ic

Booklet stacker, ring-binding device, ring-binding system, and booklet stacking method

A booklet stacker to stack multiple booklets each bound with a ring member includes a stack tray on which multiple booklets are stacked, a shifter disposed upstream from the stack tray in a booklet conveyance direction in which a booklet is conveyed, the shifter to adjust a position of the booklet in a width direction perpendicular to the booklet conveyance direction by shifting the booklet a distance shorter than a ring pitch of the ring member in the width direction, and a booklet conveyer disposed upstream from the stack tray in the booklet conveyance direction, to convey the booklet positioned by the shifter to the stack tray.




ic

Dynamic cancellation of passive intermodulation interference

A wireless communication node (10) dynamically estimates passive intermodulation (PIM) interference coupled into the node's receive path from the transmission of a composite signal through the node's transmit path. The node (10) then cancels the estimated PIM interference in the receive path. In some embodiments, the node dynamically estimates the PIM interference as a function of the composite signal that models PIM interference generation and coupling in the node (10) according to one or more coefficients (30). The coefficients (30) may be determined by transmitting a test signal (34) during a test stage, when the node (10) is not scheduled to receive any signal. Later, when the composite signal (18) is transmitted, the node (10) uses the coefficients (10) to dynamically estimate and cancel the resulting PIM interference.




ic

Electrosurgical apparatus with real-time RF tissue energy control

A radio-frequency (RF) amplifier having a direct response to an arbitrary signal source to output one or more electrosurgical waveforms within an energy activation request, is disclosed. The RF amplifier includes a phase compensator coupled to an RF arbitrary source, the phase compensator configured to generate a reference signal as a function of an arbitrary RF signal from the RF arbitrary source and a phase control signal; at least one error correction amplifier coupled to the phase compensator, the at least one error correction amplifier configured to output a control signal at least as a function of the reference signal; and at least one power component coupled to the at least one error correction amplifier and to a high voltage power source configured to supply high voltage direct current thereto, the at least one power component configured to operate in response to the control signal to generate at least one component of the at least one electrosurgical waveform.




ic

RF channel amplification module with instantaneous power limiting function

A radio frequency channel amplification module for communication satellite, comprises an input configured to convey an input radio frequency signal, an output configured to restore a pre-amplified output radio frequency signal intended to power a travelling wave tube amplifier that can be equipped with linearization means with predistortion, at least one first upstream gain control module arranged downstream of the input and one second downstream gain control module arranged downstream of the first upstream gain control module and upstream of any linearization means by predistortion. The channel amplification module also comprises an instantaneous power limiter intended to clip the peaks of the input radio frequency signals with a level exceeding a determined threshold value, the instantaneous power limiter being arranged in series between said first upstream gain control module and said second downstream gain control module.




ic

Differential circuit compensated with self-heating effect of active device

A differential circuit with a function to compensate unevenness observed in the differential gain thereof is disclosed. The differential circuit provides a low-pass filter in one of the paired transistors not receiving the input signal in addition to another low-pass filter that provides an average of output signals as a reference level of the differential circuit. The cut-off frequency of the filter is preferably set to be equal to the transition frequency at which the self-heating effect explicitly influences the trans-conductance of the transistor.




ic

Dual-band high efficiency Doherty amplifiers with hybrid packaged power devices

An amplifying structure includes a main amplifier configured to amplify a first signal; and a peak amplifier configured to amplify a second signal, each of the main amplifier and the peak amplifier including, respectively, a hybrid power device, the hybrid power device including, a first power transistor die configured to amplify signals of a first frequency, and a second power transistor die configured to amplify signals of a second frequency different than the first frequency.




ic

Input receiver circuit having single-to-differential amplifier, and semiconductor device including the same

An input receiver circuit including a single-to-differential amplifier and a semiconductor device including the input receiver circuit are disclosed. The input receiver circuit includes a first stage amplifier unit and a second stage amplifier unit. The first stage amplifier unit amplifies a single input signal in a single-to-differential mode to generate a differential output signal, without using a reference voltage. The second stage amplifier unit amplifies the differential output signal in a differential-to-single mode to generate a single output signal.




ic

Microwave semiconductor amplifier

A microwave semiconductor amplifier includes a semiconductor amplifier element, an input matching circuit and an output matching circuit. The semiconductor amplifying element includes an input electrode and an output electrode and has a capacitive output impedance. The input matching circuit is connected to the input electrode. The output matching circuit includes a bonding wire and a first transmission line. The bonding wire includes first and second end portions. The first end portion is connected to the output electrode. The second end portion is connected to one end portion of the first transmission line. A fundamental impedance and a second harmonic impedance seen toward the external load change toward the one end portion. The second harmonic impedance at the one end portion has an inductive reactance. The output matching circuit matches the capacitive output impedance of the semiconductor amplifying element to the fundamental impedance of the external load.




ic

High impedance microwave electronics

High impedance, high frequency nanoscale device electronics configured to interface with low impedance loads include an impedance transforming stage constructed of multiple nanoscale devices, such as carbon nanotube field-effect transistors. In an embodiment of the present invention, an impedance transforming output stage of a multistage amplifier is configured to drive a 50 ohm transmission line with unity voltage gain using multiple carbon nanotube field-effect transistors in parallel. In a further embodiment, a receiver provided for an electronically steered receive array is a monolithic, lumped-element system formed from nanoscale devices and configured to interface with the external electrical systems via a single transmission line.




ic

Combining an audio power amplifier and a power converter in a single device

An apparatus is described that includes an audio power amplifier having an input and an output. An alternating-current to direct-current power converter is coupled to the audio power amplifier in a single package to supply power to the audio power amplifier.




ic

High-efficiency power module

One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.




ic

Wireless communication unit and semiconductor device having a power amplifier therefor

A semiconductor package device comprises a radio frequency power transistor having an output port operably coupled to a single de-coupling capacitance located within the semiconductor package device. The single de-coupling capacitance is arranged to provide both high frequency decoupling and low frequency decoupling of signals output from the radio frequency power transistor.




ic

Power amplifier modules including related systems, devices, and methods

A power amplifier module includes a power amplifier including a GaAs bipolar transistor having a collector, a base abutting the collector, and an emitter, the collector having a doping concentration of at least about 3×1016 cm−3 at a junction with the base, the collector also having at least a first grading in which doping concentration increases away from the base; and an RF transmission line driven by the power amplifier, the RF transmission line including a conductive layer and finish plating on the conductive layer, the finish plating including a gold layer, a palladium layer proximate the gold layer, and a diffusion barrier layer proximate the palladium layer, the diffusion barrier layer including nickel and having a thickness that is less than about the skin depth of nickel at 0.9 GHz. Other embodiments of the module are provided along with related methods and components thereof.




ic

Impedance matching method for a multiband antenna, and transmission or receiver channel having automatic matching

An automatic antenna impedance matching method for a radiofrequency transmission circuit. An impedance matching network is inserted between an amplifier and an antenna. The output current and voltage of the amplifier and their phase difference are measured by a variable measurement impedance, and the complex load impedance of the amplifier is deduced from this; the impedance of the antenna is calculated as a function of this complex impedance and as a function of the known current values of the impedances of the matching network. Starting from the value found for the impedance of the antenna, new values of the matching network are calculated that allow the load to be matched to the nominal impedance of the amplifier. The measurement impedance has a value controllable by the calculation processor according to the application and notably as a function of the operating frequency and of the nominal impedance of the amplifier.




ic

Amplification systems and methods with one or more channels

Systems and methods are provided for amplifying multiple input signals to generate multiple output signals. An example system includes a first channel, a second channel, and a third channel. The first channel is configured to receive one or more first input signals, process information associated with the one or more first input signals and a first ramp signal, and generate one or more first output signals. The second channel is configured to receive one or more second input signals, process information associated with the one or more second input signals and a second ramp signal, and generate one or more second output signals. The first ramp signal corresponds to a first phase. The second ramp signal corresponds to a second phase. The first phase and the second phase are different.




ic

Automatic gain control device and method, power adjusting device and radio transmitting system

An automatic gain control device includes: a variable gain adjusting unit, for adjusting an input signal by a variable gain and outputting an adjustment result; an analog-digital converting unit, for performing analog-digital conversion on the adjustment result to obtain an analog-digital conversion result; and a gain determining unit, for determining a distribution status over a predetermined period of time of a maximum or a minimum of the analog-digital conversion result, comparing the distribution status with a first distribution condition, and if the distribution status meets the first distribution condition, then keeping the variable gain unchanged, otherwise changing the variable gain and determining newly a distribution status until the newly determined distribution status meets a second distribution condition which is at least as strict as the first distribution condition.




ic

Chuck device having two collets

A chuck device includes front and rear collets, a driving ring, and a driving sleeve. The driving ring and the driving sleeve can be driven hydraulically to move toward or away from each other. When the driving ring and the driving sleeve are moved hydraulically away from each other, each of the front and rear collets is moved to a release position, when the driving ring and the driving sleeve are moved hydraulically toward each other, each of the front and rear collets is moved to a clamping position.




ic

Electric hammer

An electric hammer has a housing having a nozzle portion, a motor and a transmission mechanism arranged in the housing, a striking device, coupled to the motor and transmission mechanism, for moving in a reciprocating manner in the nozzle portion, and a clamping device mounted to the nozzle portion and at least partially extending out of the nozzle portion. The clamping device includes an outer sleeve, an inner sleeve arranged in the outer sleeve, and at least two clamping members arranged on the inner sleeve. The inner sleeve has a first position and a second position with respect to the outer sleeve and the distance between the two clamping members in the first position is less than the distance between the two clamping members in the second position to thereby allow a nail to be released halfway, i.e., when partially struck into a workpiece, in a simple manner.




ic

Tool holder such as a boring head, a chuck, or a milling cutting arbor integrating a damping device

A damping tool holder, such as a boring head, a chuck, or a milling cutting arbor, integrates a damping device (2), in the form of an elongated body. The damping device (2) is housed in a mounting body (3), connected by one end to the tool-holder body (1) and having at its other end an end fitting (4) for mounting a tool, whereby the mounting body (3) is equipped with at least one lubricant feed pipe (32), emptying at its front end into the end fitting (4) for mounting a tool and connected at its other end to a circular groove (102) for distributing lubricant that is provided on the front surface of the tool holder (1).




ic

Surgical milling cutter

A surgical milling cutter includes a milling cutter bracket, a locking device and a bottom electric motor connected successively. The milling cutter bracket includes a fixing seat with a through hole. A finger guide apparatus with an L-type first bracket at the top end thereof is provided on the upper part of the fixing seat. The end of the L-type first bracket's short side is provided with a downward projection. The lowest point of the projection is lower than that of the milling cutter's cylindrical head when the milling cutter is working normally. The surgical milling cutter utilizes the projection to prevent the possibility of an object contacting with the cylindrical head, thus avoiding an object being cut unevenly. Meanwhile, the L-type bracket can be driven by the finger guide apparatus to rotate so as to change the running direction of the milling cutter, thus facilitating surgical procedures.




ic

Ultrasonic machining assembly for use with portable devices

A machining system that includes an ultrasonic machining assembly, wherein the ultrasonic machining assembly further includes a machining tool; a collet adapted to receive the machining tool; and an ultrasonic transducer, wherein the ultrasonic transducer is operative to transmit acoustical vibrations to the machining tool; and a machining apparatus, wherein the machining apparatus is adapted to receive and secure the ultrasonic machining assembly, and wherein the machining apparatus is operative to transmit torque to the machining tool by applying rotary motion to the ultrasonic machining assembly.




ic

Electrostatic chuck and showerhead with enhanced thermal properties and methods of making thereof

Embodiments of the present invention generally provide chamber components with enhanced thermal properties and methods of enhancing thermal properties of chamber components including bonding materials. One embodiment of the present invention provides a method for fabricating a composite structure. The method includes applying a bonding material to a first component, and converting the bonding material applied to the first component to an enhanced bonding layer by heating the bonding material to outgas volatile species from the bonding material. The outgassed volatile species accumulates to at least 0.05% in mass of the bonding material. The method further includes contacting a second component and the enhanced bonding layer to join the first and second components.




ic

Interface between a receptacle body and an insert designed, in particular, as a tool holder of a workpiece holder

An interface between a receptacle body and an insert designed, in particular, as a tool or workpiece insert, comprises a receptacle body (2) having a cylindrical receiving bore (4), which is circumscribed by a first plane surface (6) extending at a right angle to the bore axis and in which a first cone surface (9) is arranged, said first cone surface being coaxial with the bore axis and being arranged so that its tapered end faces toward the plane surface. The insert (3) has a pin (15) that is disposed to be plugged into the receiving bore (4) and is circumscribed by a second plane surface (22). At an axial distance from the second plane surface (22), said pin has a second cone surface (22), the tapered end of said second cone surface being arranged so as to face toward the second plane surface. With the pin (15) inserted in the receiving bore (4), the two plane surfaces are in superimposed contact while the two cone surfaces (9, 22) can be biased relative to each other by limited twisting of the insert relative to the receptacle body.




ic

Cutter-changing device

A cutter-changing device includes a cutter-magazine carrying cutters, a rotary telescopic cylinder, and a clamping sub-assembly. The clamping sub-assembly includes a cutter-changing arm, and a pair of clamping assemblies. The rotary telescopic cylinder drives the cutter-changing arm to rotate, extend and retract. Each clamping assembly includes a mounting member, an elastic member, a piston, and at least one resisting member. The mounting member is mounted on the cutter-changing arm, and defines at least one mounting hole through the sidewall thereof. The elastic member and the piston are sleeved with the mounting member, and the two opposite ends of the elastic member press against the piston and the mounting member. The resisting member is mounted between the elastic member and the mounting member, and capable of being resisted by the piston to be partially exposed from the mounting hole.




ic

Chuck device

A chuck device includes: a chuck body having a tapered hole at a front end portion and being fixed to a rotational spindle of the machine tool; a collet capable of being reduced in diameter and inserted into the tapered hole for holding the tool; and a nut that can be screwed to the chuck body for fastening the collet. A non-alignment prevention member is provided for suppressing relative movement by bringing the nut into radial contact with the chuck body even when the spindle of the machine tool is rotated and includes a first nut rear end side tapered surface at a farther rear end side than a screw portion, and a chuck body side tapered surface formed in the chuck body for coming into contact with the first nut rear end side tapered surface when the nut is screwed up.




ic

Wafer mount device and manufacturing method thereof

An adhesive layer that bonds the back surface of a plate capable of attracting a wafer and the front surface of a cooling plate together that includes a main adhesive portion, which is made of a hardened matter of a fluid adhesive, and an outer peripheral adhesive portion, gas-supply-hole adhesive portions, lift-pin-hole adhesive portions, and terminal-hole adhesive portions made of a double-faced tape. The tape portions bond the outer peripheral edge on the back surface of the plate and the outer peripheral edge on the front surface of the cooling plate together, and the outer peripheral edges of the holes on the back surface of the plate and the outer peripheral edges of these holes on the front surface of the cooling plate together.




ic

Universal mounting hole means for different electric tool heads

The present invention discloses a kind of universal mounting hole means for different tool heads of electric tools, which are disposed on a mounting portion of the tool head, comprising a central hole and a plurality of long and narrow limiting holes which orient radially surrounding the central hole and disposed in distance with each other. Compared with the prior art, the present invention is applicable to various kinds of structures of the mounting seat on electrical tool and is more universal. It takes much convenience to people when changing different tool heads of electric tools, and it is benefit for storing.




ic

Jig for holding thin cylindrical work

A holding jig (1, 2, 3) for a thin cylindrical work (W) includes a holding member (10, 10A, 10B) which holds the work (W) from an inner peripheral side and a diameter changing unit (25, 27) which changes a diameter of the holding member (10, 10A, 10B). The holding member (10, 10A, 10B) is made of metal and has a cylindrical shape and an elastically expandable or contractible diameter. The holding member (10, 10A, 10B) is configured with an outside diameter of the holding member (10, 10A, 10B) being held smaller than an inside diameter of the work (W) at the time of insertion into an inner periphery of the work (W) and being expanded after inserted into the inner periphery of the work (W) to hold the work (W) from an inner peripheral side of the work (W) with an outer peripheral surface in close contact with an entire inner peripheral surface of the work (W). The diameter changing unit (25, 27) applies at least one of an axial external force in a compressing direction or an axial external force in a tensile direction to both ends of the holding member (10. 10A, 10B) to change the diameter of the holding member (10, 10A, 10B).




ic

Self-locking internal adapter for D-shaped orthopedic adjustment tools

The present invention is a self-locking internal adapter for D-shaped orthopedic tools. A locking ball mechanism prevents movement of the adapter components relative to each other, while a plurality of securing ball mechanisms releasably secure a D-shaped orthopedic tool in the adapter. A chamfered surface of the adapter engages a chamfer of the tool to centrally stabilize the tool in the adapter. The internal adapter may be used with driver handles, ratcheting handles and torque-limiting handles.




ic

Device for transporting preforms for blow molding containers

A device for forming containers from heated parisons of thermoplastic material, which includes a heating section and a blow molding unit provided with at least one blow molding station. The parisons are held along at least a portion of a transport path between the heating section and the blow molding unit by a carrying element, which has a head that can be inserted into a mouth section of a parison and which includes at least two positionable clamping elements. At least one of the clamping elements is positioned in a recess provided on a side of the head relative to a longitudinal axis of the carrying element. The recess has upper and lower sliding surfaces that extend obliquely relative to the longitudinal axis for acting on the clamping element. The upper head part and the lower head part are braced relative to each other by at least one spring.




ic

Device for machining a substrate and a method for this purpose

In a device for machining, in particular etching and/or developing, substrates, in particular wafers, in particular etching and/or developing, having a turntable, the turntable has a Venturi gap.




ic

Clamping device and collet chuck, base and chuck key therefor

The invention relates to a high-precision clamping device for tools in machine tools of the conventional type according to ISO 15488 and to a collet chuck, a base and a tensioning nut. The invention also relates to a chuck key for tightening the locknut without radial stress. The clamping device according to the invention is characterized by a substantially improved runout accuracy, torsional rigidity of the collet chuck and rigidity of the tool clamped therein.




ic

Chuck device

A chuck device in which a rotary sleeve provided to a main body is rotated, and by rotation of an annular rotary body which rotates together with the rotary sleeve, jaws screwed together with the rotary body are expanded, contracted, advanced, and retracted, and a tool is gripped by the jaws; the chuck device comprising a retaining engaging body for engaging with the rotary body and preventing the rotary sleeve from coming out of the rotary body; wherein the retaining engaging body is provided to be fixed to a proximal end side of the rotary sleeve; a rotation transmission part for directly or indirectly transmitting the rotation of the rotary sleeve to the rotary body is provided to the retaining engaging body; and the rotation of the rotary sleeve is transmitted to the rotary body via the retaining engaging body, and the rotary body rotates together with the rotary sleeve.




ic

Electromagnetic clamping method

A method for assembling parts. A sealant is placed between a plurality of parts in a stack up to form a workpiece. The workpiece is clamped using a permanent magnet unit and an electromagnetic clamping device in an activated state such that a number of forces caused by a magnetic field clamps the workpiece between the electromagnetic clamping device and the permanent magnet unit. A number of holes are drilled in the workpiece. A number of fasteners are installed in the number of holes.




ic

Chuck and semiconductor process using the same

An apparatus of semiconductor process including a chuck and a vacuum source is provided. The chuck has a plurality of holes for holding a semiconductor substrate, and the vacuum source is used for providing vacuum suction through the holes to make the semiconductor substrate be subjected to varied suction intensities according to a warpage level thereof.




ic

Expansion chuck for loss-free transmission of a lubricating medium

A tool holder has a body with a spindle side for fastening the tool holder to a spindle of a machine tool and a tool side for accommodating a tool and has a lubricating media passage from the spindle side to the tool side that contains a lubricating media bush adjustable in the axial direction in the body. The lubricating media bush opens out on the tool side of the body, wherein a guide for the lubricating media hush is provided in the body. The guide contains a fitting section in which the lubricating media bush is adjustably guided, wherein a seal is provided which seals the lubricating media bush relative to the body.




ic

Electrostatic chuck

An electrostatic chuck comprises: a dielectric substrate having a protrusion and a planar surface part. The protrusion is formed on a major surface of the dielectric substrate. An adsorption target material is mounted on the major surface. The planar surface part is formed in a periphery of the protrusion. The dielectric substrate is formed from a polycrystalline ceramics sintered body. A top face of the protrusion is a curved surface, and a first recess is formed in the top face to correspond to crystal grains that appear on the surface. The planar surface part has a flat part, and a second recess is formed in the flat part. A depth dimension of the first recess is greater than a depth dimension of the second recess. The electrostatic chuck can suppress the generation of particles and can easily recover a clean state of the electrostatic chuck surface.




ic

Apparatus and method for positioning and pressing curved surgical needles

The present invention relates to an apparatus and method for positioning and pressing surgical needle blanks. The apparatus includes a needle blank transferring system which transfers needle blanks between a gripping position and a pressing position. A side press system presses a portion of the needle blank when the blank is in the pressing position, and a gripping member is provided to hold the needle blank at least during the transfer and press operations of the apparatus. The method according to the present invention includes inserting a needle blank into a needle blank gripping member at a gripping position, transferring the needle blank between the gripping position and a pressing position, and pressing a side portion of a body portion of the needle blank with pressing dies.




ic

Method and device for forming drilled needle blanks

An apparatus for preparing drilled needle blanks from a spool of coiled stock wire may include a laser for drilling a bore in the end of the stock wire and a cutting device for cutting the drilled wire into needle blanks.




ic

Apparatus for covering a surgical needle to protect the user

This invention provides for a novel retractable, telescoping, surgical needle cover and a collapsible needle, such that the sharp tip of the needle is covered after use thereby protecting the user from accidental needle sticks. In one embodiment, the needle cover is hollow and holds the needle at the tip. When the sharp tip is struck on a hard surface, the needle collapses inside of the needle cover. A second embodiment of the invention provides for a cover which slides back and forth along the length of a needle and is held in a forward position by a lever which is movably disposed within a groove at the base of the needle. In the third embodiment, the needle cover only partially the covers the outer surface of the needle, and when the needle is held by a needle holder such that the needle holder contacts both the cover and the needle, then the needle tip is exposed. When the needle is gripped by the needle holder such that only the needle cover is held, the tip of the needle is struck on a hard surface and the needle cover slides forward to cover the tip.




ic

Progressive die apparatus and method for forming surgical incision members

There is disclosed an apparatus for forming a surgical incision member comprising which includes a first die associated with a base and having a first groove therein for receipt of at least a portion of a needle blank. A second die is mounted for movement on the base between a position remote from the first die and a position adjacent the first die. The second die includes a second groove alignable with the first groove to hold a needle blank therebetween, the first and second dies each having spaced apart channels intersecting the first and second grooves. A notching die is provided and is mounted for movement within at the channels so as to engage and notch an edge of the needle blank contained within the first and second grooves. The apparatus also includes structure for curving a needle blank contained within the first and second grooves. A method of forming a surgical incision member is also disclosed, and a surgical incision member blank.




ic

Surgical needle-suture attachment for controlled suture release

An apparatus is disclosed for attaching a surgical needle having a generally cylindrical end portion defining an elongated aperture having a generally circular cross-section and a suture having a generally elongated end portion of generally circular cross-section corresponding in dimension to the elongated aperture of the needle. The apparatus includes a pair of dies, each having a die face with an inner die surface portion. The inner die surface portion includes at least one generally planar crimping surface having an arcuate recess formed therein which extends along at least a portion of the planar crimping surface. The arcuate recess defines a material relief zone such that when the end portion of the suture is positioned within the aperture of the needle and the dies are positioned about the generally cylindrical end portion of the needle with the crimping surfaces generally facing the outer surface thereof, the application of an inward crimping force to the dies causes the dies to impact the needle and produce inward crimping forces on opposed sides of the needle end portion to attach the needle to the suture. The relief zones defined by the arcuate recesses receive and collect deformed material from the needle. According to the invention, the symmetry of the needle is maintained and the attachment is predictable and superior to those of the prior art.




ic

Method and apparatus for attaching surgical suture components

A method and apparatus for attaching sutures to curved surgical needles. A vibratory bowl and vibratory rail function to present individual surgical needles to a transfer system in a predetermined orientation. The transfer system then delivers each oriented needle to a frame which positions the needle for subsequent swaging by a rotating die system which selectively impacts the needle to secure the suture thereto.




ic

Process for manufacturing taper point surgical needles

A process for manufacturing surgical needles from solid, cylindrical needle blanks. A plurality of needle blanks are cut from a roll of wire and mounted to a flat carrier strip. The carrier strip then indexes each needle blank to a grinding station where an orbital grinding means grinds the distal end of each needle blank into a taper point while the needle blanks are held fixed in the carrier strip.




ic

Progressive die/carrier apparatus and method of forming surgical needles and/or incision members

There is disclosed an apparatus and a method for progressively forming high strength surgical needles from bulk needle stock material. The apparatus generally includes a series of progressive needle processing stations. A first series of needle processing stations removes material from needle stock material to rough form needle blanks attached to a carrier strip while a second series of processing stations refine the rough formed needle blanks attached to the strip into the desired surgical needles. The disclosed method generally includes the steps of gutting needle stock material to rough form needle blanks attached to a carrier strip and progressively coining the rough formed blanks into surgical needles. Finally, there is disclosed a high bend strength surgical needle formed on the disclosed apparatus or by the disclosed method. Preferably, the surgical needle is a surgical incision member having a predetermined radius of curvature and an optimized conical radius at the tips.




ic

Surgical suture needle of the taper point type

A taper point surgical needle having improved needle point strength is disclosed. In one embodiment of the needle, a tip portion includes first and second integral tapered regions having first and second cross-sectional areas respectively which decrease progressively toward the tip of the needle in accordance with first and second angles of inclination respectively, with the first angle being greater than the second angle. In another embodiment of the needle of the present invention, the tip portion includes a third tapered region integral with the second tapered region and having a cross-sectional area which decreases progressively toward the needle tip in accordance with a third angle of inclination which is smaller than the second angle.




ic

Surgical needle and mold for manufacturing the same

A surgical needle has a top edge formed by two pressed faces located inside or outside of curvature from pressing a material blank made of austenitic stainless steel having fibrous texture and cutting edges formed on both sides of a base. The top edge is sharp at a needle point and the sharp needle point is constituted of fibrous texture formed at the surface layer of the material blank. Grinding marks extending crosswise formed on the face of the mold are transferred to the pressed faces. A mold constitutes plural faces forming projecting angles (angle between two intersecting faces is 180° or below, and the line at which the two faces intersect is made as a projecting line) along edges of the blocks made of two rectangular prisms, and constitutes a cavity by suitably contacting the edges of the blocks.




ic

Process for manufacturing surgical needles

A process for progressively manufacturing cutting edge needles or wire members. Needle blanks or wire blanks are cut from a roll of wire and mounted to a carrier strip. The carrier strip and needles are moved through a succession of coining dies and at least one trimming die, wherein the first coining die is an open coining die and the one or more successive coining dies are closed coining dies. The needle blanks or wire members are optionally curved, heat treated and electrochemically treated resulting in cutting edge needles or wire members formed without a grinding step and without adversely affecting point ductility.




ic

Process for heat treating and tempering surgical needles

A continuous process for heat treating and cleaning and tempering martensitic stainless steel surgical needles is disclosed. The method comprises exposing the surgical needles to a partial vacuum at a temperature less than the heat treating temperature to remove volatile surface contaminant. Then the needles are heat treated in an argon gas environment at a pressure equal to or greater than 1.0 Torr. Next the temperature of the oven is lowered to temper the needles.




ic

Surgical needle, production method thereof, and needle holder

The present invention provides a surgical needle having a needle tip end and a clamping portion to be clamped by a needle holder for applying a current, wherein the needle tip end is made from a conductive material which is electrically connected to a conductive material of the clamping portion, an insulating layer is provided over the clamping portion and a tip surrounding portion of the surgical needle, whereas at least the needle tip end is electrically exposed, and when the insulating material over the clamping portion is clamped by the needle holder, the conductive material of the clamping portion is electrically connected to the needle holder.