meth

Public consultation on the revised Methodology for Assessing Procurement Systems (MAPS)

The public consultation took place from 1 August to 31 October 2016.




meth

Harmonised method for characterising oleochemical substances for assessment purposes.

The OECD has published a guidance for characterising oleochemical substances. The method presented gives guidance on how these complex substances can be characterised in a way that their composition is accurately and consistently reflected to ensure that substances with the same chemical composition, manufactured in different countries, can be characterised with the same description for hazard assessment purposes.




meth

OECD encourages the development of non-animal test methods for the detection of thyroid disrupters

The OECD Advisory Group on Endocrine Disrupters Testing and Assessment met on 16-17 October 2014 in Paris to discuss the development and update of Test Guidelines and related documents for endocrine disrupters testing and assessment.




meth

Guidance Document for Describing Non-Guideline In Vitro Test Methods

This guidance is intended to harmonise the way non-guideline in vitro test methods are described. This should in future facilitate an assessment of the relevance of test methods for biological activities and responses of interest, of the quality of data produced, irrespective of whether these tests are based on manual protocols or assay protocols adapted for use on automated platforms or high-throughput screening systems (HTS).




meth

Physical-Chemical Properties of Nanomaterials: Evaluation of Methods Applied in the OECD-WPMN Testing Programme

This new document focuses on the evaluation of test methods applied to determine the physico-chemical properties of different types of nanomaterials.




meth

Developmental neurotoxicity: OECD/EFSA experts discuss non-animal test methods

Participants from 15 countries attended the Workshop on Developmental Neurotoxicity: The use of non-animal test methods for regulatory purposes” on 18 October 2016, in Belgium. The event, co-organised by the OECD and the European Food Safety Authority (EFSA), focused on opportunities and challenges related to alternative methods for testing and assessing the DNT potential of chemicals.




meth

Guidance Document on Good In Vitro Method Practices (GIVIMP)

GIVIMP aims to reduce the uncertainties in cell and tissue-based in vitro method derived predictions by applying good scientific, technical and quality practices from method development to implementation for regulatory use. Test method developers and test guideline users will find best practices for designing guideline in vitro methods, carrying out safety tests and assuring quality and scientific integrity of the resulting data




meth

Webinar Series on Testing and Assessment Methodologies

On 27 September 2019, Anne Gourmelon of the Environment Directorate presented an overview of the various alternative test methods developed as OECD Test Guidelines and relevant guidance material to address eye irritation and serious eye damage for hazard classification of chemicals.




meth

Ametheus Commodities Private ... vs Union Of Inida & Ors on 6 May, 2020

1. The matter has been heard through Video Conferencing.

2. Ms. Acharya, learned ASG, who appears for the Union of India, states that her briefing counsel, Mr. Gogna, CGSC is ready with advance instructions.

3. After addressing arguments on the maintainability of the present petition particularly, on the aspect of the alleged retrospectivity of the impugned Notification, Mr. Aggarwal, learned counsel for the petitioner had sought some time to obtain instructions from his client. The hearing was deferred to enable him to obtain instructions. He has returned with instructions to the effect that his client does not wish to press the present petition.

W.P. (C) 3057/2020 Page 1 of 2




meth

COVID-19 Diagnostic Methods And Tools: What You Should Know

As of April 24, 2020, the total number of confirmed COVID-19 cases in India is 23,077 including 4,749 recovered cases and 718 deaths. Seeing a 19-days incubation period of the virus, medical experts have suggested 14 days quarantine for people who




meth

Handbuch der electrischen, galvanischen, magnetischen und electromagnetischen Telegraphie: ein theoretisch-praktischer Leitfaden zur richtigen Kenntniss der bezüglichen Apparate, Batterien und deren chemischen Prozesse, dann der Einschaltungs-Methode

Archives, Room Use Only - TK5261.F78 1854




meth

Recent improvements in the art of signaling: for military and commercial purposes: the Finley helio-telegraph and its modifications: one instrument for day and night work, a new method and improved apparatus.

Archives, Room Use Only - UG582.H4 F56 1888




meth

Telegraphy for beginners: the standard method: an authoritative book of instruction in the methods and forms most approved, with lessons, including the Morse and continental codes / by Willis H. Jones

Archives, Room Use Only - TK5264.J76 1913




meth

Telephone construction, installation, wiring, operation and maintenance: a treatise describing and illustrating up-to-date methods of telephone practice, including the principles of construction and operation of telephone instruments ... / by W.H. Radclif

Archives, Room Use Only - TK6162.R33 1917




meth

The Phillips code: a thoroughly tested method of shorthand, arranged for telegraphic purposes, and contemplating the rapid transmission of press reports: also intended to be used as an easily acquired method for general newspaper and court reporting / by

Archives, Room Use Only - HE7669.P55 1914




meth

How to signal by many methods / by J. Gibson, late signalling instructor, R.A.M.C.(T.) ..

Archives, Room Use Only - HE9723.G53 1915




meth

Modern land and submarine telegraphy: a brief up-to-date treatise on the electric telegraph, including the development of the modern methods and equipment / by George S. Macomber

Archives, Room Use Only - TK5262.M23 1914




meth

On a method of measuring the contour of electric waves passing through telegraph lines / by Robert Sabine

Archives, Room Use Only - TK5451.S33 1876




meth

The A.B.C. of wireless telegraphy: a plain treatise on Hertzian wave signaling, embracing theory, methods of operation, and how to build various pieces of the apparatus employed / by Edward Trevert [pseud.]

Archives, Room Use Only - TK5741.T74 1902




meth

The Phillips code: a thoroughly tested method of steno-telegraphy arranged for use in wire and radio communication: adaptable to teletype, teletypewriter and telemeter communication services / by Walter P. Phillips

Archives, Room Use Only - HE7669.P55 1945




meth

The thorough cipher code for telegraphing and for written communications where secrecy is desirable: a carefully compiled arrangement of ciphers and commercial and general meanings: with easy methods for the largest possible use of condensed material and

Archives, Room Use Only - HE7669.B87 1891




meth

Telegraphy and telephony with railroad applications / by Charles Stanley Rhoads ; a description of the fundamentals of telegraphy and telephony and of the organization, outside and inside plant, apparatus, circuits and methods of operation, engineering a

Archives, Room Use Only - TK5262.R46 1924




meth

The Phillips code: a thoroughly tested method of shorthand arranged for telegraphic purposes, and contemplating the rapid transmission of press reports: also intended to be used as an easily acquired method for general newspaper and court reporting / by W

Archives, Room Use Only - HE7669.P55 1925




meth

An MS method for proteomic analysis of small samples

Researchers develop an MS shotgun proteomic method to tackle small numbers of cancer cells in blood.




meth

UX Design Methods In A Mind Map

If you are wondering when to apply which design methods, this mind map may help you.




meth

Methods for dynamic synchrotron X-ray respiratory imaging in live animals

Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchrotrons, as well as the Munich Compact Light Source. These experimental settings produce unique challenges. Experiments are always performed in an isolated radiation enclosure not specifically designed for live-animal imaging. This requires equipment adapted to physiological monitoring and test-substance delivery, as well as shuttering to reduce the radiation dose. Experiment designs must also take into account the fixed location, size and orientation of the X-ray beam. This article describes the techniques developed to overcome the challenges involved in respiratory X-ray imaging of live animals at synchrotrons, now enabling increasingly sophisticated imaging protocols.




meth

Location of Cu2+ in CHA zeolite investigated by X-ray diffraction using the Rietveld/maximum entropy method

Rietveld/MEM analysis applied to synchrotron powder X-ray diffraction data of dehydrated CHA zeolites with catalytically active Cu2+ reveals Cu2+ in both the six- and eight-membered rings in the CHA framework, providing the first complete structural model that accounts for all Cu2+. Density functional theory calculations are used to corroborate the experimental structure and to discuss the Cu2+ coordination in terms of the Al distribution in the framework.




meth

Structure and function of dioxygenases in histone demethylation and DNA/RNA demethylation

The structure and function of dioxygenases in histone demethylation and DNA/RNA dimethylation are discussed.





meth

Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway

The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and l-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Å resolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life.




meth

1,3-Bis{[(2,6-di­methyl­phen­yl)sulfan­yl]meth­yl}benzene

The structure of the title compound, C24H26S2, an example of a pincer ligand with an SCS-chelation motif, illustrates the steric effects of the methyl groups in the thio­phenyl rings at the 2- and 6-positions, forcing a dissimilar spatial orientation of the thio­phenyl rings relative to the central aryl group [dihedral angles = 33.58 (7) and 40.49 (7)°]. In the crystal, weak S⋯S contacts [3.4009 (7) Å] link the mol­ecules into inversion dimers.




meth

Di­chlorido­{N,N,N'-trimethyl-N'-(1H-pyrazol-1-yl-κN2)meth­yl]ethane-1,2-di­amine-κ2N,N'}copper(II) methanol monosolvate

In the title compound, [CuCl2(C9H18N4)]·CH3OH, the central CuII ion is coordinated by three N atoms from the pyrazole derivative ligand and two chloride co-ligands. The coordination geometry around the CuII ion is distorted trigonal–bipyramidal. In the crystal, the mol­ecules are linked by C—H⋯O, C—H⋯Cl and O—H⋯Cl hydrogen bonds, forming a three-dimensional framework with the lattice solvent mol­ecule.




meth

(E)-4-Iodo-2-[(phenyl­imino)­meth­yl]phenol

The title compound, C13H10INO, is not planar as the dihedral angle between the planes of the two aryl rings is 44.5 (9)°. The configuration about the central C=N bond is E, and there is an intra­molecular O—H⋯N hydrogen bond which generates an S(6) ring. The mol­ecular packing is stabilized by weak C—H⋯π inter­actions. The structure was refined as a two-component inversion twin.




meth

6-Methyl­uracil: a redetermination of polymorph (II)

6-Methyluracil, C5H6N2O2, exists in two crystalline phases: form (I), monoclinic, space group P21/c [Reck et al. (1988). Acta Cryst. A44, 417–421] and form (II), monoclinic, space group C2/c [Leonidov et al. (1993). Russ. J. Phys. Chem. 67, 2220–2223]. The structure of polymorph (II) has been redetermined providing a significant increase in the precision of the derived geometric parameters. In the crystal, mol­ecules form ribbons approximately running parallel to the c-axis direction through N—H⋯O hydrogen bonds. The radical differences observed between the crystal packing of the two polymorphs may be responsible in form (II) for an increase in the contribution of the polar canonical forms C—(O−)=N—H+ relative to the neutral canonical form C(=O)—N—H induced by hydrogen-bonding inter­actions.




meth

Di­bromido­[N-(1-di­ethyl­amino-1-oxo-3-phenyl­propan-2-yl)-N'-(pyridin-2-yl)imidazol-2-yl­idene]palladium(II) di­chloro­methane monosolvate

In the mol­ecule of the title N,N'-disubstituted imidazol-2-yl­idene palladium(II) complex, [PdBr2(C21H24N4O)]·CH2Cl2, the palladium(II) atom adopts a slightly distorted square-planar coordination (r.m.s. deviation = 0.0145 Å), and the five-membered chelate ring is almost planar [maximum displacement = 0.015 (8) Å]. The mol­ecular conformation is enforced by intra­molecular C—H⋯Br hydrogen bonds. In the crystal, complex mol­ecules and di­chloro­methane mol­ecules are linked into a three-dimensional network by C—H⋯O and C—H⋯Br hydrogen bonds.




meth

n-Decyl­tri­methyl­ammonium bromide

The title compound, C13H30N+·Br− (systematic name: N,N,N-trimethyl-1-deca­naminium bromide), forms crystals having a bilayer structure, comprised of layers of tri­methyl­ammonium cations and bromide anions separated by the inter-digitated n-decyl groups of the cation; close ammonium-methyl-C—H⋯Br contacts connect the ions. The n-decyl chain adopts a slightly distorted all-trans conformation. The n-decyl chain exhibits positional disorder with all atoms at half occupancy. The sample was a racemic twin.




meth

Poly[di­aqua­[μ4-2-(carboxyl­atometh­oxy)benzoato][μ2-2-(carboxyl­atometh­oxy)benzoato]dicad­mium(II)]

In the title compound, [Cd2(C9H6O5)2(H2O)2]n, the crystallographically distinct CdII cations are coordinated in penta­gonal–bipyramidal and octa­hedral fashions. The 2-(carb­oxy­meth­oxy)benzoate (cmb) ligands connect the Cd atoms into [Cd2(cmb)2(H2O)2)]n coordination polymer ribbons that are oriented along the a-axis direction. Supra­molecular layers are formed parallel to (01overline{1}) by O—H⋯O hydrogen bonding between the ribbons. The supra­molecular three-dimensional crystal structure of the title compound is then constructed by π–π stacking inter­actions with a centroid–centroid distance of 3.622 (2) Å between cmb ligands in adjacent layer motifs.




meth

N-Ethyl-N'-(3-methyl­benzo­yl)-S,S-di­phenyl­sulfo­diimide

The asymmetric unit of the title sulfodi­imide, C22H22N2OS, consists of two crystallographically independent mol­ecules with similar conformations The environment around each sulfur atom is a slightly distorted tetra­hedron with two S=N bonds and two S—C bonds. The S= N(m-methyl­benzo­yl) and S=N(NEt) bond lengths are 1.584 (3) and 1.528 (2) Å, respectively, for one mol­ecule, and 1.575 (2) and 1.529 (3) Å, respectively, for the other. The dihedral angles between the two phenyl rings in the mol­ecules are 86.76 (8) and 82.49 (8)°. The N—S—N—C(m-methyl­benzo­yl) and N—S—N—C(eth­yl) torsion angles are −60.5 (2) and −50.28 (19)°, respectively, for one mol­ecule, and 62.9 (2) and 44.2 (3)°, respectively, for the other. In the crystal, each independent mol­ecule is linked to its inversion-related mol­ecule via a pair of C—H⋯O hydrogen bonds, forming a dimer.




meth

Ethyl 4-(4-chloro-3-fluoro­phen­yl)-6-methyl-2-sulfanyl­idene-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

In the title compound, C14H14ClFN2O2S, the di­hydro­pyrimidine ring adopts a shallow-boat conformation and subtends a dihedral angle of 81.91 (17)° with the phenyl ring. In the crystal, N—H⋯O, N—H⋯S and C—H⋯F hydrogen bonds and C—H⋯π inter­actions are found.




meth

N-Methyl-N-propyl­tryptamine (MPT)

The title compound {systematic name: [2-(1H-indol-3-yl)eth­yl](meth­yl)propyl­amine}, C14H20N2, has a single mol­ecule in the asymmetric unit. The mol­ecules in the unit cell are held together in infinite one-dimensional chains along [010] through N—H⋯N hydrogen bonds between indole H atoms and tri­alkyl­amine N atoms.




meth

N-[(Pyridin-2-yl)meth­yl]thio­phene-2-carboxamide

In the title compound, C11H10N2OS, the dihedral angle between the thio­phene and pyridine rings is 77.79 (8)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(10) loops. The dimers are reinforced by pairs of C—H⋯N inter­actions and C—H⋯O inter­actions link the dimers into [010] chains.




meth

Bis(2-methyl­lactato)borate tetra­hydrate

The asymmetric unit of the title compound (systematic name: 3,3,8,8-tetra­methyl-1,4,6,9-tetra­oxa-λ4-bora­spiro­[4.4]nonane-2,7-dione tetra­hydrate), C8H12BO6·4H2O, consists of half a bis­(2-methyl­lactato)borate mol­ecule and two water mol­ecules of solvation. In the crystal, O—H⋯O hydrogen bonds link the components into a three-dimensional network.




meth

(2S,3S,4R,4a'R,5R,5a'R,11a'R,12'S,12a'R)-5-(Acet­oxy­meth­yl)-2',2',10',10'-tetra­methyl­octa­hydro-3H,8'H-spiro­[furan-2,7'-[1,3]dioxino[4',5':5,6]pyrano[3,2-d][1,3,6]trioxocine]-3,4,12'-triyl tri­a

While the crystal structure analysis of the title compound, C26H38O15, a synthetic derivative of sucrose, was originally reported 40 years ago [Drew et al. (1979). Carbohydr. Res. 71, 35–42], the present work has allowed for the determination of its absolute configuration through the application of resonant scattering techniques.




meth

Di-μ-acetato-bis­{[3-benzyl-1-(2,4,6-tri­methyl­phen­yl)imidazol-2-ylidene]silver(I)}

The title compound, [Ag2(C2H3O2)2(C19H20N2)2] (2), was readily synthesized by treatment of 3-benzyl-1-(2,4,6-tri­methyl­phen­yl)imidazolium chloride with silver acetate. The solution structure of the complex was analyzed by NMR spectroscopy, while the solid-state structure was confirmed by single-crystal X-ray diffraction studies. Compound 2 crystallizes in the triclinic space group Poverline{1}, with a silver-to-carbene bond length (Ag—CNHC) of 2.084 (3) Å. The mol­ecule resides on an inversion center, so that only half of the mol­ecule is crystallographically unique. The planes defined by the two imidazole rings are parallel to each other, but not coplanar [inter­planar distance is 0.662 (19) Å]. The dihedral angles between the imidazole ring and the benzyl and mesityl rings are 77.87 (12) and 72.86 (11)°, respectively. The crystal structure features π–π stacking inter­actions between the benzylic groups of inversion-related (−x + 1, −y + 1, −z + 1) mol­ecules and C—H⋯π inter­actions.




meth

trans-Bis(dimethyl sulfoxide-κO)bis­(3-nitro­benzo­hydroxamato-κ2O,O')zinc(II)

Single crystals of the title complex, [Zn(C7H5N2O4)2(C2H6OS)2] or [Zn(NBZH)2(DMSO)2], were isolated from a dimethyl sulfoxide (DMSO) solution containing [Zn(NBZH)2]·2H2O (NBZH = 3-nitro­benzo­hydroxamate anion). The asymmetric unit comprises of one O,O'-chelating NBZH anion, one O-bound DMSO ligand and one zinc(II) cation localized on an inversion centre. The three-dimensional crystal packing includes N—H⋯O and C—H⋯O hydrogen bonding, as well as O⋯H and H⋯H contacts identified by Hirshfeld isosurface analysis.




meth

(2,2-Bi­pyridine-κ2N,N')chlorido­[η6-1-methyl-4-(propan-2-yl)benzene]­ruthenium(II) tetra­phenyl­borate

The title complex, [RuCl(C10H14)(C10H8N2)](C24H20B), has monoclinic (P21) symmetry at 100 K. It was prepared by the reaction of the di­chlor­ido[1-methyl-4-(propan-2-yl)benzene]­ruthenium(II) dimer with 2,2'-bi­pyridine, followed by the addition of ammonium tetra­phenyl­borate. The 1-methyl-4-(propan-2-yl)benzene group, the 2,2'-bi­pyridine unit and a chloride ion coordinate the ruthenium(II) atom, with the 1-methyl-4-(propan-2-yl)benzene ring and bi­pyridine moieties trans to each other. In the crystal, the complex cations are linked by C—H⋯Cl hydrogen bonds, forming chains parallel to [010]. These chains are linked by a number of C—H⋯π inter­actions, involving the phenyl rings of the tetra­phenyl­borate anion and a pyridine ring of the bpy ligand, resulting in the formation of layers parallel to (10overline{1}).




meth

Poly[[μ4-4-(carb­oxylato­meth­yl)benzoato]zinc(II)]

In the title compound, [Zn(C9H6O4)]n, the ZnII cations are coordinated in a tetra­hedral fashion by carboxyl­ate O-atom donors belonging to four 4-(carb­oxy­meth­yl) benzoate (4-cmb) ligands. Each 4-cmb ligand binds to four ZnII cations in an exo­tetra­dentate fashion to create a non-inter­penetrated [Zn(4-cmb)]n three-dimensional coordination polymer network with a new non-diamondoid 66 topology. The crystal studied was refined as an inversion twin.




meth

(1Z,2Z)-1,2-Bis{2-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]hydrazinyl­idene}-1,2-bis­(4-meth­oxy­phen­yl)ethane including an unknown solvate

The complete mol­ecule of the title compound, C32H22F12N4O2, is generated by a crystallographic twofold axis aligned parallel to [010]. The F atoms of one of the CF3 groups are disordered over three orientations in a 0.6: 0.2: 0.2 ratio. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming zigzag chains propagating along the a-axis direction. In addition, weak C—H⋯O and C—H⋯F bonds are observed. The contribution of the disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] of PLATON. The solvent contribution is not included in the reported mol­ecular weight and density.




meth

8,13-Diisopropyl-10,11-dimethyl-bis([1,3]dioxolo[4',5':6,7]naphtho)­[1,2-d;2,1-f][1,3]dioxepine

The title compound, C31H30O6, was obtained by protecting the six hy­droxy groups of apogossypol by acetalization with di­chloro­methane. The mol­ecule has a bridging dioxepine unit which hinders the rotation around the 2,2'-inter­naphthyl bond. The dihedral angle between the naphthyl units is 55.73 (3)°. In the crystal, very weak C—H⋯O inter­actions may help to consolidate the packing.




meth

(Pyridine-2,6-di­carboxyl­ato-κ3O,N,O')(2,2':6',2''- terpyridine-κ3N,N',N'')nickel(II) di­methyl­formamide monosolvate monohydrate

In the title complex, [Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2O, the NiII ion is six-coordinated within an octa­hedral geometry defined by three N atoms of the 2,2':6',2''-terpyridine ligand, and two O atoms and the N atom of the pyridine-2,6-di­carboxyl­ate di-anion. In the crystal, the complex mol­ecules are stacked in columns parallel to the a axis being connected by π–π stacking [closest inter-centroid separation between pyridyl rings = 3.669 (3) Å]. The connections between columns and solvent mol­ecules to sustain a three-dimensional architecture are of the type water-O—H⋯O(carbon­yl) and pyridyl-, methyl-C—H⋯O(carbon­yl).