will complete the drilling, using a large multipurpose rig to drill air core and reverse circulation holes. This company is experienced in drilling large deposits in Guinea, and its investment arm, Capital DI, is a Sanu shareholder. Capital will collect samples on-site and submit them to MSALABS in Bamako, Mali, for analysis.

Sanu Gold is excited to drill at Diguifara because it contains kilometer-scale geochemical and geophysical gold trends and strong gold mineralization in the weathered bedrock and is located within trucking distance to a large operating gold mine, President and Chief Executive Officer (CEO) Martin Pawlitschek told Streetwise Reports in an interview. He said the company could potentially monetize even a modest discovery of about 200,000–300,000 ounces (200–300 Koz) on the block due to this proximity to a major mine. Although it is important to point out that our target here is to make multi-million-ounce discoveries, our targets are large enough to potentially deliver this.

Diguifara is close to AngloGold Ashanti Plc.'s (AU:NYSE; ANG:JSE; AGG:ASX; AGD:LSE) Siguiri mine and mill, which produced gold since the mid-1990s, specifically 214 Koz last year. This South African gold miner owns 14% of Sanu.

"[AngloGold Ashanti has] a very hungry mill that will welcome additional ore feed from satellite deposits, and we're right in the range," said Pawlitschek.

In other news, Sanu announced separately that it added a new prospective gold target, Salat East, at its Daina claim block in the southeastern corner. There, artisanal miners started extracting mineralized material along a 500m-long, northeast-trending line of workings from a 5–8m wide structure dipping to the west. Daina already has an impressive pipeline of large footprint targets that will see drilling once the rig finishes at Diguifara.

"Salat East represents a new target with possible significant gold ounce potential," Pawlitschek said in the release.

Sanu intends to evaluate this target, with rock chip sampling, geological mapping and geophysics, prior to deciding whether or not to drill it.

Working to Discover Deposits

At Diguifara, Daina and Bantabaye, Sanu Gold is looking to discover multimillion-ounce gold deposits. The trio, in the Siguiri Basin, is surrounded by world-class operating mines and major new discoveries. Société Minière de Dinguiraye SA's Lefa, Hummingbird Resources Plc's (HUM:AIM) Kouroussa and Robex Resources Inc.'s (RBX:TSX.V) Kiniero and Predictive Discovery (PDI:ASX) with its 5.4million ounce Bankan project are some.

"We believe there is definitely that big potential on all three blocks," Pawlitschek told Streetwise.

Guinea and West Africa are pro-mining and looking to expand the industry, noted Sanu's CEO. Since the mid-1990s gold has been mined in Guinea. Last year, gold output there was 10% higher than in 2022, making Guinea the world's 23rd largest producer of the metal, according to GlobalData.

With contributions from operations in Guinea, and Ghana, Burkina Faso and Mali, West Africa has become a key gold mining region, reports the data analytics firm. It forecasts total gold production in West Africa this year will be 11,830,000 ounces.

Gold Continues Historic Climb

The gold price broke through the US$2,800 per ounce (US$2,800/oz) Wednesday, marking its fourth consecutive monthly gain, Reuters reported on Oct. 31. After, gold retreated, to end today at US$2756/oz.

"You're going to see a bit more consolidation," David Meger, director of metals trading at High Ridge Futures, told Reuters. "We have a lot of major impactful news next week, the U.S. election on Tuesday, Fed meeting on Wednesday. So it's really not surprising to see some traders take profits."

As for gold equities, the S&P/TSX Venture Composite Index (SPCDNX) confirmed a multidecade bull run for junior, intermediate, and senior mining stocks when it closed above 1,000 recently, Stewart Thomson with 321Gold wrote. The index is a key indicator of the health of the general gold, silver, and mining stocks market.

A reversal of outflows from gold exchange-traded funds occurred during Q3/24, and inflows during the quarter amounted to 95 tons, as reported by the World Gold Council, reported Ron Struthers of Struthers Resource Stock Report on Oct. 30. Positive inflows during the quarter came from all geographical regions, for holdings of 3,200 tons.

"All regions saw positive inflows during the quarter, which ended with collective holdings of 3,200 tons," the newsletter writer added. "Next year, we should be back to levels of 2020 and 2021. This will be fuel for a continued bull market."

Experts predict the gold price will continue its historic climb. Recently polled London Bullion Market Association members indicated they believe the gold price could reach US$2,940/oz during 2025, reported Stockhead.

Also, for 2025, InvestingHaven predicts US$3,100/oz gold. This is based on leading gold price indicators, including heightened inflation and increasing central bank demand, and from patterns on long-term gold charts, it noted.

The Catalysts: Drill Results

With drilling underway at Diguifara, results from the program could catalyze Sanu's stock, said Pawlitschek. They will be released when ready in about six to eight weeks.

Meanwhile, the gold company will tackle preparations for drilling untested targets at Daina, which will start soon. The scope of the campaign planned for Daina matches that is being carried out at Diguifara. [OWNERSHIP_CHART-10892]

"We have multiple targets that are going for 3, 4, up to 9 km strike lengths, some of them," the CEO said, referring to Diguifara and Daina.

When the initial phase at Daina is complete and results from Diguifara are back, we will likely go back to Difuifara for follow up drilling.

Ownership and Share Structure

According to the company's latest presentation, the largest share holders include strategic investors Anglo Gold Ashanti at 14 % and Capital at 10%.

Institutional investors include Scotia Global Asset Management, US Global Investors, Lowell Resources Funds Management, and Palos Management, which collectively make up 17% of the shareholders.

Management, founders and insider own around 22% with another 22% being held by high net worth individuals. 15% is held by retail investors.

The market cap for Sanu Gold is CA$17-18million with 238.5 million common shares. The 52-week range for the stock is CA$0.03 and CA$0.15.

Sign up for our FREE newsletter at: www.streetwisereports.com/get-news

Important Disclosures:

  1. Sanu Gold Corp. is a billboard sponsor of Streetwise Reports and pays SWR a monthly sponsorship fee between US$4,000 and US$5,000.
  2. As of the date of this article, officers and/or employees of Streetwise Reports LLC (including members of their household) own securities of Sanu Gold Corp.
  3. Doresa Banning wrote this article for Streetwise Reports LLC and provides services to Streetwise Reports as an independent contractor.
  4. This article does not constitute investment advice and is not a solicitation for any investment. Streetwise Reports does not render general or specific investment advice and the information on Streetwise Reports should not be considered a recommendation to buy or sell any security. Each reader is encouraged to consult with his or her personal financial adviser and perform their own comprehensive investment research. By opening this page, each reader accepts and agrees to Streetwise Reports' terms of use and full legal disclaimer. Streetwise Reports does not endorse or recommend the business, products, services or securities of any company.

For additional disclosures, please click here.

( Companies Mentioned: SANU:CSE;SNGCF:OTCQB;L73:FRA, )




ic

In-Flight Internet Services Co. Beats Expectations in Q3/24

Source: Scott Searle 11/08/2024

In line-to-better than expected financial results are good enough pre-launch of the satellite broadband solution, expected in Q4/24, noted a Roth MKM report.

Gogo Inc. (GOGO:NASDAQ) reported its Q3/24 financial results, and they slightly exceeded expectations, reported Scott Searle, managing director at Roth MKM, in a Nov. 5 research note.

The company provides in-flight connectivity services to business aviation markets through its North American terrestrial air-to-ground network.

137% Potential Return

Roth maintained its target price of US$15.50 per share on Gogo, noted Searle.

"We believe this provides a reasonable 12-plus-month target given the expected impact from two major new product cycles as we enter 2025," he wrote, referring to Galileo, the company's global inflight broadband service, and its 5G product line.

In comparison, the company's share price at the time of the report was about US$6.55 per share. From this price, the return to target reflects 137% upside.

Gogo remains a Buy.

Quarter's Highlights

Searle reported that Gogo's Q3/24 service revenue was a beat. At US$81.9 million (US$81.9M), it was slightly higher than that in Q2/24 and driven by modestly better-than-expected aircraft online, Searle reported. This revenue exceeded Roth's estimate by about US$300,000.

Also of note, Galileo is on track to launch in Q4/24, and Gogo continues to grow its portfolio of supplemental type certificates and partners around the world.

A Look Ahead

Gogo's outlook for 2024 of US$400-410M encompasses consensus' estimate, noted Searle. The company, though, has "pulled long-term guidance ahead of the Satcom Direct [acquisition] closing."

Roth expects Galileo and 5G will lead recovery, expected in late 2025.

In other news, noted Searle, Gogo Chairman and Chief Executive Officer Oakleigh Thorne will present at Roth's NYC Tech Event on Nov. 20.

Sign up for our FREE newsletter at: www.streetwisereports.com/get-news

Important Disclosures:

  1. Doresa Banning wrote this article for Streetwise Reports LLC and provides services to Streetwise Reports as an independent contractor.
  2. This article does not constitute investment advice and is not a solicitation for any investment. Streetwise Reports does not render general or specific investment advice and the information on Streetwise Reports should not be considered a recommendation to buy or sell any security. Each reader is encouraged to consult with his or her personal financial adviser and perform their own comprehensive investment research. By opening this page, each reader accepts and agrees to Streetwise Reports' terms of use and full legal disclaimer. Streetwise Reports does not endorse or recommend the business, products, services or securities of any company.

For additional disclosures, please click here.

Disclosures for Roth MKM, Gogo Inc., November 5, 2024

Regulation Analyst Certification ("Reg AC"): The research analyst primarily responsible for the content of this report certifies the following under Reg AC: I hereby certify that all views expressed in this report accurately reflect my personal views about the subject company or companies and its or their securities. I also certify that no part of my compensation was, is or will be, directly or indirectly, related to the specific recommendations or views expressed in this report.

Disclosures: ROTH makes a market in shares of Gogo, Inc. and as such, buys and sells from customers on a principal basis.

ROTH Capital Partners, LLC expects to receive or intends to seek compensation for investment banking or other business relationships with the covered companies mentioned in this report in the next three months. The material, information and facts discussed in this report other than the information regarding ROTH Capital Partners, LLC and its affiliates, are from sources believed to be reliable, but are in no way guaranteed to be complete or accurate. This report should not be used as a complete analysis of the company, industry or security discussed in the report. Additional information is available upon request. This is not, however, an offer or solicitation of the securities discussed. Any opinions or estimates in this report are subject to change without notice. An investment in the stock may involve risks and uncertainties that could cause actual results to differ materially from the forward-looking statements. Additionally, an investment in the stock may involve a high degree of risk and may not be suitable for all investors. No part of this report may be reproduced in any form without the express written permission of ROTH. Copyright 2024. Member: FINRA/SIPC.

( Companies Mentioned: GOGO:NASDAQ, )




ic

2014 Americana Music Awards with Loretta Lynn, Patty Griffin and more

The finale of the 2013 Americana Music Association Honors and Awards show.; Credit: Folk Alley

The 2014 Americana Music Awards are Wednesday at 5 p.m. Pacific/8 p.m. Eastern. You can watch the full show live from the Ryman Auditorium in Nashville, Tenn. below, including performances by Loretta Lynn, Jackson Browne, Emmylou Harris, Patty Griffin and more.

window.onload = function(){ NPR.Iframe.load("347625625",'iframeEmbed','@KPCC',{noSharingLinks: false, hideRelatedStories: true, fbShareImageUrl: 'http://a.scpr.org/i/249842800d22989eda16b048b982fc26/92154-full.jpg'}); }

Read a full list of the nominees below:

Album of the Year

• Build Me Up From Bones by Sarah Jarosz
• The Lights From The Chemical Plant by Robert Ellis
• The River And The Thread by Rosanne Cash
• Southeastern by Jason Isbell

Artist of the Year

• Rosanne Cash
• Rodney Crowell
• Robert Ellis
• Jason Isbell

Duo/Group of the Year

• The Avett Brothers
• The Devil Makes Three
• Hard Working Americans
• Lake Street Dive
• The Milk Carton Kids

Song of the Year

• "Cover Me Up" by Jason Isbell
• "A Feather's Not A Bird" by Rosanne Cash
• "Ohio" by Patty Griffin
• "Only Lies" by Robert Ellis

Emerging Act of the Year

• Hurray For The Riff Raff
• Parker Millsap
• St. Paul & The Broken Bones




ic

Americana Awards: Jason Isbell cleans up

Jason Isbell and Amanda Shires perform onstage at the 13th annual Americana Music Association Honors and Awards Show at the Ryman Auditorium on September 17, 2014 in Nashville, Tennessee. ; Credit: Rick Diamond/Getty Images for Americana Music

Singer-songwriter Jason Isbell swept the major awards Wednesday night at the Americana Honors & Awards, creating another special moment with his wife, Amanda Shires.

Isbell won artist, album and song of the year during the 13th annual awards show Wednesday night at Ryman Auditorium in Nashville, Tennessee. Though surprisingly ignored by Grammy Awards voters, Isbell's album of the year winner "Southeastern" reverberated through the Americana community and made many of 2013's best-of lists.

He performed song of the year "Cover Me Up" with Shires, a significant figure on the album as muse and collaborator.

"I wrote this song for my wife," Isbell said. "I've had a lot of people ask me to dedicate it to their wives, girlfriends or cousin's wife or something strange like that. This was probably the hardest song I ever had to write because I wrote it for her and then I played it for her. It was very difficult. Do the things that scare you. That's the good stuff."

Isbell was one of this year's top nominees along with Rosanne Cash and Robert Ellis. Each had three nominations and all were up for artist, album and song of the year.

Many of the top nominees and honors recipients performed, including all five emerging artist nominees. Former couple Patty Griffin and Robert Plant made a surprise appearance and sang their collaboration "Ohio."

Sturgill Simpson, something of a modern cosmic cowboy, earned emerging artist of the year and the Milk Carton Kids took group/duo of the year. And Buddy Miller, now executive music producer for the television show "Nashville" and theAmericana's winningest performer, won his fifth instrumentalist of the year award.

The Americana Music Association also honored several pioneering musicians. Loretta Lynn received the lifetime achievement award for songwriting from Kacey Musgraves and Angaleena Presley.

"The truth is we both might cry giving out this award," Musgraves said.

Lynn, writer of some of country music's most important female empowerment songs, accepted the award in a sparkly lavender dress and her usual humble manner.

"When they told me I was going to get this award," she told the crowd, "I said, 'Naw, you got the wrong one.'"

Jackson Browne received the Spirit of Americana-Free Speech in Music award, Flaco Jimenez received the lifetime achievement award for instrumentalist and Taj Mahal earned the lifetime achievement award for performance.

"I was affected deeply by American music, near and far — my mother's interest in Southern music and my dad's interest in jazz and bebop and classical, all that kind of stuff," Mahal said in an interview. "But this music here, if you get this music, you can go anywhere in the world with it. For me, I play for the goddess of music. People ask me what I do and I go, deep Americana."