idi Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aquadichlorido{N-[(pyridin-2-yl)methylidene]aniline}copper(II) monohydrate By scripts.iucr.org Published On :: 2020-01-07 The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water molecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand interacts through a strong hydrogen bond with a water molecule of crystallization. In the crystal, molecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that interact in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water molecules. The molecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing. Full Article text
idi Crystal structures of (E)-5-(4-methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one and [3,4-bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) By scripts.iucr.org Published On :: 2020-01-14 Recrystallization of (E)-5-phenyl-1-(pyridin-2-yl)pent-2-en-4-yn-1-one at room temperature from ethylene glycol in daylight afforded [3,4-bis(phenylethynyl)cyclobutane-1,2-diyl)bis(pyridin-2-ylmethanone], C32H22N2O2 (3), while (E)-5-(4-methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one, C17H13NO (2), remained photoinert. This is the first experimental evidence that pentenynones can be photoreactive when fixed in nearly coplanar parallel positions. During the photoreaction, the bond lengths and angles along the pentenyne chain changed significantly, while the disposition of the pyridyl ring towards the keto group was almost unchanged. The cyclobutane ring adopts an rctt conformation. Full Article text
idi Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and 4-chlorobenzoic acid By scripts.iucr.org Published On :: 2020-01-21 The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half molecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two molecules of 4-chlorobenzoic acid (CBA), each in general positions. Each 4LH2 molecule has a (+)antiperiplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 molecules. The anti conformation of the carbonyl groups enables the formation of intramolecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA molecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-molecule aggregates are formed via carboxylic acid-O—H⋯N(pyridyl) hydrogen bonding. These are connected into a supramolecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methylene-C—H⋯O(carbonyl) and CBA-C—H⋯O(amide) interactions. As revealed by a more detailed analysis of the molecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O interactions which provide interaction energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supramolecular tape. Full Article text
idi Crystal structure of the mixed methanol and ethanol solvate of bis{3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazidato}zinc(II) By scripts.iucr.org Published On :: 2020-02-06 The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex molecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π–π interactions between the planar ligand moieties, which are further connected by C⋯O and C⋯C interactions. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) interactions. Full Article text
idi Tetraaqua[3-oxo-1,3-bis(pyridinium-2-yl)propan-1-olato]nickel(II) tribromide dihydrate By scripts.iucr.org Published On :: 2020-01-31 The crystal structure of the title compound, [Ni(C13H11N2O2)(H2O)4]Br3·2H2O, contains an octahedral NiII atom coordinated to the enol form of 1,3-dipyridylpropane-1,3-dione (dppo) and four water molecules. Both pyridyl rings on the ligand are protonated, forming pyridinium rings and creating an overall ligand charge of +1. The protonated nitrogen-containing rings are involved in hydrogen-bonding interactions with neighoring bromide anions. There are many additional hydrogen-bonding interactions involving coordinated water molecules on the NiII atom, bromide anions and hydration water molecules. Full Article text
idi Crystal structures and Hirshfeld surface analysis of trans-bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline-κ2N,N'}manganese(II) and trans-bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyri By scripts.iucr.org Published On :: 2020-01-31 Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex molecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thiocyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octahedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS− anions in a trans axial arrangement. The trimethylbenzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and π–π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify these intermolecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)]. Full Article text
idi Crystal structure, synthesis and thermal properties of bis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)bis(methanol-κN)iron(II) By scripts.iucr.org Published On :: 2020-01-31 In the crystal structure of the title compound, [Fe(NCS)2(C12H9NO)2(CH4O)2], the FeII cations are octahedrally coordinated by two N atoms of 4-benzoylpyridine ligands, two N atoms of two terminal isothiocyanate anions and two methanol molecules into discrete complexes that are located on centres of inversion. These complexes are linked via intermolecular O—H⋯O hydrogen bonds between the methanol O—H H atoms and the carbonyl O atoms of the 4-benzoylpyridine ligands, forming layers parallel to (101). Powder X-ray diffraction proved that a pure sample was obtained but that this compound is unstable and transforms into an unknown crystalline phase within several weeks. However, the solvent molecules can be removed by heating in a thermobalance, which for the aged sample as well as the title compound leads to the formation of a compound with the composition Fe(NCS)2(4-benzoylpyridine)2, which exhibits a powder pattern that is similar to that of Mn(NCS)2(4-benzoylpyridine)2. Full Article text
idi Crystal structure of imidazo[1,5-a]pyridinium-based hybrid salt (C13H12N3)2[MnCl4] By scripts.iucr.org Published On :: 2020-02-06 A new organic–inorganic hybrid salt [L]2[MnCl4] (I) where L+ is the 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, is built of discrete organic cations and tetrachloridomanganate(II) anions. The L+ cation was formed in situ in the oxidative cyclocondensation of 2-pyridinecarbaldehyde and CH3NH2·HCl in methanol. The structure was refined as a two-component twin using PLATON (Spek, 2020) to de-twin the data. The twin law (−1 0 0 0 − 1 0 0.5 0 1) was applied in the refinement where the twin component fraction refined to 0.155 (1). The compound crystallizes in the space group P21/c with two crystallographically non-equivalent cations in the asymmetric unit, which possess similar structural conformations. The fused pyridinium and imidazolium rings of the cations are virtually coplanar [dihedral angles are 0.89 (18) and 0.78 (17)°]; the pendant pyridyl rings are twisted by 36.83 (14) and 36.14 (13)° with respect to the planes of the remaining atoms of the cations. The tetrahedral MnCl42– anion is slightly distorted with the Mn—Cl distances falling in the range 2.3469 (10)–2.3941 (9) Å. The distortion value of 0.044 relative to the ideal tetrahedron was obtained by continuous shape measurement (CShM) analysis. In the crystal, the cations and anions form separate stacks propagating along the a-axis direction. The organic cations display weak π–π stacking. The anions, which are stacked identically one above the other, demonstrate loose packing; the minimum Mn⋯Mn separation in the cation stack is approximately 7.49 Å. The investigation of the fluorescent properties of a powdered sample of (I) showed no emission. X-band EPR data for (I) at 293 and 77 K revealed broad fine structure signals, indicating moderate zero-field splitting. Full Article text
idi Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-(1,3-benzothiazol-2-yl)-3-(2-hydroxyethyl)imidazolidin-2-one By scripts.iucr.org Published On :: 2020-02-14 In the title molecule, C12H13N3O2S, the benzothiazine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O—HHydethy⋯NThz hydrogen bonds and weak C—HImdz⋯OImdz and C—HBnz⋯OImdz (Hydethy = hydroxyethyl, Thz = thiazole, Imdz = imidazolidine and Bnz = benzene) interactions, together with C—HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] interactions between thiazole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H⋯N and C—H⋯O hydrogen-bond energies are 68.5 (for O—HHydethy⋯NThz), 60.1 (for C—HBnz⋯OImdz) and 41.8 kJ mol−1 (for C—HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. Full Article text
idi Phosphorescent mono- and diiridium(III) complexes cyclometalated by fluorenyl- or phenyl-pyridino ligands with bulky substituents, as prospective OLED dopants By scripts.iucr.org Published On :: 2020-02-18 The crystal structures of tris[9,9-dihexyl-2-(5-methoxypyridin-2-yl-κN)-9H-fluoren-3-yl-κC3]iridium pentane monosolvate, [Ir(C31H38NO)3]·C5H12, (I), di-μ2-chlorido-bis{bis[2-(5-fluoropyridin-2-yl)-9,9-dihexyl-9H-fluoren-3-yl]iridium} pentane 0.3-solvate, [Ir2(C30H35FN)4Cl2]·0.3C5H12, (II), di-μ2-cyanato-bis{bis[9,9-dihexyl-2-(5-methoxypyridin-2-yl)-9H-fluoren-1-yl]iridium} pentane monosolvate, [Ir2(C31H38NO)4(NCO)2(NCO)2]·C5H12, (III), and {μ-N,N'-bis[3,5-bis(trifluoromethyl)phenyl]oxamidato}bis(bis{2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2C1,N'}iridium)–chlorobenzene–pentane (1/2.3/0.4), [Ir2(C20H19N)4(C18H6F12N2O2)]·2.3C6H5Cl·0.4C5H12, (IV), synthesized in the quest for organic light-emitting devices, were determined. The bis-μ2-chloro and bis-μ2-cyanato complexes have ΔΔ and ΛΛ configurations of the distorted octahedral Ir centres in racemic crystals, whereas the oxamido complex has a centrosymmetric (meso) structure with the ΔΛ configuration. The bridging oxamido moiety has a nearly planar anti geometry. All structures show substantial disorder of both host molecules and solvents of crystallization. Full Article text
idi Crystal structure of (4-chlorophenyl)(4-methylpiperidin-1-yl)methanone By scripts.iucr.org Published On :: 2020-03-13 The title compound, C13H16ClNO, contains a methylpiperidine ring in the stable chair conformation. The mean plane of the twisted piperidine ring subtends a dihedral angle of 39.89 (7)° with that of the benzene ring. In the crystal, weak C—H⋯O interactions link the molecules along the a-axis direction to form infinite molecular chains. H⋯H interatomic interactions, C—H⋯O intermolecular interactions and weak dispersive forces stabilize molecular packing and form a supramolecular network, as established by Hirshfeld surface analysis. Full Article text
idi Crystal structure and Hirshfeld surface analysis of (E)-3-(benzylideneamino)-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2020-02-21 The central thiazolidine ring of the title salt, C16H16N3S+·Br−, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) interactions. Full Article text
idi Crystal structure, Hirshfeld surface analysis and DFT studies of 1-[r-2,c-6-diphenyl-t-3-(propan-2-yl)piperidin-1-yl]ethan-1-one By scripts.iucr.org Published On :: 2020-02-18 In the title compound, C22H27NO, the piperidine ring adopts a chair conformation. The dihedral angles between the mean plane of the piperidine ring and the phenyl rings are 89.78 (7) and 48.30 (8)°. In the crystal, molecules are linked into chains along the b-axis direction by C—H⋯O hydrogen bonds. The DFT/B3LYP/6–311 G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule. Full Article text
idi Crystal structure of 1-[(4-methylbenzene)sulfonyl]pyrrolidine By scripts.iucr.org Published On :: 2020-02-28 The molecular structure of the title compound, C11H15NO2S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the molecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and intermolecular C—H⋯O hydrogen bonds, as well as intermolecular C—H⋯π and π–π interactions, leading to the formation of sheets parallel to the ac plane. Full Article text
idi Crystal structure analysis of ethyl 3-(4-chlorophenyl)-1,6-dimethyl-4-methylsulfanyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate By scripts.iucr.org Published On :: 2020-02-25 In the title compound, C18H18ClN3O2S, the dihedral angle between the fused pyrazole and pyridine rings is 3.81 (9)°. The benzene ring forms dihedral angles of 35.08 (10) and 36.26 (9)° with the pyrazole and pyridine rings, respectively. In the crystal, weak C—H⋯O hydrogen bonds connect molecules along [100]. Full Article text
idi Crystal structure and Hirshfeld surface analysis of 3,6-bis(pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine dihydrate By scripts.iucr.org Published On :: 2020-03-03 In the title compound, C10H8N8·2H2O or H2bmtz·2H2O [bmtz = 3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine], the asymmetric unit consists of one-half molecule of H2bmtz and one water molecule, the whole H2bmtz molecule being generated by a crystallographic twofold rotation axis passing through the middle point of the 1,4-dihydro-1,2,4,5-tetrazine moiety. In the crystal, N—H⋯O, N—H⋯N, O—H⋯O hydrogen bonds and aromatic π–π stacking interactions link the components into a three-dimensional supramolecular network. Hirshfeld surface analysis was used to further investigate the intermolecular interactions in the crystal structure. Full Article text
idi The first coordination compound of 6-fluoronicotinate: the crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoronicotinate and 4,4'-bipyridine By scripts.iucr.org Published On :: 2020-03-10 A one-dimensional nickel(II) coordination polymer with the mixed ligands 6-fluoronicotinate (6-Fnic) and 4,4'-bipyridine (4,4'-bpy), namely, catena-poly[[diaquabis(6-fluoropyridine-3-carboxylato-κO)nickel(II)]-μ-4,4'-bipyridine-κ2N:N'] trihydrate], {[Ni(6-Fnic)2(4,4'-bpy)(H2O)2]·3H2O}n, (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-fluoronicotinic acid (C6H4FNO2) and 4,4'-bipyridine (C10H8N2) in a mixture of water and ethanol. The nickel(II) ion in 1 is octahedrally coordinated by the O atoms of two water molecules, two O atoms from O-monodentate 6-fluoronicotinate ligands and two N atoms from bridging 4,4'-bipyridine ligands, forming a trans isomer. The bridging 4,4'-bipyridine ligands connect symmetry-related nickel(II) ions into infinite one-dimensional polymeric chains running in the [1overline{1}0] direction. In the extended structure of 1, the polymeric chains and lattice water molecules are connected into a three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of distinct hydrogen-bond ring motifs: octameric R88(24) and hexameric R86(16) loops. Full Article text
idi Intramolecular 1,5-S⋯N σ-hole interaction in (E)-N'-(pyridin-4-ylmethylidene)thiophene-2-carbohydrazide By scripts.iucr.org Published On :: 2020-03-17 The title compound, C11H9N3OS, (I), crystallizes in the monoclinic space group P21/n. The molecular conformation is nearly planar and features an intramolecular chalcogen bond between the thiophene S and the imine N atoms. Within the crystal, the strongest interactions between molecules are the N—H⋯O hydrogen bonds, which organize them into inversion dimers. The dimers are linked through short C—H⋯N contacts and are stacked into layers propagating in the (001) plane. The crystal structure features π–π stacking between the pyridine aromatic ring and the azomethine double bond. The calculated energies of pairwise intermolecular interactions within the stacks are considerably larger than those found for the interactions between the layers. Full Article text
idi Crystal structure and Hirshfeld surface analysis of 2-amino-3-hydroxypyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide By scripts.iucr.org Published On :: 2020-03-27 The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O⋯H/H⋯O (43.1%) and H⋯H (24.2%) contacts. Full Article text
idi Crystal structure, Hirshfeld surface and frontier molecular orbital analysis of 10-benzyl-9-(3-ethoxy-4-hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione By scripts.iucr.org Published On :: 2020-03-27 In the fused ring system of the title compound, C32H37NO4, the central dihydropyridine ring adopts a flattened boat conformation, the mean and maximum deviations of the dihydropyridine ring being 0.1429 (2) and 0.2621 (2) Å, respectively. The two cyclohexenone rings adopt envelope conformations with the tetrasubstituted C atoms as flap atoms. The benzene and phenyl rings form dihedral angles of 85.81 (2) and 88.90 (2)°, respectively, with the mean plane of the dihydropyridine ring. In the crystal, molecules are linked via an O—H⋯O hydrogen bond, forming a helical chain along the b-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (65.2%), O⋯H/H⋯O (18.8%) and C⋯H/H⋯C (13.9%) contacts. Quantum chemical calculations for the frontier molecular orbitals were undertake to determine the chemical reactivity of the title compound. Full Article text
idi Synthesis and crystal structure of a 6-chloronicotinate salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4'-bipyridine By scripts.iucr.org Published On :: 2020-04-02 A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4'-bipyridine (4,4'-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4'-bipyridine-κ2N:N'] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O}n or {[Ni(4,4'-bpy)(H2O)4](6-Clnic)2·4H2O}n, (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4'-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4'-bpy)(H2O)4]2+}n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4'-bipyridine N atoms in the trans position. The 4,4'-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4'-bpy)(H2O)4]2+}n, the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R24(8) and R44(10) loops, a dimeric R22(8) loop and a pentameric R45(16) loop. Full Article text
idi Crystal structures of (η4-cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide and (η4-cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide By scripts.iucr.org Published On :: 2020-04-03 The title complexes, (η4-cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C5H8N2)2(C8H12)]I, (1) and (η4-cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C7H12N2)2(C8H12)]I, (2), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid l-proline to [Ir(COD)(IMe)2]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C2/m, while 2 crystallizes in the orthorhombic space group Pccn, both with Z = 4. Full Article text
idi Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol By scripts.iucr.org Published On :: 2020-04-03 The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H⋯π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
idi Crystal structures of {1,1,1-tris[(salicylaldimino)methyl]ethane}gallium as both a pyridine solvate and an acetonitrile 0.75-solvate and {1,1,1-tris[(salicylaldimino)methyl]ethane}indium dichloro By scripts.iucr.org Published On :: 2020-04-03 The sexadentate ligand 1,1,1-tris[(salicylideneamino)methyl]ethane has been reported numerous times in its triply deprotonated form coordinated to transition metals and lanthanides, yet it has been rarely employed with main-group elements, including in substituted forms. Its structures with gallium and indium are reported as solvates, namely, ({[(2,2-bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)gallium(III) pyridine monosolvate, [Ga(C26H24N3O3)]·C5H5N, the acetonitrile 0.75-solvate, [Ga(C26H24N3O3)]·0.75C2H3N, and ({[(2,2-bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)indium(III) dichloromethane monosolvate, [In(C26H24N3O3)]·CH2Cl2. All three metal complexes are pseudo-octahedral and each structure contains multiple weak C—H⋯O and/or C—H⋯N intermolecular hydrogen-bonding interactions. The syntheses and additional characterization in the forms of melting points, high-resolution mass spectra, infra-red (IR) spectra, and 1H and 13C NMR spectra are also reported. Full Article text
idi Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-butyl-2,6-bis(4-fluorophenyl)piperidin-4-one By scripts.iucr.org Published On :: 2020-04-09 The title compound, C21H23F2NO, consists of two fluorophenyl groups and one butyl group equatorially oriented on a piperidine ring, which adopts a chair conformation. The dihedral angle between the mean planes of the phenyl rings is 72.1 (1)°. In the crystal, N—H⋯O and weak C—H⋯F interactions, which form R22[14] motifs, link the molecules into infinite C(6) chains propagating along [001]. A weak C—H⋯π interaction is also observed. A Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H⋯H (53.3%), H⋯C/C⋯H (19.1%), H⋯F/F⋯H (15.7%) and H⋯O/O⋯H (7.7%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure in the solid state and used to determine the HOMO–LUMO energy gap and compare it to the UV–vis experimental spectrum. Full Article text
idi Crystal structure, Hirshfeld surface analysis and DFT studies of 6-bromo-3-(12-bromododecyl)-2-(4-nitrophenyl)-4H-imidazo[4,5-b]pyridine By scripts.iucr.org Published On :: 2020-04-21 The title compound, C24H30Br2N4O2, consists of a 2-(4-nitrophenyl)-4H-imidazo[4,5-b]pyridine entity with a 12-bromododecyl substituent attached to the pyridine N atom. The middle eight-carbon portion of the side chain is planar to within 0.09 (1) Å and makes a dihedral angle of 21.9 (8)° with the mean plane of the imidazolopyridine moiety, giving the molecule a V-shape. In the crystal, the imidazolopyridine units are associated through slipped π–π stacking interactions together with weak C—HPyr⋯ONtr and C—HBrmdcyl⋯ONtr (Pyr = pyridine, Ntr = nitro and Brmdcyl = bromododecyl) hydrogen bonds. The 12-bromododecyl chains overlap with each other between the stacks. The terminal –CH2Br group of the side chain shows disorder over two resolved sites in a 0.902 (3):0.098 (3) ratio. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.1%), H⋯Br/Br⋯H (15.0%) and H⋯O/O⋯H (12.8%) interactions. The optimized molecular structure, using density functional theory at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
idi Hydrogen-bonding patterns in 2,2-bis(4-methylphenyl)hexafluoropropane pyridinium and ethylenediammonium salt crystals By scripts.iucr.org Published On :: 2020-04-24 The crystal structures of two salt crystals of 2,2-bis(4-methylphenyl)hexafluoropropane (Bmphfp) with amines, namely, dipyridinium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoic acid, 2C5H6N+·C17H8F6O42−·C17H10F6O4, (1), and a monohydrated ethylenediammonium salt ethane-1,2-diaminium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate monohydrate, C2H10N22+·C17H8F6O42−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z' = 2 and in space group Pbca with Z' = 1. The crystals of compound 1 contain neutral and anionic Bmphfp molecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp molecules, which form a complex three-dimensional hydrogen-bonded network with the ethylenediamine and water molecules. Full Article text
idi High-pressure polymorphism in pyridine By scripts.iucr.org Published On :: 2020-01-01 Single crystals of the high-pressure phases II and III of pyridine have been obtained by in situ crystallization at 1.09 and 1.69 GPa, revealing the crystal structure of phase III for the first time using X-ray diffraction. Phase II crystallizes in P212121 with Z' = 1 and phase III in P41212 with Z' = ½. Neutron powder diffraction experiments using pyridine-d5 establish approximate equations of state of both phases. The space group and unit-cell dimensions of phase III are similar to the structures of other simple compounds with C2v molecular symmetry, and the phase becomes stable at high pressure because it is topologically close-packed, resulting in a lower molar volume than the topologically body-centred cubic phase II. Phases II and III have been observed previously by Raman spectroscopy, but have been mis-identified or inconsistently named. Raman spectra collected on the same samples as used in the X-ray experiments establish the vibrational characteristics of both phases unambiguously. The pyridine molecules interact in both phases through CH⋯π and CH⋯N interactions. The nature of individual contacts is preserved through the phase transition between phases III and II, which occurs on decompression. A combination of rigid-body symmetry mode analysis and density functional theory calculations enables the soft vibrational lattice mode which governs the transformation to be identified. Full Article text
idi 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow By scripts.iucr.org Published On :: 2020-01-16 Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX. Full Article text
idi The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer By scripts.iucr.org Published On :: 2020-03-21 Neisseria meningitidis is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from N. meningitidis (NmqNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of NmqNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen Alcaligenes (Achromobacter) xylosoxidans, which primarily migrates as a monomer. The monomer–dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of NmqNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly in crystallo and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme. Full Article text
idi Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments By scripts.iucr.org Published On :: 2019-10-01 Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory. Full Article text
idi A practical overview of molecular replacement: Clostridioides difficile PilA1, a difficult case study By scripts.iucr.org Published On :: 2020-02-26 Many biologists are now routinely seeking to determine the three-dimensional structures of their proteins of choice, illustrating the importance of this knowledge, but also of the simplification and streamlining of structure-determination processes. Despite the fact that most software packages offer simple pipelines, for the non-expert navigating the outputs and understanding the key aspects can be daunting. Here, the structure determination of the type IV pili (TFP) protein PilA1 from Clostridioides difficile is used to illustrate the different steps involved, the key decision criteria and important considerations when using the most common pipelines and software. Molecular-replacement pipelines within CCP4i2 are presented to illustrate the more commonly used processes. Previous knowledge of the biology and structure of TFP pilins, particularly the presence of a long, N-terminal α-helix required for pilus formation, allowed informed decisions to be made during the structure-determination strategy. The PilA1 structure was finally successfully determined using ARCIMBOLDO and the ab initio MR strategy used is described. Full Article text
idi Quantitative three-dimensional nondestructive imaging of whole anaerobic ammonium-oxidizing bacteria By scripts.iucr.org Published On :: 2020-04-17 Anaerobic ammonium-oxidizing (anammox) bacteria play a key role in the global nitrogen cycle and in nitrogenous wastewater treatment. The anammox bacteria ultrastructure is unique and distinctly different from that of other prokaryotic cells. The morphological structure of an organism is related to its function; however, research on the ultrastructure of intact anammox bacteria is lacking. In this study, in situ three-dimensional nondestructive ultrastructure imaging of a whole anammox cell was performed using synchrotron soft X-ray tomography (SXT) and the total variation-based simultaneous algebraic reconstruction technique (TV-SART). Statistical and quantitative analyses of the intact anammox bacteria were performed. High soft X-ray absorption composition inside anammoxosome was detected and verified to be relevant to iron-binding protein. On this basis, the shape adaptation of the anammox bacteria response to iron was explored. Full Article text
idi A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method By scripts.iucr.org Published On :: 2019-06-14 The room-temperature experiment has been revisited for macromolecular crystallography. Despite being limited by radiation damage, such experiments reveal structural differences depending on temperature, and it is expected that they will be able to probe structures that are physiologically alive. For such experiments, the humid-air and glue-coating (HAG) method for humidity-controlled experiments is proposed. The HAG method improves the stability of most crystals in capillary-free experiments and is applicable at both cryogenic and ambient temperatures. To expand the thermal versatility of the HAG method, a new humidifier and a protein-crystal-handling workbench have been developed. The devices provide temperatures down to 4°C and successfully maintain growth at that temperature of bovine cytochrome c oxidase crystals, which are highly sensitive to temperature variation. Hence, the humidifier and protein-crystal-handling workbench have proved useful for temperature-sensitive samples and will help reveal temperature-dependent variations in protein structures. Full Article text
idi A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method By journals.iucr.org Published On :: A new temperature-controllable humidifier for X-ray diffraction has been developed. It is shown that the humidifier can successfully maintain protein crystal growth at a temperature lower than room temperature. Full Article text
idi Usefulness of oils for cleaning the host matrix and for cryoprotection of lipidic cubic phase crystals By journals.iucr.org Published On :: Several oils were examined for use in the cleaning and cryoprotection of crystals in the lipidic cubic phase in terms of their effect on the crystal stability, the background scattering and the facilitation of the experiment. Full Article text
idi Unit-cell response of tetragonal hen egg white lysozyme upon controlled relative humidity variation By journals.iucr.org Published On :: The effects of relative humidity on a tetragonal crystal form of hen egg white lysozyme are studied via in situ laboratory X-ray powder diffraction. Full Article text
idi Crystal structures of two furazidin polymorphs revealed by a joint effort of crystal structure prediction and NMR crystallography By scripts.iucr.org Published On :: 2020-04-16 This work presents the crystal structure determination of two elusive polymorphs of furazidin, an antibacterial agent, employing a combination of crystal structure prediction (CSP) calculations and an NMR crystallography approach. Two previously uncharacterized neat crystal forms, one of which has two symmetry-independent molecules (form I), whereas the other one is a Z' = 1 polymorph (form II), crystallize in P21/c and P1 space groups, respectively, and both are built by different conformers, displaying different intermolecular interactions. It is demonstrated that the usage of either CSP or NMR crystallography alone is insufficient to successfully elucidate the above-mentioned crystal structures, especially in the case of the Z' = 2 polymorph. In addition, cases of serendipitous agreement in terms of 1H or 13C NMR data obtained for the CSP-generated crystal structures different from the ones observed in the laboratory (false-positive matches) are analyzed and described. While for the majority of analyzed crystal structures the obtained agreement with the NMR experiment is indicative of some structural features in common with the experimental structure, the mentioned serendipity observed in exceptional cases points to the necessity of caution when using an NMR crystallography approach in crystal structure determination. Full Article text
idi catena-Poly[[[aquacopper(II)]-μ-(biphenyl-2,2'-dicarboxylato)-μ-[N,N'-bis(pyridin-4-yl)urea]] 1.25-hydrate] By scripts.iucr.org Published On :: 2020-05-05 In the title compound, {[Cu(C14H8O4)(C11H10N4O)(H2O)]·1.25H2O}n, the CuII cations are coordinated in a square-pyramidal fashion by trans carboxylate O-atom donors from two diphenate (dip) ligands, trans pyridyl N-atom donors from two bis(4-pyridyl)urea (bpu) ligands, and a ligated water molecule in the apical position. [Cu(H2O)(dip)(bpu)]n coordination polymer layer motifs are oriented parallel to (overline{1}02). These layer motifs display a standard (4,4) rectangular grid topology and stack in an AAA pattern along the a-axis direction to form the full three-dimensional crystal structure of the title compound, mediated by N—H...O and O—H...O hydrogen bonding patterns involving the water molecules of crystallization. Full Article text
idi Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway By journals.iucr.org Published On :: Insights were obtained into the structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway for the biosynthesis of lysine. Full Article text
idi Structure of an RNA helix with pyrimidine mismatches and cross-strand stacking By scripts.iucr.org Published On :: 2019-09-24 The structure of a 22-base-pair RNA helix with mismatched pyrimidine base pairs is reported. The helix contains two symmetry-related CUG sequences: a triplet-repeat motif implicated in myotonic dystrophy type 1. The CUG repeat contains a U–U mismatch sandwiched between Watson–Crick pairs. Additionally, the center of the helix contains a dimerized UUCG motif with tandem pyrimidine (U–C/C–U) mismatches flanked by U–G wobble pairs. This region of the structure is significantly different from previously observed structures that share the same sequence and neighboring base pairs. The tandem pyrimidine mismatches are unusual and display sheared, cross-strand stacking geometries that locally constrict the helical width, a type of stacking previously associated with purines in internal loops. Thus, pyrimidine-rich regions of RNA have a high degree of structural diversity. Full Article text
idi Crystal structure of an oxidized mutant of human mitochondrial branched-chain aminotransferase By scripts.iucr.org Published On :: 2020-01-01 This study presents the crystal structure of a thiol variant of the human mitochondrial branched-chain aminotransferase protein. Human branched-chain aminotransferase (hBCAT) catalyzes the transamination of the branched-chain amino acids leucine, valine and isoleucine and α-ketoglutarate to their respective α-keto acids and glutamate. hBCAT activity is regulated by a CXXC center located approximately 10 Å from the active site. This redox-active center facilitates recycling between the reduced and oxidized states, representing hBCAT in its active and inactive forms, respectively. Site-directed mutagenesis of the redox sensor (Cys315) results in a significant loss of activity, with no loss of activity reported on the mutation of the resolving cysteine (Cys318), which allows the reversible formation of a disulfide bond between Cys315 and Cys318. The crystal structure of the oxidized form of the C318A variant was used to better understand the contributions of the individual cysteines and their oxidation states. The structure reveals the modified CXXC center in a conformation similar to that in the oxidized wild type, supporting the notion that its regulatory mechanism depends on switching the Cys315 side chain between active and inactive conformations. Moreover, the structure reveals conformational differences in the N-terminal and inter-domain region that may correlate with the inactivated state of the CXXC center. Full Article text
idi Smithsonian Scientist Discovers Two New Bat Species Hiding in Museum Collections for More Than 150 Years By insider.si.edu Published On :: Wed, 29 Jul 2009 14:15:17 +0000 While studying bats recently at the Academy of Natural Sciences in Philadelphia, Smithsonian mammalogist Kristofer Helgen discovered a new species of flying fox bat from […] The post Smithsonian Scientist Discovers Two New Bat Species Hiding in Museum Collections for More Than 150 Years appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature bats collections extinction National Museum of Natural History new species
idi Rising acidification of estuary waters spells trouble for Chesapeake Bay oysters By insider.si.edu Published On :: Wed, 12 Aug 2009 19:34:29 +0000 Already under siege from overfishing, disease and poor water quality, the oyster population in the Chesapeake Bay today stands at 2 percent of what it was in colonial times. Now, new data show that rising acidity in the Bay will have a negative impact on oyster shells. The post Rising acidification of estuary waters spells trouble for Chesapeake Bay oysters appeared first on Smithsonian Insider. Full Article Animals Marine Science Research News Science & Nature biodiversity Chesapeake Bay climate change conservation biology ocean acidification Smithsonian Environmental Research Center
idi Captive colony of Virginia big-eared bats providing valuable lessons in battle against deadly white-nose syndrome By insider.si.edu Published On :: Sat, 06 Mar 2010 10:15:28 +0000 Eleven bats remain in the National Zoo’s colony. The initial challenge the team faced was how to feed the animals. Virginia big-eared bats, which are a subspecies of the Townsend’s big-eared bat (Corynorhinuss townsendii), eat while flying. The post Captive colony of Virginia big-eared bats providing valuable lessons in battle against deadly white-nose syndrome appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature bats biodiversity conservation conservation biology endangered species extinction Smithsonian's National Zoo
idi Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals By insider.si.edu Published On :: Mon, 24 Jan 2011 17:43:02 +0000 A recent experiment by scientists at the Smithsonian Tropical Research Institute in Panama has revealed just how rising atmospheric carbon dioxide will deliver a one-two […] The post Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals appeared first on Smithsonian Insider. Full Article Marine Science Research News Science & Nature biodiversity carbon dioxide climate change coral reefs ocean acidification Tropical Research Institute
idi “Billy club” leaf beetle has been hiding in Smithsonian collections since 1959 By insider.si.edu Published On :: Wed, 16 Feb 2011 15:56:23 +0000 A new species of Brazilian leaf beetle named Cachiporra extremaglobosa, (which translated means the “extremely globular billy club leaf beetle,”) was recently discovered by scientists at the Smithsonian’s National Museum of Natural History. The post “Billy club” leaf beetle has been hiding in Smithsonian collections since 1959 appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity insects National Museum of Natural History
idi Oysters on floating plates help scientists study acidification and shell growth By insider.si.edu Published On :: Mon, 28 Mar 2011 18:57:26 +0000 A team of scientists from the Smithsonian Environmental Research Center in Edgewater, Md., is taking a closer look at how rising acidification of ocean water may be impacting estuaries and near shore environments on the Chesapeake Bay The post Oysters on floating plates help scientists study acidification and shell growth appeared first on Smithsonian Insider. Full Article Marine Science Research News Science & Nature carbon dioxide Chesapeake Bay climate change conservation conservation biology endangered species ocean acidification Smithsonian Environmental Research Center
idi Lofty experiments with gliding ants reveals secrets of their unusual flight By insider.si.edu Published On :: Mon, 13 Jun 2011 19:17:26 +0000 One of the most challenging aspects of this research is simply studying these insects as they are falling, says Yanoviak, a tropical arthropod ecologist at the University of Arkansas, Little Rock. Small body size, rapid descent, and the long distances that they can fall, make accurate data taking a challenge. The post Lofty experiments with gliding ants reveals secrets of their unusual flight appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature insects South America Tropical Research Institute
idi Genetic study confirms American crocodiles and critically endangered Cuban crocodiles are hybridizing in the wild By insider.si.edu Published On :: Wed, 22 Jun 2011 17:36:07 +0000 A new genetic study by a team of Cuban and American researchers confirms that American crocodiles are hybridizing with wild populations of critically endangered Cuban crocodiles, which may cause a population decline of this species found only in the Cuban Archipelago. The post Genetic study confirms American crocodiles and critically endangered Cuban crocodiles are hybridizing in the wild appeared first on Smithsonian Insider. Full Article Research News Science & Nature conservation conservation biology crocodiles endangered species extinction reptiles Smithsonian's National Zoo South America Tropical Research Institute