idi

Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aqua­dichlorido­{N-[(pyridin-2-yl)methyl­idene]aniline}copper(II) monohydrate

The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water mol­ecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand inter­acts through a strong hydrogen bond with a water mol­ecule of crystallization. In the crystal, mol­ecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that inter­act in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water mol­ecules. The mol­ecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions in the crystal packing.




idi

Crystal structures of (E)-5-(4-methyl­phen­yl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one and [3,4-bis(phenyl­ethyn­yl)cyclo­butane-1,2-di­yl]bis­(pyridin-2-yl­methanone)

Recrystallization of (E)-5-phenyl-1-(pyridin-2-yl)pent-2-en-4-yn-1-one at room temperature from ethyl­ene glycol in daylight afforded [3,4-bis­(phenyl­ethyn­yl)cyclo­butane-1,2-di­yl)bis­(pyridin-2-yl­methanone], C32H22N2O2 (3), while (E)-5-(4-methyl­phen­yl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one, C17H13NO (2), remained photoinert. This is the first experimental evidence that pentenynones can be photoreactive when fixed in nearly coplanar parallel positions. During the photoreaction, the bond lengths and angles along the pentenyne chain changed significantly, while the disposition of the pyridyl ring towards the keto group was almost unchanged. The cyclo­butane ring adopts an rctt conformation.




idi

Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis­(pyridin-4-ylmeth­yl)ethane­diamide and 4-chloro­benzoic acid

The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half mol­ecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two mol­ecules of 4-chloro­benzoic acid (CBA), each in general positions. Each 4LH2 mol­ecule has a (+)anti­periplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 mol­ecules. The anti conformation of the carbonyl groups enables the formation of intra­molecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA mol­ecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-mol­ecule aggregates are formed via carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonding. These are connected into a supra­molecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methyl­ene-C—H⋯O(carbon­yl) and CBA-C—H⋯O(amide) inter­actions. As revealed by a more detailed analysis of the mol­ecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O inter­actions which provide inter­action energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supra­molecular tape.




idi

Crystal structure of the mixed methanol and ethanol solvate of bis­{3,4,5-trimeth­oxy-N'-[1-(pyridin-2-yl)ethyl­idene]benzohydrazidato}zinc(II)

The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex mol­ecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimeth­oxy-N'-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π–π inter­actions between the planar ligand moieties, which are further connected by C⋯O and C⋯C inter­actions. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) inter­actions.




idi

Tetra­aqua­[3-oxo-1,3-bis­(pyridinium-2-yl)propan-1-olato]nickel(II) tribromide dihydrate

The crystal structure of the title compound, [Ni(C13H11N2O2)(H2O)4]Br3·2H2O, contains an octa­hedral NiII atom coordinated to the enol form of 1,3-di­pyridyl­propane-1,3-dione (dppo) and four water mol­ecules. Both pyridyl rings on the ligand are protonated, forming pyridinium rings and creating an overall ligand charge of +1. The protonated nitro­gen-containing rings are involved in hydrogen-bonding inter­actions with neighoring bromide anions. There are many additional hydrogen-bonding inter­actions involving coordinated water mol­ecules on the NiII atom, bromide anions and hydration water mol­ecules.




idi

Crystal structures and Hirshfeld surface analysis of trans-bis­(thio­cyanato-κN)bis­{2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline-κ2N,N'}manganese(II) and trans-bis­(thio­cyanato-κN)bis­{2,4,6-trimethyl-N-[(pyri

Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex mol­ecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thio­cyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octa­hedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS− anions in a trans axial arrangement. The tri­methyl­benzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and π–π inter­actions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to qu­antify these inter­molecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)].




idi

Crystal structure, synthesis and thermal properties of bis­(4-benzoyl­pyridine-κN)bis­(iso­thio­cyanato-κN)bis­(methanol-κN)iron(II)

In the crystal structure of the title compound, [Fe(NCS)2(C12H9NO)2(CH4O)2], the FeII cations are octa­hedrally coordinated by two N atoms of 4-benzoyl­pyridine ligands, two N atoms of two terminal iso­thio­cyanate anions and two methanol mol­ecules into discrete complexes that are located on centres of inversion. These complexes are linked via inter­molecular O—H⋯O hydrogen bonds between the methanol O—H H atoms and the carbonyl O atoms of the 4-benzoyl­pyridine ligands, forming layers parallel to (101). Powder X-ray diffraction proved that a pure sample was obtained but that this compound is unstable and transforms into an unknown crystalline phase within several weeks. However, the solvent mol­ecules can be removed by heating in a thermobalance, which for the aged sample as well as the title compound leads to the formation of a compound with the composition Fe(NCS)2(4-benzoyl­pyridine)2, which exhibits a powder pattern that is similar to that of Mn(NCS)2(4-benzoyl­pyridine)2.




idi

Crystal structure of imidazo[1,5-a]pyridinium-based hybrid salt (C13H12N3)2[MnCl4]

A new organic–inorganic hybrid salt [L]2[MnCl4] (I) where L+ is the 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, is built of discrete organic cations and tetra­chlorido­manganate(II) anions. The L+ cation was formed in situ in the oxidative cyclo­condensation of 2-pyridine­carbaldehyde and CH3NH2·HCl in methanol. The structure was refined as a two-component twin using PLATON (Spek, 2020) to de-twin the data. The twin law (−1 0 0 0 − 1 0 0.5 0 1) was applied in the refinement where the twin component fraction refined to 0.155 (1). The compound crystallizes in the space group P21/c with two crystallographically non-equivalent cations in the asymmetric unit, which possess similar structural conformations. The fused pyridinium and imidazolium rings of the cations are virtually coplanar [dihedral angles are 0.89 (18) and 0.78 (17)°]; the pendant pyridyl rings are twisted by 36.83 (14) and 36.14 (13)° with respect to the planes of the remaining atoms of the cations. The tetra­hedral MnCl42– anion is slightly distorted with the Mn—Cl distances falling in the range 2.3469 (10)–2.3941 (9) Å. The distortion value of 0.044 relative to the ideal tetra­hedron was obtained by continuous shape measurement (CShM) analysis. In the crystal, the cations and anions form separate stacks propagating along the a-axis direction. The organic cations display weak π–π stacking. The anions, which are stacked identically one above the other, demonstrate loose packing; the minimum Mn⋯Mn separation in the cation stack is approximately 7.49 Å. The investigation of the fluorescent properties of a powdered sample of (I) showed no emission. X-band EPR data for (I) at 293 and 77 K revealed broad fine structure signals, indicating moderate zero-field splitting.




idi

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 1-(1,3-benzo­thia­zol-2-yl)-3-(2-hy­droxy­eth­yl)imidazolidin-2-one

In the title mol­ecule, C12H13N3O2S, the benzo­thia­zine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy⋯NThz hydrogen bonds and weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hy­droxy­ethyl, Thz = thia­zole, Imdz = imidazolidine and Bnz = benzene) inter­actions, together with C—HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] inter­actions between thia­zole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯N and C—H⋯O hydrogen-bond energies are 68.5 (for O—HHydethy⋯NThz), 60.1 (for C—HBnz⋯OImdz) and 41.8 kJ mol−1 (for C—HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.




idi

Phospho­rescent mono- and diiridium(III) complexes cyclo­metalated by fluorenyl- or phenyl-pyridino ligands with bulky substituents, as prospective OLED dopants

The crystal structures of tris­[9,9-dihexyl-2-(5-meth­oxy­pyridin-2-yl-κN)-9H-fluoren-3-yl-κC3]iridium pentane monosolvate, [Ir(C31H38NO)3]·C5H12, (I), di-μ2-chlorido-bis­{bis­[2-(5-fluoro­pyridin-2-yl)-9,9-dihexyl-9H-fluoren-3-yl]iridium} pentane 0.3-solvate, [Ir2(C30H35FN)4Cl2]·0.3C5H12, (II), di-μ2-cyanato-bis­{bis­[9,9-dihexyl-2-(5-meth­oxy­pyridin-2-yl)-9H-fluoren-1-yl]iridium} pentane monosolvate, [Ir2(C31H38NO)4(NCO)2(NCO)2]·C5H12, (III), and {μ-N,N'-bis­[3,5-bis­(tri­fluoro­meth­yl)phen­yl]oxamidato}bis(bis{2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2C1,N'}iridium)–chloro­benzene–pentane (1/2.3/0.4), [Ir2(C20H19N)4(C18H6F12N2O2)]·2.3C6H5Cl·0.4C5H12, (IV), synthesized in the quest for organic light-emitting devices, were determined. The bis-μ2-chloro and bis-μ2-cyanato complexes have ΔΔ and ΛΛ configurations of the distorted octa­hedral Ir centres in racemic crystals, whereas the oxamido complex has a centrosymmetric (meso) structure with the ΔΛ configuration. The bridging oxamido moiety has a nearly planar anti geometry. All structures show substantial disorder of both host mol­ecules and solvents of crystallization.




idi

Crystal structure of (4-chloro­phen­yl)(4-methyl­piperidin-1-yl)methanone

The title compound, C13H16ClNO, contains a methyl­piperidine ring in the stable chair conformation. The mean plane of the twisted piperidine ring subtends a dihedral angle of 39.89 (7)° with that of the benzene ring. In the crystal, weak C—H⋯O inter­actions link the mol­ecules along the a-axis direction to form infinite mol­ecular chains. H⋯H inter­atomic inter­actions, C—H⋯O inter­molecular inter­actions and weak dispersive forces stabilize mol­ecular packing and form a supra­molecular network, as established by Hirshfeld surface analysis.




idi

Crystal structure and Hirshfeld surface analysis of (E)-3-(benzyl­idene­amino)-5-phenyl­thia­zolidin-2-iminium bromide

The central thia­zolidine ring of the title salt, C16H16N3S+·Br−, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) inter­actions.




idi

Crystal structure, Hirshfeld surface analysis and DFT studies of 1-[r-2,c-6-diphenyl-t-3-(propan-2-yl)piperidin-1-yl]ethan-1-one

In the title compound, C22H27NO, the piperidine ring adopts a chair conformation. The dihedral angles between the mean plane of the piperidine ring and the phenyl rings are 89.78 (7) and 48.30 (8)°. In the crystal, mol­ecules are linked into chains along the b-axis direction by C—H⋯O hydrogen bonds. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. The mol­ecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions in the mol­ecule.




idi

Crystal structure of 1-[(4-methylbenzene)sulfonyl]pyrrolidine

The mol­ecular structure of the title compound, C11H15NO2S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the mol­ecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and inter­molecular C—H⋯O hydrogen bonds, as well as inter­molecular C—H⋯π and π–π inter­actions, leading to the formation of sheets parallel to the ac plane.




idi

Crystal structure analysis of ethyl 3-(4-chloro­phen­yl)-1,6-dimethyl-4-methyl­sulfanyl-1H-pyrazolo[3,4-b]pyridine-5-carboxyl­ate

In the title compound, C18H18ClN3O2S, the dihedral angle between the fused pyrazole and pyridine rings is 3.81 (9)°. The benzene ring forms dihedral angles of 35.08 (10) and 36.26 (9)° with the pyrazole and pyridine rings, respectively. In the crystal, weak C—H⋯O hydrogen bonds connect mol­ecules along [100].




idi

Crystal structure and Hirshfeld surface analysis of 3,6-bis­(pyrimidin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine dihydrate

In the title compound, C10H8N8·2H2O or H2bmtz·2H2O [bmtz = 3,6-bis­(2'-pyrimid­yl)-1,2,4,5-tetra­zine], the asymmetric unit consists of one-half mol­ecule of H2bmtz and one water mol­ecule, the whole H2bmtz mol­ecule being generated by a crystallographic twofold rotation axis passing through the middle point of the 1,4-di­hydro-1,2,4,5-tetra­zine moiety. In the crystal, N—H⋯O, N—H⋯N, O—H⋯O hydrogen bonds and aromatic π–π stacking inter­actions link the components into a three-dimensional supra­molecular network. Hirshfeld surface analysis was used to further investigate the inter­molecular inter­actions in the crystal structure.




idi

The first coordination compound of 6-fluoro­nicotinate: the crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoro­nicotinate and 4,4'-bi­pyridine

A one-dimensional nickel(II) coordination polymer with the mixed ligands 6-fluoro­nicotinate (6-Fnic) and 4,4'-bi­pyridine (4,4'-bpy), namely, catena-poly[[di­aqua­bis­(6-fluoro­pyridine-3-carboxyl­ato-κO)nickel(II)]-μ-4,4'-bi­pyri­dine-κ2N:N'] trihydrate], {[Ni(6-Fnic)2(4,4'-bpy)(H2O)2]·3H2O}n, (1), was prepared by the reaction of nickel(II) sulfate hepta­hydrate, 6-fluoro­nicotinic acid (C6H4FNO2) and 4,4'-bi­pyridine (C10H8N2) in a mixture of water and ethanol. The nickel(II) ion in 1 is octa­hedrally coordinated by the O atoms of two water mol­ecules, two O atoms from O-monodentate 6-fluoro­nicotinate ligands and two N atoms from bridging 4,4'-bi­pyridine ligands, forming a trans isomer. The bridging 4,4'-bi­pyridine ligands connect symmetry-related nickel(II) ions into infinite one-dimensional polymeric chains running in the [1overline{1}0] direction. In the extended structure of 1, the polymeric chains and lattice water mol­ecules are connected into a three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of distinct hydrogen-bond ring motifs: octa­meric R88(24) and hexa­meric R86(16) loops.




idi

Intra­molecular 1,5-S⋯N σ-hole inter­action in (E)-N'-(pyridin-4-yl­methyl­idene)thio­phene-2-carbohydrazide

The title compound, C11H9N3OS, (I), crystallizes in the monoclinic space group P21/n. The mol­ecular conformation is nearly planar and features an intra­molecular chalcogen bond between the thio­phene S and the imine N atoms. Within the crystal, the strongest inter­actions between mol­ecules are the N—H⋯O hydrogen bonds, which organize them into inversion dimers. The dimers are linked through short C—H⋯N contacts and are stacked into layers propagating in the (001) plane. The crystal structure features π–π stacking between the pyridine aromatic ring and the azomethine double bond. The calculated energies of pairwise inter­molecular inter­actions within the stacks are considerably larger than those found for the inter­actions between the layers.




idi

Crystal structure and Hirshfeld surface analysis of 2-amino-3-hy­droxy­pyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide

The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O⋯H/H⋯O (43.1%) and H⋯H (24.2%) contacts.




idi

Crystal structure, Hirshfeld surface and frontier mol­ecular orbital analysis of 10-benzyl-9-(3-eth­oxy-4-hy­droxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione

In the fused ring system of the title compound, C32H37NO4, the central di­hydro­pyridine ring adopts a flattened boat conformation, the mean and maximum deviations of the di­hydro­pyridine ring being 0.1429 (2) and 0.2621 (2) Å, respectively. The two cyclo­hexenone rings adopt envelope conformations with the tetra­substituted C atoms as flap atoms. The benzene and phenyl rings form dihedral angles of 85.81 (2) and 88.90 (2)°, respectively, with the mean plane of the di­hydro­pyridine ring. In the crystal, mol­ecules are linked via an O—H⋯O hydrogen bond, forming a helical chain along the b-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (65.2%), O⋯H/H⋯O (18.8%) and C⋯H/H⋯C (13.9%) contacts. Quantum chemical calculations for the frontier mol­ecular orbitals were undertake to determine the chemical reactivity of the title compound.




idi

Synthesis and crystal structure of a 6-chloro­nicotinate salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4'-bi­pyridine

A 6-chloro­nicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4'-bi­pyridine (4,4'-bpy), namely, catena-poly[[[tetra­aqua­nickel(II)]-μ-4,4'-bi­pyridine-κ2N:N'] bis­(6-chloro­nicotinate) tetra­hydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O}n or {[Ni(4,4'-bpy)(H2O)4](6-Clnic)2·4H2O}n, (1), was prepared by the reaction of nickel(II) sulfate hepta­hydrate, 6-chloro­nicotinic acid and 4,4'-bi­pyridine in a mixture of water and ethanol. The mol­ecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4'-bpy)(H2O)4]2+}n cation, two 6-chloro­nicotinate anions and four water mol­ecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octa­hedrally coordinated by four water mol­ecule O atoms and by two 4,4'-bi­pyridine N atoms in the trans position. The 4,4'-bi­pyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4'-bpy)(H2O)4]2+}n, the 6-chloro­nicotinate anions and the water mol­ecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetra­meric R24(8) and R44(10) loops, a dimeric R22(8) loop and a penta­meric R45(16) loop.




idi

Crystal structures of (η4-cyclo­octa-1,5-diene)bis(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide and (η4-cyclo­octa-1,5-diene)bis­(1,3-di­ethyl­imidazol-2-yl­idene)iridium(I) iodide

The title complexes, (η4-cyclo­octa-1,5-diene)bis­(1,3-di­methyl­imidazol-2-yl­idene)iridium(I) iodide, [Ir(C5H8N2)2(C8H12)]I, (1) and (η4-cyclo­octa-1,5-di­ene)bis­(1,3-di­ethyl­imidazol-2-yl­idene)iridium(I) iodide, [Ir(C7H12N2)2(C8H12)]I, (2), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid l-proline to [Ir(COD)(IMe)2]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C2/m, while 2 crystallizes in the ortho­rhom­bic space group Pccn, both with Z = 4.




idi

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 2-(2,3-di­hydro-1H-perimidin-2-yl)-6-meth­oxy­phenol

The title compound, C18H16N2O2, consists of perimidine and meth­oxy­phenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. Weak C—H⋯π inter­actions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




idi

Crystal structures of {1,1,1-tris­[(salicylaldimino)­meth­yl]ethane}­gallium as both a pyridine solvate and an aceto­nitrile 0.75-solvate and {1,1,1-tris[(salicylaldimino)­meth­yl]ethane}­indium di­chloro­

The sexa­dentate ligand 1,1,1-tris­[(salicyl­idene­amino)­meth­yl]ethane has been reported numerous times in its triply deprotonated form coordinated to transition metals and lanthanides, yet it has been rarely employed with main-group elements, including in substituted forms. Its structures with gallium and indium are reported as solvates, namely, ({[(2,2-bis­{[(2-oxido­benzyl­idene)amino-κ2N,O]meth­yl}prop­yl)imino]­meth­yl}phenololato-κ2N,O)gallium(III) pyridine monosolvate, [Ga(C26H24N3O3)]·C5H5N, the aceto­nitrile 0.75-solvate, [Ga(C26H24N3O3)]·0.75C2H3N, and ({[(2,2-bis­{[(2-oxido­benzyl­idene)amino-κ2N,O]meth­yl}prop­yl)imino]­meth­yl}phenololato-κ2N,O)indium(III) di­chloro­methane monosolvate, [In(C26H24N3O3)]·CH2Cl2. All three metal complexes are pseudo-octa­hedral and each structure contains multiple weak C—H⋯O and/or C—H⋯N inter­molecular hydrogen-bonding inter­actions. The syntheses and additional characterization in the forms of melting points, high-resolution mass spectra, infra-red (IR) spectra, and 1H and 13C NMR spectra are also reported.




idi

Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-butyl-2,6-bis­(4-fluoro­phen­yl)piperidin-4-one

The title compound, C21H23F2NO, consists of two fluoro­phenyl groups and one butyl group equatorially oriented on a piperidine ring, which adopts a chair conformation. The dihedral angle between the mean planes of the phenyl rings is 72.1 (1)°. In the crystal, N—H⋯O and weak C—H⋯F inter­actions, which form R22[14] motifs, link the mol­ecules into infinite C(6) chains propagating along [001]. A weak C—H⋯π inter­action is also observed. A Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H⋯H (53.3%), H⋯C/C⋯H (19.1%), H⋯F/F⋯H (15.7%) and H⋯O/O⋯H (7.7%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure in the solid state and used to determine the HOMO–LUMO energy gap and compare it to the UV–vis experimental spectrum.




idi

Crystal structure, Hirshfeld surface analysis and DFT studies of 6-bromo-3-(12-bromo­dodec­yl)-2-(4-nitro­phen­yl)-4H-imidazo[4,5-b]pyridine

The title compound, C24H30Br2N4O2, consists of a 2-(4-nitro­phen­yl)-4H-imidazo[4,5-b]pyridine entity with a 12-bromo­dodecyl substituent attached to the pyridine N atom. The middle eight-carbon portion of the side chain is planar to within 0.09 (1) Å and makes a dihedral angle of 21.9 (8)° with the mean plane of the imidazolo­pyridine moiety, giving the mol­ecule a V-shape. In the crystal, the imidazolo­pyridine units are associated through slipped π–π stacking inter­actions together with weak C—HPyr⋯ONtr and C—HBrmdc­yl⋯ONtr (Pyr = pyridine, Ntr = nitro and Brmdcyl = bromo­dodec­yl) hydrogen bonds. The 12-bromo­dodecyl chains overlap with each other between the stacks. The terminal –CH2Br group of the side chain shows disorder over two resolved sites in a 0.902 (3):0.098 (3) ratio. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.1%), H⋯Br/Br⋯H (15.0%) and H⋯O/O⋯H (12.8%) inter­actions. The optimized mol­ecular structure, using density functional theory at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




idi

Hydrogen-bonding patterns in 2,2-bis­(4-methyl­phen­yl)hexa­fluoro­propane pyridinium and ethyl­enedi­ammonium salt crystals

The crystal structures of two salt crystals of 2,2-bis­(4-methyl­phen­yl)hexa­fluoro­propane (Bmphfp) with amines, namely, dipyridinium 4,4'-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)dibenzoate 4,4'-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)di­benzoic acid, 2C5H6N+·C17H8F6O42−·C17H10F6O4, (1), and a monohydrated ethyl­enedi­ammonium salt ethane-1,2-diaminium 4,4'-(1,1,1,3,3,3-hexa­fluoro­propane-2,2-di­yl)dibenzoate monohydrate, C2H10N22+·C17H8F6O42−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z' = 2 and in space group Pbca with Z' = 1. The crystals of compound 1 contain neutral and anionic Bmphfp mol­ecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp mol­ecules, which form a complex three-dimensional hydrogen-bonded network with the ethyl­enedi­amine and water mol­ecules.




idi

High-pressure polymorphism in pyridine

Single crystals of the high-pressure phases II and III of pyridine have been obtained by in situ crystallization at 1.09 and 1.69 GPa, revealing the crystal structure of phase III for the first time using X-ray diffraction. Phase II crystallizes in P212121 with Z' = 1 and phase III in P41212 with Z' = ½. Neutron powder diffraction experiments using pyridine-d5 establish approximate equations of state of both phases. The space group and unit-cell dimensions of phase III are similar to the structures of other simple compounds with C2v molecular symmetry, and the phase becomes stable at high pressure because it is topologically close-packed, resulting in a lower molar volume than the topologically body-centred cubic phase II. Phases II and III have been observed previously by Raman spectroscopy, but have been mis-identified or inconsistently named. Raman spectra collected on the same samples as used in the X-ray experiments establish the vibrational characteristics of both phases unambiguously. The pyridine molecules interact in both phases through CH⋯π and CH⋯N interactions. The nature of individual contacts is preserved through the phase transition between phases III and II, which occurs on decompression. A combination of rigid-body symmetry mode analysis and density functional theory calculations enables the soft vibrational lattice mode which governs the transformation to be identified.




idi

3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow

Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX.




idi

The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer

Neisseria meningitidis is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from N. meningitidis (NmqNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of NmqNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen Alcaligenes (Achromobacter) xylosoxidans, which primarily migrates as a monomer. The monomer–dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of NmqNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly in crystallo and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme.




idi

Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments

Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.




idi

A practical overview of molecular replacement: Clostridioides difficile PilA1, a difficult case study

Many biologists are now routinely seeking to determine the three-dimensional structures of their proteins of choice, illustrating the importance of this knowledge, but also of the simplification and streamlining of structure-determination processes. Despite the fact that most software packages offer simple pipelines, for the non-expert navigating the outputs and understanding the key aspects can be daunting. Here, the structure determination of the type IV pili (TFP) protein PilA1 from Clostridioides difficile is used to illustrate the different steps involved, the key decision criteria and important considerations when using the most common pipelines and software. Molecular-replacement pipelines within CCP4i2 are presented to illustrate the more commonly used processes. Previous knowledge of the biology and structure of TFP pilins, particularly the presence of a long, N-terminal α-helix required for pilus formation, allowed informed decisions to be made during the structure-determination strategy. The PilA1 structure was finally successfully determined using ARCIMBOLDO and the ab initio MR strategy used is described.




idi

Quantitative three-dimensional nondestructive imaging of whole anaerobic ammonium-oxidizing bacteria

Anaerobic ammonium-oxidizing (anammox) bacteria play a key role in the global nitrogen cycle and in nitrogenous wastewater treatment. The anammox bacteria ultrastructure is unique and distinctly different from that of other prokaryotic cells. The morphological structure of an organism is related to its function; however, research on the ultrastructure of intact anammox bacteria is lacking. In this study, in situ three-dimensional nondestructive ultrastructure imaging of a whole anammox cell was performed using synchrotron soft X-ray tomography (SXT) and the total variation-based simultaneous algebraic reconstruction technique (TV-SART). Statistical and quantitative analyses of the intact anammox bacteria were performed. High soft X-ray absorption composition inside anammoxosome was detected and verified to be relevant to iron-binding protein. On this basis, the shape adaptation of the anammox bacteria response to iron was explored.




idi

A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method

The room-temperature experiment has been revisited for macromolecular crystallography. Despite being limited by radiation damage, such experiments reveal structural differences depending on temperature, and it is expected that they will be able to probe structures that are physiologically alive. For such experiments, the humid-air and glue-coating (HAG) method for humidity-controlled experiments is proposed. The HAG method improves the stability of most crystals in capillary-free experiments and is applicable at both cryogenic and ambient temperatures. To expand the thermal versatility of the HAG method, a new humidifier and a protein-crystal-handling workbench have been developed. The devices provide temperatures down to 4°C and successfully maintain growth at that temperature of bovine cytochrome c oxidase crystals, which are highly sensitive to temperature variation. Hence, the humidifier and protein-crystal-handling workbench have proved useful for temperature-sensitive samples and will help reveal temperature-dependent variations in protein structures.




idi

A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method

A new temperature-controllable humidifier for X-ray diffraction has been developed. It is shown that the humidifier can successfully maintain protein crystal growth at a temperature lower than room temperature.




idi

Usefulness of oils for cleaning the host matrix and for cryoprotection of lipidic cubic phase crystals

Several oils were examined for use in the cleaning and cryoprotection of crystals in the lipidic cubic phase in terms of their effect on the crystal stability, the background scattering and the facilitation of the experiment.




idi

Unit-cell response of tetragonal hen egg white lysozyme upon controlled relative humidity variation

The effects of relative humidity on a tetragonal crystal form of hen egg white lysozyme are studied via in situ laboratory X-ray powder diffraction.




idi

Crystal structures of two furazidin polymorphs revealed by a joint effort of crystal structure prediction and NMR crystallography

This work presents the crystal structure determination of two elusive polymorphs of furazidin, an antibacterial agent, employing a combination of crystal structure prediction (CSP) calculations and an NMR crystallography approach. Two previously uncharacterized neat crystal forms, one of which has two symmetry-independent molecules (form I), whereas the other one is a Z' = 1 polymorph (form II), crystallize in P21/c and P1 space groups, respectively, and both are built by different conformers, displaying different intermolecular interactions. It is demonstrated that the usage of either CSP or NMR crystallography alone is insufficient to successfully elucidate the above-mentioned crystal structures, especially in the case of the Z' = 2 polymorph. In addition, cases of serendipitous agreement in terms of 1H or 13C NMR data obtained for the CSP-generated crystal structures different from the ones observed in the laboratory (false-positive matches) are analyzed and described. While for the majority of analyzed crystal structures the obtained agreement with the NMR experiment is indicative of some structural features in common with the experimental structure, the mentioned serendipity observed in exceptional cases points to the necessity of caution when using an NMR crystallography approach in crystal structure determination.




idi

catena-Poly[[[aquacopper(II)]-μ-(biphenyl-2,2'-dicarboxylato)-μ-[N,N'-bis(pyridin-4-yl)urea]] 1.25-hydrate]

In the title compound, {[Cu(C14H8O4)(C11H10N4O)(H2O)]·1.25H2O}n, the CuII cations are coordinated in a square-pyramidal fashion by trans carboxylate O-atom donors from two diphenate (dip) ligands, trans pyridyl N-atom donors from two bis(4-pyridyl)urea (bpu) ligands, and a ligated water molecule in the apical position. [Cu(H2O)(dip)(bpu)]n coordination polymer layer motifs are oriented parallel to (overline{1}02). These layer motifs display a standard (4,4) rectangular grid topology and stack in an AAA pattern along the a-axis direction to form the full three-dimensional crystal structure of the title compound, mediated by N—H...O and O—H...O hydrogen bonding patterns involving the water molecules of crystallization.




idi

Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway

Insights were obtained into the structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway for the biosynthesis of lysine.




idi

Structure of an RNA helix with pyrimidine mismatches and cross-strand stacking

The structure of a 22-base-pair RNA helix with mismatched pyrimidine base pairs is reported. The helix contains two symmetry-related CUG sequences: a triplet-repeat motif implicated in myotonic dystrophy type 1. The CUG repeat contains a U–U mismatch sandwiched between Watson–Crick pairs. Additionally, the center of the helix contains a dimerized UUCG motif with tandem pyrimidine (U–C/C–U) mismatches flanked by U–G wobble pairs. This region of the structure is significantly different from previously observed structures that share the same sequence and neighboring base pairs. The tandem pyrimidine mismatches are unusual and display sheared, cross-strand stacking geometries that locally constrict the helical width, a type of stacking previously associated with purines in internal loops. Thus, pyrimidine-rich regions of RNA have a high degree of structural diversity.




idi

Crystal structure of an oxidized mutant of human mitochondrial branched-chain aminotransferase

This study presents the crystal structure of a thiol variant of the human mitochondrial branched-chain aminotransferase protein. Human branched-chain aminotransferase (hBCAT) catalyzes the transamination of the branched-chain amino acids leucine, valine and isoleucine and α-ketoglutarate to their respective α-keto acids and glutamate. hBCAT activity is regulated by a CXXC center located approximately 10 Å from the active site. This redox-active center facilitates recycling between the reduced and oxidized states, representing hBCAT in its active and inactive forms, respectively. Site-directed mutagenesis of the redox sensor (Cys315) results in a significant loss of activity, with no loss of activity reported on the mutation of the resolving cysteine (Cys318), which allows the reversible formation of a disulfide bond between Cys315 and Cys318. The crystal structure of the oxidized form of the C318A variant was used to better understand the contributions of the individual cysteines and their oxidation states. The structure reveals the modified CXXC center in a conformation similar to that in the oxidized wild type, supporting the notion that its regulatory mechanism depends on switching the Cys315 side chain between active and inactive conformations. Moreover, the structure reveals conformational differences in the N-terminal and inter-domain region that may correlate with the inactivated state of the CXXC center.




idi

Smithsonian Scientist Discovers Two New Bat Species Hiding in Museum Collections for More Than 150 Years

While studying bats recently at the Academy of Natural Sciences in Philadelphia, Smithsonian mammalogist Kristofer Helgen discovered a new species of flying fox bat from […]

The post Smithsonian Scientist Discovers Two New Bat Species Hiding in Museum Collections for More Than 150 Years appeared first on Smithsonian Insider.




idi

Rising acidification of estuary waters spells trouble for Chesapeake Bay oysters

Already under siege from overfishing, disease and poor water quality, the oyster population in the Chesapeake Bay today stands at 2 percent of what it was in colonial times. Now, new data show that rising acidity in the Bay will have a negative impact on oyster shells.

The post Rising acidification of estuary waters spells trouble for Chesapeake Bay oysters appeared first on Smithsonian Insider.




idi

Captive colony of Virginia big-eared bats providing valuable lessons in battle against deadly white-nose syndrome

Eleven bats remain in the National Zoo’s colony. The initial challenge the team faced was how to feed the animals. Virginia big-eared bats, which are a subspecies of the Townsend’s big-eared bat (Corynorhinuss townsendii), eat while flying.

The post Captive colony of Virginia big-eared bats providing valuable lessons in battle against deadly white-nose syndrome appeared first on Smithsonian Insider.




idi

Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals

A recent experiment by scientists at the Smithsonian Tropical Research Institute in Panama has revealed just how rising atmospheric carbon dioxide will deliver a one-two […]

The post Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals appeared first on Smithsonian Insider.




idi

“Billy club” leaf beetle has been hiding in Smithsonian collections since 1959

A new species of Brazilian leaf beetle named Cachiporra extremaglobosa, (which translated means the “extremely globular billy club leaf beetle,”) was recently discovered by scientists at the Smithsonian’s National Museum of Natural History.

The post “Billy club” leaf beetle has been hiding in Smithsonian collections since 1959 appeared first on Smithsonian Insider.




idi

Oysters on floating plates help scientists study acidification and shell growth

A team of scientists from the Smithsonian Environmental Research Center in Edgewater, Md., is taking a closer look at how rising acidification of ocean water may be impacting estuaries and near shore environments on the Chesapeake Bay

The post Oysters on floating plates help scientists study acidification and shell growth appeared first on Smithsonian Insider.




idi

Lofty experiments with gliding ants reveals secrets of their unusual flight

One of the most challenging aspects of this research is simply studying these insects as they are falling, says Yanoviak, a tropical arthropod ecologist at the University of Arkansas, Little Rock. Small body size, rapid descent, and the long distances that they can fall, make accurate data taking a challenge.

The post Lofty experiments with gliding ants reveals secrets of their unusual flight appeared first on Smithsonian Insider.




idi

Genetic study confirms American crocodiles and critically endangered Cuban crocodiles are hybridizing in the wild

A new genetic study by a team of Cuban and American researchers confirms that American crocodiles are hybridizing with wild populations of critically endangered Cuban crocodiles, which may cause a population decline of this species found only in the Cuban Archipelago.

The post Genetic study confirms American crocodiles and critically endangered Cuban crocodiles are hybridizing in the wild appeared first on Smithsonian Insider.