disease

AHA News: Statins May Do Double Duty on Heart Disease and Cancer

Title: AHA News: Statins May Do Double Duty on Heart Disease and Cancer
Category: Health News
Created: 1/6/2020 12:00:00 AM
Last Editorial Review: 1/7/2020 12:00:00 AM




disease

Peyronie's Disease (Curvature of the Penis)

Title: Peyronie's Disease (Curvature of the Penis)
Category: Diseases and Conditions
Created: 11/14/2002 12:00:00 AM
Last Editorial Review: 12/5/2019 12:00:00 AM




disease

Fabry Disease

Title: Fabry Disease
Category: Diseases and Conditions
Created: 12/31/1997 12:00:00 AM
Last Editorial Review: 4/2/2020 12:00:00 AM




disease

Some NFL Players May Be Misdiagnosed With Brain Disease: Study

Title: Some NFL Players May Be Misdiagnosed With Brain Disease: Study
Category: Health News
Created: 4/27/2020 12:00:00 AM
Last Editorial Review: 4/28/2020 12:00:00 AM




disease

Welcome to the 'Smart Toilet' That Can Spot Disease

Title: Welcome to the 'Smart Toilet' That Can Spot Disease
Category: Health News
Created: 4/17/2020 12:00:00 AM
Last Editorial Review: 4/17/2020 12:00:00 AM




disease

Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases [Thematic Reviews]

Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis.




disease

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




disease

Collaborative Cross Mice Yield Genetic Modifiers for Pseudomonas aeruginosa Infection in Human Lung Disease

ABSTRACT

Human genetics influence a range of pathological and clinical phenotypes in respiratory infections; however, the contributions of disease modifiers remain underappreciated. We exploited the Collaborative Cross (CC) mouse genetic-reference population to map genetic modifiers that affect the severity of Pseudomonas aeruginosa lung infection. Screening for P. aeruginosa respiratory infection in a cohort of 39 CC lines exhibits distinct disease phenotypes ranging from complete resistance to lethal disease. Based on major changes in the survival times, a quantitative-trait locus (QTL) was mapped on murine chromosome 3 to the genomic interval of Mb 110.4 to 120.5. Within this locus, composed of 31 protein-coding genes, two candidate genes, namely, dihydropyrimidine dehydrogenase (Dpyd) and sphingosine-1-phosphate receptor 1 (S1pr1), were identified according to the level of genome-wide significance and disease gene prioritization. Functional validation of the S1pr1 gene by pharmacological targeting in C57BL/6NCrl mice confirmed its relevance in P. aeruginosa pathophysiology. However, in a cohort of Canadian patients with cystic fibrosis (CF) disease, regional genetic-association analysis of the syntenic human locus on chromosome 1 (Mb 97.0 to 105.0) identified two single-nucleotide polymorphisms (rs10875080 and rs11582736) annotated to the Dpyd gene that were significantly associated with age at first P. aeruginosa infection. Thus, there is evidence that both genes might be implicated in this disease. Our results demonstrate that the discovery of murine modifier loci may generate information that is relevant to human disease progression.

IMPORTANCE Respiratory infection caused by P. aeruginosa is one of the most critical health burdens worldwide. People affected by P. aeruginosa infection include patients with a weakened immune system, such as those with cystic fibrosis (CF) genetic disease or non-CF bronchiectasis. Disease outcomes range from fatal pneumonia to chronic life-threatening infection and inflammation leading to the progressive deterioration of pulmonary function. The development of these respiratory infections is mediated by multiple causes. However, the genetic factors underlying infection susceptibility are poorly known and difficult to predict. Our study employed novel approaches and improved mouse disease models to identify genetic modifiers that affect the severity of P. aeruginosa lung infection. We identified candidate genes to enhance our understanding of P. aeruginosa infection in humans and provide a proof of concept that could be exploited for other human pathologies mediated by bacterial infection.




disease

Global Transcriptome Analysis Identifies a Diagnostic Signature for Early Disseminated Lyme Disease and Its Resolution

ABSTRACT

A bioinformatics approach was employed to identify transcriptome alterations in the peripheral blood mononuclear cells of well-characterized human subjects who were diagnosed with early disseminated Lyme disease (LD) based on stringent microbiological and clinical criteria. Transcriptomes were assessed at the time of presentation and also at approximately 1 month (early convalescence) and 6 months (late convalescence) after initiation of an appropriate antibiotic regimen. Comparative transcriptomics identified 335 transcripts, representing 233 unique genes, with significant alterations of at least 2-fold expression in acute- or convalescent-phase blood samples from LD subjects relative to healthy donors. Acute-phase blood samples from LD subjects had the largest number of differentially expressed transcripts (187 induced, 54 repressed). This transcriptional profile, which was dominated by interferon-regulated genes, was sustained during early convalescence. 6 months after antibiotic treatment the transcriptome of LD subjects was indistinguishable from that of healthy controls based on two separate methods of analysis. Return of the LD expression profile to levels found in control subjects was concordant with disease outcome; 82% of subjects with LD experienced at least one symptom at the baseline visit compared to 43% at the early convalescence time point and only a single patient (9%) at the 6-month convalescence time point. Using the random forest machine learning algorithm, we developed an efficient computational framework to identify sets of 20 classifier genes that discriminated LD from other bacterial and viral infections. These novel LD biomarkers not only differentiated subjects with acute disseminated LD from healthy controls with 96% accuracy but also distinguished between subjects with acute and resolved (late convalescent) disease with 97% accuracy.

IMPORTANCE Lyme disease (LD), caused by Borrelia burgdorferi, is the most common tick-borne infectious disease in the United States. We examined gene expression patterns in the blood of individuals with early disseminated LD at the time of diagnosis (acute) and also at approximately 1 month and 6 months following antibiotic treatment. A distinct acute LD profile was observed that was sustained during early convalescence (1 month) but returned to control levels 6 months after treatment. Using a computer learning algorithm, we identified sets of 20 classifier genes that discriminate LD from other bacterial and viral infections. In addition, these novel LD biomarkers are highly accurate in distinguishing patients with acute LD from healthy subjects and in discriminating between individuals with active and resolved infection. This computational approach offers the potential for more accurate diagnosis of early disseminated Lyme disease. It may also allow improved monitoring of treatment efficacy and disease resolution.




disease

A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner

ABSTRACT

Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund’s adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.

IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.




disease

Levodopa-induced dyskinesia in dementia with Lewy bodies and Parkinson disease with dementia

Objective

To investigate the frequency of levodopa-induced dyskinesia in dementia with Lewy bodies (DLBs) and Parkinson disease with dementia (PDD) and compare these frequencies with patients with incident Parkinson disease (PD) through a population-based cohort study.

Methods

We identified all patients with DLB, PDD, and PD without dementia in a 1991–2010 population-based parkinsonism-incident cohort, in Olmsted County, Minnesota. We abstracted information about levodopa-induced dyskinesia. We compared patients with DLB and PDD with dyskinesia with patients with PD from the same cohort.

Results

Levodopa use and dyskinesia data were available for 141/143 (98.6%) patients with a diagnosis of either DLB or PDD; 87 (61.7%), treated with levodopa. Dyskinesia was documented in 12.6% (8 DLB and 3 PDD) of levodopa-treated patients. Among these patients, median parkinsonism diagnosis age was 74 years (range: 64–80 years); 63.6%, male. The median interval from levodopa initiation to dyskinesia onset was 2 years (range: 3 months–4 years); the median daily levodopa dosage was 600 mg (range: 50–1,600 mg). Dyskinesia severity led to levodopa adjustments in 5 patients, and all improved. Patients with dyskinesia were diagnosed with parkinsonism at a significantly younger age compared with patients without dyskinesia (p < 0.001). Levodopa dosage was unrelated to increased risk of dyskinesias among DLB and PDD. In contrast, 30.1% of levodopa-treated patients with PD developed dyskinesia. In age-, sex-, and levodopa dosage–adjusted models, Patients with DLB and PDD each had lower odds of developing dyskinesia than patients with PD (odds ratio = 0.42, 95% CI 0.21–0.88; p = 0.02).

Conclusions

The dyskinesia risk for levodopa-treated patients with DLB or PDD was substantially less than for levodopa-treated patients with PD.




disease

Cerebral venous thrombosis: Associations between disease severity and cardiac markers

Background

Plasma cardiac troponin (cTn) elevation occurs in acute ischemic stroke and intracranial hemorrhage and can suggest a poor prognosis. Because acute cerebral venous thrombosis (CVT) might lead to venous stasis, which could result in cardiac stress, it is important to evaluate whether cTn elevation occurs in patients with CVT.

Methods

Inpatients at Johns Hopkins Hospital from 2005 to 2015 meeting the following criteria were included: CVT (ICD-9 codes with radiologic confirmation) and available admission electrocardiogram (ECG) and cTn level. In regression models, presence of ECG abnormalities and cTn elevation (>0.06 ng/mL) were evaluated as dependent variables in separate models, with location and severity of CVT involvement as independent variables, adjusted for age, sex, and hypertension.

Results

Of 81 patients with CVST, 53 (66%) met the inclusion criteria. Participants were, on average, aged 42 years, white (71%), and female (66%). The left transverse sinus was most commonly thrombosed (47%), with 66% having >2 veins thrombosed. Twenty-two (41%) had cTn elevation. Odds of cTn elevation increased per each additional vein thrombosed (adjusted OR 2.79, 95% CI [1.08–7.23]). Of those with deep venous involvement, 37.5% had cTn elevation compared with 4.4% without deep clots (p = 0.02). Venous infarction (n = 15) was associated with a higher mean cTn (0.14 vs 0.02 ng/mL, p = 0.009) and was predictive of a higher cTn in adjusted models (β = 0.15, 95% CI [0.06–0.25]).

Conclusions

In this single-center cohort study, markers of CVT severity were associated with increased odds of cTn elevation; further investigation is needed to elucidate causality and significance.




disease

Author response: Symptom burden among individuals with Parkinson disease: A national survey

We appreciate the readers' comments on the prevalence and impact of apathy on quality of life among individuals with Parkinson disease. In constructing our survey instrument, we discussed the inclusion of apathy as a symptom. However, we ultimately opted against inclusion because of concerns about the specificity of terminology in our online survey. Patients and care partners may not be familiar with the term "apathy,"and near-synonyms such as "reduced motivation" have substantial overlap with other nonmotor features. Still, as the readers point out, apathy is extremely common and under-recognized. Similar to many of the nonmotor symptoms identified in our study,1 we agree that clinicians should be screening for apathy among those with Parkinson disease.




disease

Reader response: Symptom burden among individuals with Parkinson disease: A national survey

We read with great interest the study by Tarolli et al.,1 which explored the burden of disease in Parkinson disease (PD) by evaluating the prevalence of nonmotor symptoms and their association with quality of life. The authors selected nonmotor symptoms based on literature review, expert opinions, and patient interviews. We note that apathy, which has major consequences for patients and carers, was not included as a relevant nonmotor symptom in their study. We performed a subcohort analysis of 60 patients from a study of pain in PD in 110 outpatients (PaCoMo-study, registered trial number: NL6311402917 [toetsingonline.nl]). We retrospectively reviewed the medical records to check whether the clinician identified apathy in these patients in the previous year, which was the case in 15% of the patients (n = 9). Blind to those results, patients were examined with the Apathy Scale (AS).2 In total, 63.3% (n = 38) of the patients scored positive on the AS. Only 18.4% of the patients who scored positive on the AS were also classified or mentioned with apathy in the medical records by clinicians.




disease

Leishmania donovani Subverts Host Immune Response by Epigenetic Reprogramming of Macrophage M(Lipopolysaccharides + IFN-{gamma})/M(IL-10) Polarization [INFECTIOUS DISEASE AND HOST RESPONSE]

Key Points

  • L. donovani induces histone lysine methyltransferases/demethylases in the host.

  • L. donovani–induced epigenetic enzymes induce host M(IL-10) polarization.

  • Knockdown of epigenetic enzymes inhibited parasite multiplication in infected host.




    disease

    T Follicular Helper Cells Regulate Humoral Response for Host Protection against Intestinal Citrobacter rodentium Infection [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Lack of Tfh cells renders the mice susceptible to C. rodentium infection.

  • Tfh cell–dependent protective Abs are essential to control C. rodentium.

  • Tfh cells regulate IgG1 response to C. rodentium infection.




    disease

    Development and Characterization of an Avirulent Leishmania major Strain [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Virulent and avirulent parasites significantly differ in their proteome profiles.

  • Avirulent parasites fail to inhibit CD40 signaling.

  • Avirulent parasite strain is a potential antileishmanial vaccine candidate.




    disease

    Cytomegalovirus Coinfection Is Associated with Increased Vascular-Homing CD57+ CD4 T Cells in HIV Infection [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • CMV coinfection promotes the generation of CD57+ CD4 Tmem in PLWH.

  • CD2/LFA-3 costimulation enhances the functionality of CD57+ CD4 Tmem.

  • IL-15 and TNF enhance chemoattraction of CD57+ CD4 Tmem to CX3CL1+ endothelial cells.




    disease

    Complexes between C-Reactive Protein and Very Low Density Lipoprotein Delay Bacterial Clearance in Sepsis [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Kupffer cells phagocytose both bacteria and CRP–VLDL complexes.

  • High levels of CRP–VLDL complexes delay bacterial clearance.

  • Pch disrupts CRP–VLDL complexes to improve bacterial clearance.




    disease

    The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease [Microbial Immunity and Vaccines]

    The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine.




    disease

    Heterogeneous Nuclear Ribonucleoprotein L Negatively Regulates Foot-and-Mouth Disease Virus Replication through Inhibition of Viral RNA Synthesis by Interacting with the Internal Ribosome Entry Site in the 5' Untranslated Region [Virus-Cell Interactio

    Upon infection, the highly structured 5' untranslated region (5' UTR) of picornavirus is involved in viral protein translation and RNA synthesis. As a critical element in the 5' UTR, the internal ribosome entry site (IRES) binds to various cellular proteins to function in the processes of picornavirus replication. Foot-and-mouth disease virus (FMDV) is an important member in the family Picornaviridae, and its 5' UTR contains a functional IRES element. In this study, the cellular heterogeneous nuclear ribonucleoprotein L (hnRNP L) was identified as an IRES-binding protein for FMDV by biotinylated RNA pulldown assays, mass spectrometry (MS) analysis, and determination of hnRNP L-IRES interaction regions. Further, we found that hnRNP L inhibited the growth of FMDV through binding to the viral IRES and that the inhibitory effect of hnRNP L on FMDV growth was not due to FMDV IRES-mediated translation, but to influence on viral RNA synthesis. Finally, hnRNP L was demonstrated to coimmunoprecipitate with RNA-dependent RNA polymerase (3Dpol) in an FMDV RNA-dependent manner in the infected cells. Thus, our results suggest that hnRNP L, as a critical IRES-binding protein, negatively regulates FMDV replication by inhibiting viral RNA synthesis, possibly by remaining in the replication complex.

    IMPORTANCE Picornaviruses, as a large family of human and animal pathogens, cause a bewildering array of disease syndromes. Many host factors are implicated in the pathogenesis of these viruses, and some proteins interact with the viral IRES elements to affect function. Here, we report for the first time that cellular hnRNP L specifically interacts with the IRES of the picornavirus FMDV and negatively regulates FMDV replication through inhibiting viral RNA synthesis. Further, our results showed that hnRNP L coimmunoprecipitates with FMDV 3Dpol in a viral RNA-dependent manner, suggesting that it may remain in the replication complex to function. The data presented here would facilitate further understanding of virus-host interactions and the pathogenesis of picornavirus infections.




    disease

    NF-{kappa}B and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection [Pathogenesis and Immunity]

    The rabbit hemorrhagic disease virus (RHDV), which belongs to the family Caliciviridae and the genus Lagovirus, causes lethal fulminant hepatitis in rabbits. RHDV decreases the activity of antioxidant enzymes regulated by Nrf2 in the liver. Antioxidants are important for the maintenance of cellular integrity and cytoprotection. However, the mechanism underlying the regulation of the Nrf2-antioxidant response element (ARE) signaling pathway by RHDV remains unclear. Using isobaric tags for relative and absolute quantification (iTRAQ) technology, the current study demonstrated that RHDV inhibits the induction of ARE-regulated genes and increases the expression of the p50 subunit of the NF-B transcription factor. We showed that RHDV replication causes a remarkable increase in reactive oxygen species (ROS), which is simultaneously accompanied by a significant decrease in Nrf2. It was found that nuclear translocation of Keap1 plays a key role in the nuclear export of Nrf2, leading to the inhibition of Nrf2 transcriptional activity. The p50 protein partners with Keap1 to form the Keap1-p50/p65 complex, which is involved in the nuclear translocation of Keap1. Moreover, upregulation of Nrf2 protein levels in liver cell nuclei by tert-butylhydroquinone (tBHQ) delayed rabbit deaths due to RHDV infection. Considered together, our findings suggest that RHDV inhibits the Nrf2-dependent antioxidant response via nuclear translocation of Keap1-NF-B complex and nuclear export of Nrf2 and provide new insight into the importance of oxidative stress during RHDV infection.

    IMPORTANCE Recent studies have reported that rabbit hemorrhagic disease virus (RHDV) infection reduced Nrf2-related antioxidant function. However, the regulatory mechanisms underlying this process remain unclear. The current study showed that the NF-B p50 subunit partners with Keap1 to form the Keap1-NF-B complex, which plays a key role in the inhibition of Nrf2 transcriptional activity. More importantly, upregulated Nrf2 activity delayed the death of RHDV-infected rabbits, strongly indicating the importance of oxidative damage during RHDV infection. These findings may provide novel insights into the pathogenesis of RHDV.




    disease

    Inhaled Corticosteroid Treatment in Chronic Obstructive Pulmonary Disease (COPD): Boon or Bane?

    Inhaled corticosteroid (ICS)–based therapy is often used for patients with chronic obstructive pulmonary disease (COPD). However, this approach is under scrutiny because of ICS overuse in patients for whom it is not recommended and because of concerns about adverse events, particularly pneumonia, with long-term ICS use. Evidence suggests ICS may be beneficial in specific patients, namely, those with high blood eosinophil counts (eg, ≥300 cells/µL) or who are at a high risk of exacerbations. According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2020 ABCD assessment tool, these patients belong in group D. For these patients, recommended initial treatment includes ICS in combination with long-acting β2-agonists (LABAs) when blood eosinophil counts are ≥300 cells/µL or LABA + long-acting muscarinic antagonist (LAMA) when patients are highly symptomatic, that is, with greater dyspnea and/or exercise limitation. Follow-up treatments for patients with persistent dyspnea and/or exacerbations may include LABA + ICS, LABA + LAMA, or LABA + LAMA + ICS, with use of ICS being guided by blood eosinophil counts. In this review, differences in the inflammatory mechanism underlying COPD and asthma and the role of ICS treatment in COPD are summarized. Furthermore, findings from recent clinical trials where use of ICS-based dual or triple therapy in COPD was compared with LABA + LAMA therapy and trials in which ICS withdrawal was evaluated in patients with COPD are reviewed. Finally, a step-by-step guide for ICS withdrawal in patients who are unlikely to benefit from this treatment is proposed. A video of the author discussing the overall takeaway of the review article could be downloaded from the link provided: https://www.youtube.com/watch?v=Uq7Sr5jqPDI.




    disease

    Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease

    Background

    The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression.

    Method

    To explore how STAT3 intersects with cilia signaling, renal inflammation, and cyst growth, we used conditional murine models involving postdevelopmental ablation of Pkd1, Stat3, and cilia, as well as cultures of cilia-deficient or STAT3-deficient tubular cell lines.

    Results

    Our findings indicate that, although primary cilia directly modulate STAT3 activation in vitro, the bulk of STAT3 activation in polycystic kidneys occurs through an indirect mechanism in which primary cilia trigger macrophage recruitment to the kidney, which in turn promotes Stat3 activation. Surprisingly, although inactivating Stat3 in Pkd1-deficient tubules slightly reduced cyst burden, it resulted in a massive infiltration of the cystic kidneys by macrophages and T cells, precluding any improvement of kidney function. We also found that Stat3 inactivation led to increased expression of the inflammatory chemokines CCL5 and CXCL10 in polycystic kidneys and cultured tubular cells.

    Conclusions

    STAT3 appears to repress the expression of proinflammatory cytokines and restrict immune cell infiltration in ADPKD. Our findings suggest that STAT3 is not a critical driver of cyst growth in ADPKD but rather plays a major role in the crosstalk between immune and tubular cells that shapes disease expression.




    disease

    {alpha}-Synuclein filaments from transgenic mouse and human synucleinopathy-containing brains are ma&#x0237;or seed-competent species [Molecular Bases of Disease]

    Assembled α-synuclein in nerve cells and glial cells is the defining pathological feature of neurodegenerative diseases called synucleinopathies. Seeds of α-synuclein can induce the assembly of monomeric protein. Here, we used sucrose gradient centrifugation and transiently transfected HEK 293T cells to identify the species of α-synuclein from the brains of homozygous, symptomatic mice transgenic for human mutant A53T α-synuclein (line M83) that seed aggregation. The most potent fractions contained Sarkosyl-insoluble assemblies enriched in filaments. We also analyzed six cases of idiopathic Parkinson's disease (PD), one case of familial PD, and six cases of multiple system atrophy (MSA) for their ability to induce α-synuclein aggregation. The MSA samples were more potent than those of idiopathic PD in seeding aggregation. We found that following sucrose gradient centrifugation, the most seed-competent fractions from PD and MSA brains are those that contain Sarkosyl-insoluble α-synuclein. The fractions differed between PD and MSA, consistent with the presence of distinct conformers of assembled α-synuclein in these different samples. We conclude that α-synuclein filaments are the main driving force for amplification and propagation of pathology in synucleinopathies.




    disease

    Non-photopic and photopic visual cycles differentially regulate immediate, early, and late phases of cone photoreceptor-mediated vision [Molecular Bases of Disease]

    Cone photoreceptors in the retina enable vision over a wide range of light intensities. However, the processes enabling cone vision in bright light (i.e. photopic vision) are not adequately understood. Chromophore regeneration of cone photopigments may require the retinal pigment epithelium (RPE) and/or retinal Müller glia. In the RPE, isomerization of all-trans-retinyl esters to 11-cis-retinol is mediated by the retinoid isomerohydrolase Rpe65. A putative alternative retinoid isomerase, dihydroceramide desaturase-1 (DES1), is expressed in RPE and Müller cells. The retinol-isomerase activities of Rpe65 and Des1 are inhibited by emixustat and fenretinide, respectively. Here, we tested the effects of these visual cycle inhibitors on immediate, early, and late phases of cone photopic vision. In zebrafish larvae raised under cyclic light conditions, fenretinide impaired late cone photopic vision, while the emixustat-treated zebrafish unexpectedly had normal vision. In contrast, emixustat-treated larvae raised under extensive dark-adaptation displayed significantly attenuated immediate photopic vision concomitant with significantly reduced 11-cis-retinaldehyde (11cRAL). Following 30 min of light, early photopic vision was recovered, despite 11cRAL levels remaining significantly reduced. Defects in immediate cone photopic vision were rescued in emixustat- or fenretinide-treated larvae following exogenous 9-cis-retinaldehyde supplementation. Genetic knockout of Des1 (degs1) or retinaldehyde-binding protein 1b (rlbp1b) did not eliminate photopic vision in zebrafish. Our findings define molecular and temporal requirements of the nonphotopic or photopic visual cycles for mediating vision in bright light.




    disease

    Reactive dicarbonyl compounds cause Calcitonin Gene-Related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum [Molecular Bases of Disease]

    The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene–Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease.




    disease

    Brain manganese and the balance between essential roles and neurotoxicity [Molecular Bases of Disease]

    Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity.




    disease

    Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease]

    Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC.




    disease

    Neonatal Management During the Coronavirus Disease (COVID-19) Outbreak: The Chinese Experience




    disease

    Single-cycle rituximab-induced immunologic changes in children: Enhanced in neuroimmunologic disease?

    Objective

    To investigate the immunologic impact of a single cycle of rituximab (RTX) in children and adolescents with immune-mediated disorders, we evaluated B cells and immunoglobulin levels of 20 patients with neuroimmunologic, nephrologic, dermatologic, and rheumatologic disorders treated under recommended guidelines.

    Methods

    Retrospective study of immunologic changes in children (aged ≤18 years) diagnosed with immune-mediated disorders in which RTX was prescribed between June 2014 and February 2019. Patients were excluded if they had prior diagnosis of malignant disease or primary immunodeficiency. Patients were clinically and immunologically followed up every 3 months. Only patients having received a single cycle of RTX and with a follow-up greater than 12 months were included in the analysis of persistent dysgammaglobulinemia.

    Results

    Twenty children were included. Median age at RTX treatment was 12.8 years (interquartile range [IQR] 6.6–15.5 years). Median follow-up was 12.6 months (IQR 10.2–24 months). Of the 14 patients eligible for persistent dysgammaglobulinemia analysis (3 had received RTX retreatment, 2 had <12 months post-RTX follow-up, and in 1 data for this time point was missing), 2/14 (14%) remained with complete B-cell depletion, and 5/14 (36%) had dysgammaglobulinemia. Patients with dysgammaglobulinemia were younger (7.8 vs 15.6 years, p = 0.072), had more underlying neuroimmunologic diseases (5/5 vs 0/9, p < 0.001), and had received more frequently concentrated doses of RTX (3/5 vs 1/9, p = 0.05) than patients without dysgammaglobulinemia. Kinetics of immunoglobulins in the 20 patients revealed a decrease as early as 3 months after RTX in patients with neuroimmunologic disorders.

    Conclusion

    In our cohort, single-cycle RTX-induced dysgammaglobulinemia was enhanced in patients with neuroimmunologic diseases. Further studies are needed to confirm this observation.




    disease

    Monitoring of radiologic disease activity by serum neurofilaments in MS

    Objective

    To determine whether serum neurofilament light chain (sNfL) levels are associated with recent MRI activity in patients with relapsing-remitting MS (RRMS).

    Methods

    This observational study included 163 patients (405 samples) with early RRMS from the Study of Early interferon-beta1a (IFN-β1a) Treatment (SET) cohort and 179 patients (664 samples) with more advanced RRMS from the Genome-Wide Association Study of Multiple Sclerosis (GeneMSA) cohort. Based on annual brain MRI, we assessed the ability of sNfL cutoffs to reflect the presence of combined unique active lesions, defined as new/enlarging lesion compared with MRI in the preceding year or contrast-enhancing lesion. The probability of active MRI lesions among patients with different sNfL levels was estimated with generalized estimating equations models.

    Results

    From the sNfL samples ≥90th percentile, 81.6% of the SET (OR = 3.4, 95% CI = 1.8-6.4) and 48.9% of the GeneMSA cohort samples (OR = 2.6, 95% CI = 1.7-3.9) was associated with radiological disease activity on MRI. The sNfL level between the 10th and 30th percentile was reflective of negligible MRI activity: 1.4% (SET) and 6.5% (GeneMSA) of patients developed ≥3 active lesions, 5.8% (SET) and 6.5% (GeneMSA) developed ≥2 active lesions, and 34.8% (SET) and 11.8% (GeneMSA) showed ≥1 active lesion on brain MRI. The sNfL level <10th percentile was associated with even lower MRI activity. Similar results were found in a subgroup of clinically stable patients.

    Conclusions

    Low sNfL levels (≤30th percentile) help identify patients with MS with very low probability of recent radiologic disease activity during the preceding year. This result suggests that in future, sNfL assessment may substitute the need for annual brain MRI monitoring in considerable number (23.1%–36.4%) of visits in clinically stable patients.




    disease

    A Fully Automated Multiplex Assay for Diagnosis of Lyme Disease with High Specificity and Improved Early Sensitivity [Immunoassays]

    Lyme borreliosis is a tick-borne disease caused by the Borrelia burgdorferi sensu lato complex. Bio-Rad Laboratories has developed a fully automated multiplex bead-based assay for the detection of IgM and IgG antibodies to B. burgdorferi. The BioPlex 2200 Lyme Total assay exhibits an improved rate of seropositivity in patients with early Lyme infection. Asymptomatic subjects from endemic and nonendemic origins demonstrated a seroreactivity rate of approximately 4% that was similar to other commercial assays evaluated in this study. Coupled to this result was the observation that the Lyme Total assay retained a high first-tier specificity of 96% while demonstrating a relatively high sensitivity of 91% among a well-characterized CDC Premarketing Lyme serum panel. The Lyme Total assay also performs well under a modified two-tier algorithm (sensitivity, 84.4 to 88.9%; specificity, 98.4 to 99.5%). Furthermore, the new assay is able to readily detect early Lyme infection in patient samples from outside North America.




    disease

    Impact of Changes in Clinical Microbiology Laboratory Location and Ownership on the Practice of Infectious Diseases [Epidemiology]

    The number of onsite clinical microbiology laboratories in hospitals is decreasing, likely related to the business model for laboratory consolidation and labor shortages, and this impacts a variety of clinical practices, including that of banking isolates for clinical or epidemiologic purposes. To determine the impact of these trends, infectious disease (ID) physicians were surveyed regarding their perceptions of offsite services. Clinical microbiology practices for retention of clinical isolates for future use were also determined. Surveys were sent to members of the Infectious Diseases Society of America’s (IDSA) Emerging Infections Network (EIN). The EIN is a sentinel network of ID physicians who care for adult and/or pediatric patients in North America and who are members of IDSA. The response rate was 763 (45%) of 1,680 potential respondents. Five hundred forty (81%) respondents reported interacting with the clinical microbiology laboratory. Eighty-six percent of respondents thought an onsite laboratory very important for timely diagnostic reporting and ongoing communication with the clinical microbiologist. Thirty-five percent practiced in institutions where the core microbiology laboratory has been moved offsite, and an additional 7% (n = 38) reported that movement of core laboratory functions offsite was being considered. The respondents reported that only 24% of laboratories banked all isolates, with the majority saving isolates for less than 30 days. Based on these results, the trend toward centralized core laboratories negatively impacts the practice of ID physicians, potentially delays effective implementation of prompt and targeted care for patients with serious infections, and similarly adversely impacts infection control epidemiologic investigations.




    disease

    Pharmacy-Based Infectious Disease Management Programs Incorporating CLIA-Waived Point-of-Care Tests [Minireviews]

    There are roughly 48,000 deaths caused by influenza annually and an estimated 200,000 people who have undiagnosed human immunodeficiency virus (HIV). These are examples of acute and chronic illnesses that can be identified by employing a CLIA-waived test. Pharmacies across the country have been incorporating CLIA-waived point-of-care tests (POCT) into disease screening and management programs offered in the pharmacy. The rationale behind these programs is discussed. Additionally, a summary of clinical data for some of these programs in the infectious disease arena is provided. Finally, we discuss the future potential for CLIA-waived POCT-based programs in community pharmacies.




    disease

    Leveraging mouse chromatin data for heritability enrichment informs common disease architecture and reveals cortical layer contributions to schizophrenia [RESEARCH]

    Genome-wide association studies have implicated thousands of noncoding variants across common human phenotypes. However, they cannot directly inform the cellular context in which disease-associated variants act. Here, we use open chromatin profiles from discrete mouse cell populations to address this challenge. We applied stratified linkage disequilibrium score regression and evaluated heritability enrichment in 64 genome-wide association studies, emphasizing schizophrenia. We provide evidence that mouse-derived human open chromatin profiles can serve as powerful proxies for difficult to obtain human cell populations, facilitating the illumination of common disease heritability enrichment across an array of human phenotypes. We demonstrate that signatures from discrete subpopulations of cortical excitatory and inhibitory neurons are significantly enriched for schizophrenia heritability with maximal enrichment in cortical layer V excitatory neurons. We also show that differences between schizophrenia and bipolar disorder are concentrated in excitatory neurons in cortical layers II-III, IV, and V, as well as the dentate gyrus. Finally, we leverage these data to fine-map variants in 177 schizophrenia loci nominating variants in 104/177. We integrate these data with transcription factor binding site, chromatin interaction, and validated enhancer data, placing variants in the cellular context where they may modulate risk.




    disease

    Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease [Review Articles]

    The solute carrier family 16 (SLC16) is comprised of 14 members of the monocarboxylate transporter (MCT) family that play an essential role in the transport of important cell nutrients and for cellular metabolism and pH regulation. MCTs 1–4 have been extensively studied and are involved in the proton-dependent transport of L-lactate, pyruvate, short-chain fatty acids, and monocarboxylate drugs in a wide variety of tissues. MCTs 1 and 4 are overexpressed in a number of cancers, and current investigations have focused on transporter inhibition as a novel therapeutic strategy in cancers. MCT1 has also been used in strategies aimed at enhancing drug absorption due to its high expression in the intestine. Other MCT isoforms are less well characterized, but ongoing studies indicate that MCT6 transports xenobiotics such as bumetanide, nateglinide, and probenecid, whereas MCT7 has been characterized as a transporter of ketone bodies. MCT8 and MCT10 transport thyroid hormones, and recently, MCT9 has been characterized as a carnitine efflux transporter and MCT12 as a creatine transporter. Expressed at the blood brain barrier, MCT8 mutations have been associated with an X-linked intellectual disability, known as Allan-Herndon-Dudley syndrome. Many MCT isoforms are associated with hormone, lipid, and glucose homeostasis, and recent research has focused on their potential roles in disease, with MCTs representing promising novel therapeutic targets. This review will provide a summary of the current literature focusing on the characterization, function, and regulation of the MCT family isoforms and on their roles in drug disposition and in health and disease.

    Significance Statement

    The 14-member solute carrier family 16 of monocarboxylate transporters (MCTs) plays a fundamental role in maintaining intracellular concentrations of a broad range of important endogenous molecules in health and disease. MCTs 1, 2, and 4 (L-lactate transporters) are overexpressed in cancers and represent a novel therapeutic target in cancer. Recent studies have highlighted the importance of MCTs in glucose, lipid, and hormone homeostasis, including MCT8 in thyroid hormone brain uptake, MCT12 in carnitine transport, and MCT11 in type 2 diabetes.




    disease

    Prognostic impact of pre-existing interstitial lung disease in non-HIV patients with Pneumocystis pneumonia

    Background

    The increasing incidence of life-threatening Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients is a global concern. Yet, no reports have examined the prognostic significance of pre-existing interstitial lung disease (ILD) in non-HIV PCP.

    Methods

    We retrospectively reviewed the medical records of non-HIV PCP patients with (ILD group) or without (non-ILD group) pre-existing ILD. The clinical features and outcomes of the ILD group were compared with those of the non-ILD group. Cox regression models were constructed to identify prognostic factors.

    Results

    74 patients were enrolled in this study. The 90-day mortality was significantly higher in the ILD group than in the non-ILD group (62.5% versus 19.0%, p<0.001). In the ILD group, patients with a higher percentage of bronchoalveolar lavage fluid neutrophils had worse outcomes compared to those having a lower percentage (p=0.026). Multivariate analyses revealed that pre-existing ILD (p=0.002) and low levels of serum albumin (p=0.009) were independent risk factors for 90-day mortality. Serum levels of β-d-glucan were significantly reduced after treatment of PCP in both groups, whereas levels of Krebs von den Lungen-6 (KL-6) significantly increased in the ILD group. In the ILD group, the 90-day mortality of patients with increasing KL-6 levels after treatment was significantly higher than those with decreasing levels (78.9% versus 0%, p=0.019).

    Conclusion

    In non-HIV PCP patients, pre-existing ILD is associated with a poorer prognosis. Prophylaxis for PCP is needed in patients with pre-existing ILD under immunosuppression.




    disease

    Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer [Review]

    Technologies allowing genetic sequencing of the human microbiome are opening new realms to discovery. The host microbiota substantially impacts immune responses both in immune-mediated inflammatory diseases (IMIDs) and in tumors affecting tissues beyond skin and mucosae. However, a mechanistic link between host microbiota and cancer or IMIDs has not been well established. Here, we propose T helper 17 (TH17) lymphocytes as the connecting factor between host microbiota and rheumatoid or psoriatic arthritides, multiple sclerosis, breast or ovarian cancer, and multiple myeloma. We theorize that similar mechanisms favor the expansion of gut-borne TH17 cells and their deployment at the site of inflammation in extraborder IMIDs and tumors, where TH17 cells are driving forces. Thus, from a pathogenic standpoint, tumors may share mechanistic routes with IMIDs. A review of similarities and divergences in microbiota-TH17 cell interactions in IMIDs and cancer sheds light on previously ignored pathways in either one of the two groups of pathologies and identifies novel therapeutic avenues.




    disease

    Chitotriosidase: a marker and modulator of lung disease

    Chitotriosidase (CHIT1) is a highly conserved and regulated chitinase secreted by activated macrophages; it is a member of the 18-glycosylase family (GH18). CHIT1 is the most prominent chitinase in humans, can cleave chitin and participates in the body's immune response and is associated with inflammation, infection, tissue damage and remodelling processes. Recently, CHIT1 has been reported to be involved in the molecular pathogenesis of pulmonary fibrosis, bronchial asthma, COPD and pulmonary infections, shedding new light on the role of these proteins in lung pathophysiology. The potential roles of CHIT1 in lung diseases are reviewed in this article.




    disease

    Thoracic ultrasound in the modern management of pleural disease

    Physician-led thoracic ultrasound (TUS) has substantially changed how respiratory disorders, and in particular pleural diseases, are managed. The use of TUS as a point-of-care test enables the respiratory physician to quickly and accurately diagnose pleural pathology and ensure safe access to the pleural space during thoracentesis or chest drain insertion. Competence in performing TUS is now an obligatory part of respiratory speciality training programmes in different parts of the world. Pleural physicians with higher levels of competence routinely use TUS during the planning and execution of more sophisticated diagnostic and therapeutic interventions, such as core needle pleural biopsies, image-guided drain insertion and medical thoracoscopy. Current research is gauging the potential of TUS in predicting the outcome of different pleural interventions and how it can aid in tailoring the optimum treatment according to different TUS-based parameters.




    disease

    Underweight Increases the Risk of End-Stage Renal Diseases for Type 2 Diabetes in Korean Population: Data From the National Health Insurance Service Health Checkups 2009-2017

    OBJECTIVE

    There is a controversy over the association between obesity and end-stage renal disease (ESRD) in people with or without type 2 diabetes; therefore, we examined the effect of BMI on the risk of ESRD according to glycemic status in the Korean population.

    RESEARCH DESIGN AND METHODS

    The study monitored 9,969,848 participants who underwent a National Health Insurance Service health checkup in 2009 from baseline to the date of diagnosis of ESRD during a follow-up period of ~8.2 years. Obesity was categorized by World Health Organization recommendations for Asian populations, and glycemic status was categorized into the following five groups: normal, impaired fasting glucose (IFG), newly diagnosed diabetes, diabetes <5 years, and diabetes ≥5 years.

    RESULTS

    Underweight was associated with a higher risk of ESRD in all participants after adjustment for all covariates. In the groups with IFG, newly diagnosed type 2 diabetes, diabetes duration <5 years, and diabetes ≥5 years, the hazard ratio (HR) of the underweight group increased with worsening glycemic status (HR 1.431 for IFG, 2.114 for newly diagnosed diabetes, 4.351 for diabetes <5 years, and 6.397 for diabetes ≥5 years), using normal weight with normal fasting glucose as a reference. The adjusted HRs for ESRD were also the highest in the sustained underweight group regardless of the presence of type 2 diabetes (HR 1.606 for nondiabetes and 2.14 for diabetes).

    CONCLUSIONS

    Underweight showed more increased HR of ESRD according to glycemic status and diabetes duration in the Korean population. These associations also persisted in the group with sustained BMI during the study period.




    disease

    The Prognosis of Patients With Type 2 Diabetes and Nonalbuminuric Diabetic Kidney Disease Is Not Always Poor: Implication of the Effects of Coexisting Macrovascular Complications (JDDM 54)

    OBJECTIVE

    Nonalbuminuric diabetic kidney disease (DKD) has become the prevailing phenotype in patients with type 2 diabetes. However, it remains unclear whether its prognosis is poorer than that of other DKD phenotypes.

    RESEARCH DESIGN AND METHODS

    A total of 2,953 Japanese patients with type 2 diabetes and estimated glomerular filtration rate (eGFR) ≥30 mL/min/1.73 m2, enrolled in an observational cohort study in 2004, were followed until 2015. On the basis of albuminuria (>30 mg/g creatinine) and reduced eGFR (<60 mL/min/1.73 m2) at baseline, participants were classified into the four DKD phenotypes—no-DKD, albuminuric DKD without reduced eGFR, nonalbuminuric DKD with reduced eGFR, and albuminuric DKD with reduced eGFR—to assess the risks of mortality, cardiovascular disease (CVD), and renal function decline.

    RESULTS

    During the mean follow-up of 9.7 years, 113 patients died and 263 developed CVD. In nonalbuminuric DKD, the risks of death or CVD were not higher than those in no-DKD (adjusted hazard ratio 1.02 [95% CI 0.66, 1.60]) and the annual decline in eGFR was slower than in other DKD phenotypes. The risks of death or CVD in nonalbuminuric DKD without prior CVD were similar to those in no-DKD without prior CVD, whereas the risks in nonalbuminuric DKD with prior CVD as well as other DKD phenotypes were higher.

    CONCLUSIONS

    Nonalbuminuric DKD did not have a higher risk of mortality, CVD events, or renal function decline than the other DKD phenotypes. In nonalbuminuric DKD, the presence of macrovascular complications may be a main determinant of prognosis rather than the renal phenotype.




    disease

    Dalcetrapib Reduces Risk of New-Onset Diabetes in Patients With Coronary Heart Disease

    OBJECTIVE

    Incident type 2 diabetes is common among patients with recent acute coronary syndrome and is associated with an adverse prognosis. Some data suggest that cholesteryl ester transfer protein (CETP) inhibitors reduce incident type 2 diabetes. We compared the effect of treatment with the CETP inhibitor dalcetrapib or placebo on incident diabetes in patients with recent acute coronary syndrome.

    RESEARCH DESIGN AND METHODS

    In the dal-OUTCOMES trial, 15,871 patients were randomly assigned to treatment with dalcetrapib 600 mg daily or placebo, beginning 4–12 weeks after an acute coronary syndrome. Absence of diabetes at baseline was based on medical history, no use of antihyperglycemic medication, and hemoglobin A1c and serum glucose levels below diagnostic thresholds. Among these patients, incident diabetes after randomization was defined by any diabetes-related adverse event, new use of antihyperglycemic medication, hemoglobin A1c ≥6.5%, or a combination of at least two measurements of serum glucose ≥7.0 mmol/L (fasting) or ≥11.1 mmol/L (random).

    RESULTS

    At baseline, 10,645 patients (67% of the trial cohort) did not have diabetes. During a median follow-up of 30 months, incident diabetes was identified in 403 of 5,326 patients (7.6%) assigned to dalcetrapib and in 516 of 5,319 (9.7%) assigned to placebo, corresponding to absolute risk reduction of 2.1%, hazard ratio of 0.77 (95% CI 0.68–0.88; P < 0.001), and a need to treat 40 patients for 3 years to prevent 1 incident case of diabetes. Considering only those with prediabetes at baseline, the number needed to treat for 3 years to prevent 1 incident case of diabetes was 25. Dalcetrapib also decreased the number of patients who progressed from normoglycemia to prediabetes and increased the number who regressed from diabetes to no diabetes.

    CONCLUSIONS

    In patients with a recent acute coronary syndrome, incident diabetes is common and is reduced substantially by treatment with dalcetrapib.




    disease

    Every Fifth Individual With Type 1 Diabetes Suffers From an Additional Autoimmune Disease: A Finnish Nationwide Study

    OBJECTIVE

    The aim of this study was to quantify the excess risk of autoimmune hypothyroidism and hyperthyroidism, Addison disease, celiac disease, and atrophic gastritis in adults with type 1 diabetes (T1D) compared with nondiabetic individuals in Finland.

    RESEARCH DESIGN AND METHODS

    The study included 4,758 individuals with T1D from the Finnish Diabetic Nephropathy (FinnDiane) Study and 12,710 nondiabetic control individuals. The autoimmune diseases (ADs) were identified by linking the data with the Finnish nationwide health registries from 1970 to 2015.

    RESULTS

    The median age of the FinnDiane individuals at the end of follow-up in 2015 was 51.4 (interquartile range 42.6–60.1) years, and the median duration of diabetes was 35.5 (26.5–44.0) years. Of individuals with T1D, 22.8% had at least one additional AD, which included 31.6% of women and 14.9% of men. The odds ratios for hypothyroidism, hyperthyroidism, celiac disease, Addison disease, and atrophic gastritis were 3.43 (95% CI 3.09–3.81), 2.98 (2.27–3.90), 4.64 (3.71–5.81), 24.13 (5.60–104.03), and 5.08 (3.15–8.18), respectively, in the individuals with T1D compared with the control individuals. The corresponding ORs for women compared with men were 2.96 (2.53–3.47), 2.83 (1.87–4.28), 1.52 (1.15–2.02), 2.22 (0.83–5.91), and 1.36 (0.77–2.39), respectively, in individuals with T1D. Late onset of T1D and aging increased the risk of hypothyroidism, whereas young age at onset of T1D increased the risk of celiac disease.

    CONCLUSIONS

    This is one of the largest studies quantifying the risk of coexisting AD in adult individuals with T1D in the country with the highest incidence of T1D in the world. The results highlight the importance of continuous screening for other ADs in individuals with T1D.




    disease

    Incidence and Associations of Chronic Kidney Disease in Community Participants With Diabetes: A 5-Year Prospective Analysis of the EXTEND45 Study

    OBJECTIVE

    To determine the incidence of and factors associated with an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 in people with diabetes.

    RESEARCH DESIGN AND METHODS

    We identified people with diabetes in the EXamining ouTcomEs in chroNic Disease in the 45 and Up Study (EXTEND45), a population-based cohort study (2006–2014) that linked the Sax Institute’s 45 and Up Study cohort to community laboratory and administrative data in New South Wales, Australia. The study outcome was the first eGFR measurement <60 mL/min/1.73 m2 recorded during the follow-up period. Participants with eGFR < 60 mL/min/1.73 m2 at baseline were excluded. We used Poisson regression to estimate the incidence of eGFR <60 mL/min/1.73 m2 and multivariable Cox regression to examine factors associated with the study outcome.

    RESULTS

    Of 9,313 participants with diabetes, 2,106 (22.6%) developed incident eGFR <60 mL/min/1.73 m2 over a median follow-up time of 5.7 years (interquartile range, 3.0–5.9 years). The eGFR <60 mL/min/1.73 m2 incidence rate per 100 person-years was 6.0 (95% CI 5.7–6.3) overall, 1.5 (1.3–1.9) in participants aged 45–54 years, 3.7 (3.4–4.0) for 55–64 year olds, 7.6 (7.1–8.1) for 65–74 year olds, 15.0 (13.0–16.0) for 75–84 year olds, and 26.0 (22.0–32.0) for those aged 85 years and over. In a fully adjusted multivariable model incidence was independently associated with age (hazard ratio 1.23 per 5-year increase; 95% CI 1.19–1.26), geography (outer regional and remote versus major city: 1.36; 1.17–1.58), obesity (obese class III versus normal: 1.44; 1.16–1.80), and the presence of hypertension (1.52; 1.33–1.73), coronary heart disease (1.13; 1.02–1.24), cancer (1.30; 1.14–1.50), and depression/anxiety (1.14; 1.01–1.27).

    CONCLUSIONS

    In participants with diabetes, the incidence of an eGFR <60 mL/min/1.73 m2 was high. Older age, remoteness of residence, and the presence of various comorbid conditions were associated with higher incidence.




    disease

    The Long-term Effects of Metformin on Patients With Type 2 Diabetic Kidney Disease

    OBJECTIVE

    Metformin is the first pharmacological option for treating type 2 diabetes. However, the use of this drug is not recommended in individuals with impaired kidney function because of the perceived risk of lactic acidosis. We aimed to assess the efficacy and safety of metformin in patients with type 2 diabetic kidney disease (DKD).

    RESEARCH DESIGN AND METHODS

    We conducted a retrospective observational cohort study of 10,426 patients with type 2 DKD from two tertiary hospitals. The primary outcomes were all-cause mortality and end-stage renal disease (ESRD) progression. The secondary outcome was metformin-associated lactic acidosis. Taking into account the possibility that patients with less severe disease were prescribed metformin, propensity score matching (PSM) was conducted.

    RESULTS

    All-cause mortality and incident ESRD were lower in the metformin group according to the multivariate Cox analysis. Because the two groups had significantly different baseline characteristics, PSM was performed. After matching, metformin usage was still associated with lower all-cause mortality (adjusted hazard ratio [aHR] 0.65; 95% CI 0.57–0.73; P < 0.001) and ESRD progression (aHR 0.67; 95% CI 0.58–0.77; P < 0.001). Only one event of metformin-associated lactic acidosis was recorded. In both the original and PSM groups, metformin usage did not increase the risk of lactic acidosis events from all causes (aHR 0.92; 95% CI 0.668–1.276; P = 0.629).

    CONCLUSIONS

    In the present retrospective study, metformin usage in advanced chronic kidney disease (CKD) patients, especially those with CKD 3B, decreased the risk of all-cause mortality and incident ESRD. Additionally, metformin did not increase the risk of lactic acidosis. However, considering the remaining biases even after PSM, further randomized controlled trials are needed to change real-world practice.




    disease

    Association of early disease progression and very poor survival in the GALLIUM study in follicular lymphoma: benefit of obinutuzumab in reducing the rate of early progression




    disease

    Extensive multilineage analysis in patients with mixed chimerism after allogeneic transplantation for sickle cell disease: insight into hematopoiesis and engraftment thresholds for gene therapy

    Although studies of mixed chimerism following hematopoietic stem cell transplantation in patients with sickle cell disease (SCD) may provide insights into the engraftment needed to correct the disease and into immunological reconstitution, an extensive multilineage analysis is lacking. We analyzed chimerism simultaneously in peripheral erythroid and granulomonocytic precursors/progenitors, highly purified B and T lymphocytes, monocytes, granulocytes and red blood cells (RBC). Thirty-four patients with mixed chimerism and ≥12 months of follow-up were included. A selective advantage of donor RBC and their progenitors/precursors led to full chimerism in mature RBC (despite partial engraftment of other lineages), and resulted in the clinical control of the disease. Six patients with donor chimerism <50% had hemolysis (reticulocytosis) and higher HbS than their donor. Four of them had donor chimerism <30%, including a patient with AA donor (hemoglobin >10 g/dL) and three with AS donors (hemoglobin <10 g/dL). However, only one vaso-occlusive crisis occurred with 68.7% HbS. Except in the patients with the lowest chimerism, the donor engraftment was lower for T cells than for the other lineages. In a context of mixed chimerism after hematopoietic stem cell transplantation for SCD, myeloid (rather than T cell) engraftment was the key efficacy criterion. Results show that myeloid chimerism as low as 30% was sufficient to prevent a vaso-occlusive crisis in transplants from an AA donor but not constantly from an AS donor. However, the correction of hemolysis requires higher donor chimerism levels (i.e. ≥50%) in both AA and AS recipients. In the future, this group of patients may need a different therapeutic approach.




    disease

    Disease progression in myeloproliferative neoplasms: comparing patients in accelerated phase with those in chronic phase with increased blasts (<10%) or with other types of disease progression