era Optimization of crystallization of biological macromolecules using dialysis combined with temperature control By scripts.iucr.org Published On :: 2020-05-05 A rational way to find the appropriate conditions to grow crystal samples for bio-crystallography is to determine the crystallization phase diagram, which allows precise control of the parameters affecting the crystal growth process. First, the nucleation is induced at supersaturated conditions close to the solubility boundary between the nucleation and metastable regions. Then, crystal growth is further achieved in the metastable zone – which is the optimal location for slow and ordered crystal expansion – by modulation of specific physical parameters. Recently, a prototype of an integrated apparatus for the rational optimization of crystal growth by mapping and manipulating temperature–precipitant–concentration phase diagrams has been constructed. Here, it is demonstrated that a thorough knowledge of the phase diagram is vital in any crystallization experiment. The relevance of the selection of the starting position and the kinetic pathway undertaken in controlling most of the final properties of the synthesized crystals is shown. The rational crystallization optimization strategies developed and presented here allow tailoring of crystal size and diffraction quality, significantly reducing the time, effort and amount of expensive protein material required for structure determination. Full Article text
era A thermal-gradient approach to variable-temperature measurements resolved in space By scripts.iucr.org Published On :: 2020-04-23 Temperature is a ubiquitous environmental variable used to explore materials structure, properties and reactivity. This article reports a new paradigm for variable-temperature measurements that varies the temperature continuously across a sample such that temperature is measured as a function of sample position and not time. The gradient approach offers advantages over conventional variable-temperature studies, in which temperature is scanned during a series measurement, in that it improves the efficiency with which a series of temperatures can be probed and it allows the sample evolution at multiple temperatures to be measured in parallel to resolve kinetic and thermodynamic effects. Applied to treat samples at a continuum of temperatures prior to measurements at ambient temperature, the gradient approach enables parametric studies of recovered systems, eliminating temperature-dependent structural and chemical variations to simplify interpretation of the data. The implementation of spatially resolved variable-temperature measurements presented here is based on a gradient-heater design that uses a 3D-printed ceramic template to guide the variable pitch of the wire in a resistively heated wire-wound heater element. The configuration of the gradient heater was refined on the basis of thermal modelling. Applications of the gradient heater to quantify thermal-expansion behaviour, to map metastable polymorphs recovered to ambient temperature, and to monitor the time- and temperature-dependent phase evolution in a complex solid-state reaction are demonstrated. Full Article text
era Energetics of interactions in the solid state of 2-hydroxy-8-X-quinoline derivatives (X = Cl, Br, I, S-Ph): comparison of Hirshfeld atom, X-ray wavefunction and multipole refinements By scripts.iucr.org Published On :: 2019-07-15 In this work, two methods of high-resolution X-ray data refinement: multipole refinement (MM) and Hirshfeld atom refinement (HAR) – together with X-ray wavefunction refinement (XWR) – are applied to investigate the refinement of positions and anisotropic thermal motion of hydrogen atoms, experiment-based reconstruction of electron density, refinement of anharmonic thermal vibrations, as well as the effects of excluding the weakest reflections in the refinement. The study is based on X-ray data sets of varying quality collected for the crystals of four quinoline derivatives with Cl, Br, I atoms and the -S-Ph group as substituents. Energetic investigations are performed, comprising the calculation of the energy of intermolecular interactions, cohesive and geometrical relaxation energy. The results obtained for experimentally derived structures are verified against the values calculated for structures optimized using dispersion-corrected periodic density functional theory. For the high-quality data sets (the Cl and -S-Ph compounds), both MM and XWR could be successfully used to refine the atomic displacement parameters and the positions of hydrogen atoms; however, the bond lengths obtained with XWR were more precise and closer to the theoretical values. In the application to the more challenging data sets (the Br and I compounds), only XWR enabled free refinement of hydrogen atom geometrical parameters, nevertheless, the results clearly showed poor data quality. For both refinement methods, the energy values (intermolecular interactions, cohesive and relaxation) calculated for the experimental structures were in similar agreement with the values associated with the optimized structures – the most significant divergences were observed when experimental geometries were biased by poor data quality. XWR was found to be more robust in avoiding incorrect distortions of the reconstructed electron density as a result of data quality issues. Based on the problem of anharmonic thermal motion refinement, this study reveals that for the most correct interpretation of the obtained results, it is necessary to use the complete data set, including the weak reflections in order to draw conclusions. Full Article text
era Ligand pathways in neuroglobin revealed by low-temperature photodissociation and docking experiments By scripts.iucr.org Published On :: 2019-07-10 A combined biophysical approach was applied to map gas-docking sites within murine neuroglobin (Ngb), revealing snapshots of events that might govern activity and dynamics in this unique hexacoordinate globin, which is most likely to be involved in gas-sensing in the central nervous system and for which a precise mechanism of action remains to be elucidated. The application of UV–visible microspectroscopy in crystallo, solution X-ray absorption near-edge spectroscopy and X-ray diffraction experiments at 15–40 K provided the structural characterization of an Ngb photolytic intermediate by cryo-trapping and allowed direct observation of the relocation of carbon monoxide within the distal heme pocket after photodissociation. Moreover, X-ray diffraction at 100 K under a high pressure of dioxygen, a physiological ligand of Ngb, unravelled the existence of a storage site for O2 in Ngb which coincides with Xe-III, a previously described docking site for xenon or krypton. Notably, no other secondary sites were observed under our experimental conditions. Full Article text
era Catalytically important damage-free structures of a copper nitrite reductase obtained by femtosecond X-ray laser and room-temperature neutron crystallography By scripts.iucr.org Published On :: 2019-06-23 Copper-containing nitrite reductases (CuNiRs) that convert NO2− to NO via a CuCAT–His–Cys–CuET proton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å. Here, for the first time, the damage-free structure of the resting state of one of the most studied CuNiRs was obtained by combining X-ray free-electron laser (XFEL) and neutron crystallography. This represents the first direct comparison of neutron and XFEL structural data for any protein. In addition, damage-free structures of the reduced and nitrite-bound forms have been obtained to high resolution from cryogenically maintained crystals by XFEL crystallography. It is demonstrated that AspCAT and HisCAT are deprotonated in the resting state of CuNiRs at pH values close to the optimum for activity. A bridging neutral water (D2O) is positioned with one deuteron directed towards AspCAT Oδ1 and one towards HisCAT N∊2. The catalytic T2Cu-ligated water (W1) can clearly be modelled as a neutral D2O molecule as opposed to D3O+ or OD−, which have previously been suggested as possible alternatives. The bridging water restricts the movement of the unprotonated AspCAT and is too distant to form a hydrogen bond to the O atom of the bound nitrite that interacts with AspCAT. Upon the binding of NO2− a proton is transferred from the bridging water to the Oδ2 atom of AspCAT, prompting electron transfer from T1Cu to T2Cu and reducing the catalytic redox centre. This triggers the transfer of a proton from AspCAT to the bound nitrite, enabling the reaction to proceed. Full Article text
era Why is interoperability between the two fields of chemical crystallography and protein crystallography so difficult? By scripts.iucr.org Published On :: 2019-08-13 The interoperability of chemical and biological crystallographic data is a key challenge to research and its application to pharmaceutical design. Research attempting to combine data from the two disciplines, small-molecule or chemical crystallography (CX) and macromolecular crystallography (MX), will face unique challenges including variations in terminology, software development, file format and databases which differ significantly from CX to MX. This perspective overview spans the two disciplines and originated from the investigation of protein binding to model radiopharmaceuticals. The opportunities of interlinked research while utilizing the two databases of the CSD (Cambridge Structural Database) and the PDB (Protein Data Bank) will be highlighted. The advantages of software that can handle multiple file formats and the circuitous route to convert organometallic small-molecule structural data for use in protein refinement software will be discussed. In addition some pointers to avoid being shipwrecked will be shared, such as the care which must be taken when interpreting data precision involving small molecules versus proteins. Full Article text
era A new small-angle X-ray scattering model for polymer spherulites with a limited lateral size of the lamellar crystals By scripts.iucr.org Published On :: 2019-08-31 As is well known, polymers commonly form lamellar crystals, and these assemble further into lamellar stacks and spherulites during quiescent crystallization. Fifty years ago, Vonk and Kortleve constructed the classical small-angle X-ray scattering theory (SAXS) for a lamellar system, in which it was assumed that the lamellar stack had an infinite lateral size [Vonk & Kortleve (1967), Kolloid Z. Z. Polym. 220, 19–24]. Under this assumption, only crystal planes satisfying the Bragg condition can form strong scattering, and the scattering from the lamellar stack arises from the difference between the scattering intensities in the amorphous and crystalline layers, induced by the incident X-ray beam. This assumption is now deemed unreasonable. In a real polymer spherulite, the lamellar crystal commonly has dimensions of only a few hundred nanometres. At such a limited lateral size, lamellar stacks in a broad orientation have similar scattering, so interference between these lamellar stacks must be considered. Scattering from lamellar stacks parallel to the incident X-ray beam also needs to be considered when total reflection occurs. In this study, various scattering contributions from lamellar stacks in a spherulite are determined. It is found that, for a limited lateral size, the scattering induced by the incident X-ray beam is not the main origin of SAXS. It forms double peaks, which are not observed in real scattering because of destructive interference between the lamellar stacks. The scattering induced by the evanescent wave is the main origin. It can form a similar interference pattern to that observed in a real SAXS measurement: a Guinier region in the small-q range, a signal region in the intermediate-q range and a Porod region in the high-q range. It is estimated that, to avoid destructive interference, the lateral size needs to be greater than 11 µm, which cannot be satisfied in a real lamellar system. Therefore, SAXS in a real polymer system arises largely from the scattering induced by the evanescent wave. Evidence for the existence of the evanescent wave was identified in the scattering of isotactic polypropylene. This study corrects a long-term misunderstanding of SAXS in a polymer lamellar system. Full Article text
era High-throughput structures of protein–ligand complexes at room temperature using serial femtosecond crystallography By scripts.iucr.org Published On :: 2019-10-10 High-throughput X-ray crystal structures of protein–ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein–ligand complexes using SFX. Full Article text
era Consistency and variability of cocrystals containing positional isomers: the self-assembly evolution mechanism of supramolecular synthons of cresol–piperazine By scripts.iucr.org Published On :: 2019-10-09 The disposition of functional groups can induce variations in the nature and type of interactions and hence affect the molecular recognition and self-assembly mechanism in cocrystals. To better understand the formation of cocrystals on a molecular level, the effects of disposition of functional groups on the formation of cocrystals were systematically and comprehensively investigated using cresol isomers (o-, m-, p-cresol) as model compounds. Consistency and variability in these cocrystals containing positional isomers were found and analyzed. The structures, molecular recognition and self-assembly mechanism of supramolecular synthons in solution and in their corresponding cocrystals were verified by a combined experimental and theoretical calculation approach. It was found that the heterosynthons (heterotrimer or heterodimer) combined with O—H⋯N hydrogen bonding played a significant role. Hirshfeld surface analysis and computed interaction energy values were used to determine the hierarchical ordering of the weak interactions. The quantitative analyses of charge transfers and molecular electrostatic potential were also applied to reveal and verify the reasons for consistency and variability. Finally, the molecular recognition, self-assembly and evolution process of the supramolecular synthons in solution were investigated. The results confirm that the supramolecular synthon structures formed initially in solution would be carried over to the final cocrystals, and the supramolecular synthon structures are the precursors of cocrystals and the information memory of the cocrystallization process, which is evidence for classical nucleation theory. Full Article text
era Throughput and resolution with a next-generation direct electron detector By scripts.iucr.org Published On :: 2019-10-24 Direct electron detectors (DEDs) have revolutionized cryo-electron microscopy (cryo-EM) by facilitating the correction of beam-induced motion and radiation damage, and also by providing high-resolution image capture. A new-generation DED, the DE64, has been developed by Direct Electron that has good performance in both integrating and counting modes. The camera has been characterized in both modes in terms of image quality, throughput and resolution of cryo-EM reconstructions. The modulation transfer function, noise power spectrum and detective quantum efficiency (DQE) were determined for both modes, as well as the number of images per unit time. Although the DQE for counting mode was superior to that for integrating mode, the data-collection throughput for this mode was more than ten times slower. Since throughput and resolution are related in single-particle cryo-EM, data for apoferritin were collected and reconstructed using integrating mode, integrating mode in conjunction with a Volta phase plate (VPP) and counting mode. Only the counting-mode data resulted in a better than 3 Å resolution reconstruction with similar numbers of particles, and this increased performance could not be compensated for by the increased throughput of integrating mode or by the increased low-frequency contrast of integrating mode with the VPP. These data show that the superior image quality provided by counting mode is more important for high-resolution cryo-EM reconstructions than the superior throughput of integrating mode. Full Article text
era Charge density view on bicalutamide molecular interactions in the monoclinic polymorph and androgen receptor binding pocket By scripts.iucr.org Published On :: 2020-01-01 High-resolution single-crystal X-ray measurements of the monoclinic polymorph of bicalutamide and the aspherical atom databank approach have served as a basis for a reconstruction of the charge density distribution of the drug and its androgen receptor (AR) and albumin complexes. The contributions of various types of intermolecular interactions to the total crystal energy or ligand:AR energy were estimated. The cyan and amide groups secured the ligand placement in the albumin (Lys-137) and the AR binding pocket (Leu-704, Asn-705, Arg-752), and also determined the packing of the small-molecule crystals. The total electrostatic interaction energy on average was −230 kJ mol−1, comparable with the electrostatic lattice energy of the monoclinic bicalutamide polymorph. This is the result of similar distributions of electropositive and electronegative regions on the experimental and theoretical molecular electrostatic potential maps despite differences in molecular conformations. In general, bicalutamide interacted with the studied proteins with similar electrostatic interaction energies and adjusted its conformation and electrostatic potential to fit the binding pocket in such a way as to enhance the interactions, e.g. hydrogen bonds and π⋯π stacking. Full Article text
era Distinguishing contributions of ceramic matrix and binder metal to the plasticity of nanocrystalline cermets By scripts.iucr.org Published On :: 2020-01-01 Using the typical WC–Co cemented carbide as an example, the interactions of dislocations within the ceramic matrix and the binder metal, as well as the possible cooperation and competition between the matrix and binder during deformation of the nanocrystalline cermets, were studied by molecular dynamics simulations. It was found that at the same level of strain, the dislocations in Co have more complex configurations in the cermet with higher Co content. With loading, the ratio between mobile and sessile dislocations in Co becomes stable earlier in the high-Co cermet. The strain threshold for the nucleation of dislocations in WC increases with Co content. At the later stage of deformation, the growth rate of WC dislocation density increases more rapidly in the cermet with lower Co content, which exhibits an opposite tendency compared with Co dislocation density. The relative contribution of Co and WC to the plasticity of the cermet varies in the deformation process. With a low Co content, the density of WC dislocations becomes higher than that of Co dislocations at larger strains, indicating that WC may contribute more than Co to the plasticity of the nanocrystalline cermet at the final deformation stage. The findings in the present work will be applicable to a large variety of ceramic–metal composite materials. Full Article text
era Operando X-ray scattering study of thermoelectric β-Zn4Sb3 By scripts.iucr.org Published On :: 2020-01-01 The application of thermoelectrics for energy harvesting depends strongly on operational reliability and it is therefore desirable to investigate the structural integrity of materials under operating conditions. We have developed an operando setup capable of simultaneously measuring X-ray scattering data and electrical resistance on pellets subjected to electrical current. Here, operando investigations of β-Zn4Sb3 are reported at current densities of 0.5, 1.14 and 2.3 A mm−2. At 0.5 A mm−2 no sample decomposition is observed, but Rietveld refinements reveal increased zinc occupancy from the anode to the cathode demonstrating zinc migration under applied current. At 1.14 A mm−2 β-Zn4Sb3 decomposes into ZnSb, but pair distribution function analysis shows that Zn2Sb2 units are preserved during the decomposition. This identifies the mobile zinc in β-Zn4Sb3 as the linkers between the Zn2Sb2 units. At 2.3 A mm−2 severe Joule heating triggers transition into the γ-Zn4Sb3 phase, which eventually decomposes into ZnSb, demonstrating Zn ion mobility also in γ-Zn4Sb3 under electrical current. Full Article text
era Extraordinary structural complexity of ilmajokite: a multilevel hierarchical framework structure of natural origin By scripts.iucr.org Published On :: 2020-01-01 The crystal structure of ilmajokite, a rare Na-K-Ba-Ce-titanosilicate from the Khibiny mountains, Kola peninsula, Russia, has been solved using single-crystal X-ray diffraction data. The crystal structure is based on a 3D titanosilicate framework consisting of trigonal prismatic titanosilicate (TPTS) clusters centered by Ce3+ in [9]-coordination. Four adjacent TPTS clusters are linked into four-membered rings within the (010) plane and connected via ribbons parallel to 101. The ribbons are organized into layers parallel to (010) and modulated along the a axis with a modulation wavelength of csinβ = 32.91 Å and an amplitude of ∼b/2 = 13.89 Å. The layers are linked by additional silicate tetrahedra. Na+, K+, Ba2+ and H2O groups occur in the framework cavities and have different occupancies and coordination environments. The crystal structure of ilmajokite can be separated into eight hierarchical levels: atoms, coordination polyhedra, TPTS clusters, rings, ribbons, layers, the framework and the whole structure. The information-based analysis allows estimation of the complexity of the structure as 8.468 bits per atom and 11990.129 bits per cell. According to this analysis, ilmajokite is the third-most complex mineral known to date after ewingite and morrisonite, and is the most complex mineral framework structure, comparable in complexity to paulingite-(Ca) (11 590.532 bits per cell). Full Article text
era On the mechanism of solid-state phase transitions in molecular crystals – the role of cooperative motion in (quasi)racemic linear amino acids By scripts.iucr.org Published On :: 2020-02-27 During single-crystal-to-single-crystal (SCSC) phase transitions, a polymorph of a compound can transform to a more stable form while remaining in the solid state. By understanding the mechanism of these transitions, strategies can be developed to control this phenomenon. This is particularly important in the pharmaceutical industry, but also relevant for other industries such as the food and agrochemical industries. Although extensive literature exists on SCSC phase transitions in inorganic crystals, it is unclear whether their classications and mechanisms translate to molecular crystals, with weaker interactions and more steric hindrance. A comparitive study of SCSC phase transitions in aliphatic linear-chain amino acid crystals, both racemates and quasi-racemates, is presented. A total of 34 transitions are considered and most are classified according to their structural change during the transition. Transitions without torsional changes show very different characteristics, such as transition temperature, enthalpy and free energy, compared with transitions that involve torsional changes. These differences can be rationalized using classical nucleation theory and in terms of a difference in mechanism; torsional changes occur in a molecule-by-molecule fashion, whereas transitions without torsional changes involve cooperative motion with multiple molecules at the same time. Full Article text
era Expression and interactions of stereochemically active lone pairs and their relation to structural distortions and thermal conductivity By scripts.iucr.org Published On :: 2020-03-31 In chemistry, stereochemically active lone pairs are typically described as an important non-bonding effect, and recent interest has centred on understanding the derived effect of lone pair expression on physical properties such as thermal conductivity. To manipulate such properties, it is essential to understand the conditions that lead to lone pair expression and provide a quantitative chemical description of their identity to allow comparison between systems. Here, density functional theory calculations are used first to establish the presence of stereochemically active lone pairs on antimony in the archetypical chalcogenide MnSb2O4. The lone pairs are formed through a similar mechanism to those in binary post-transition metal compounds in an oxidation state of two less than their main group number [e.g. Pb(II) and Sb(III)], where the degree of orbital interaction (covalency) determines the expression of the lone pair. In MnSb2O4 the Sb lone pairs interact through a void space in the crystal structure, and their their mutual repulsion is minimized by introducing a deflection angle. This angle increases significantly with decreasing Sb—Sb distance introduced by simulating high pressure, thus showing the highly destabilizing nature of the lone pair interactions. Analysis of the chemical bonding in MnSb2O4 shows that it is dominated by polar covalent interactions with significant contributions both from charge accumulation in the bonding regions and from charge transfer. A database search of related ternary chalcogenide structures shows that, for structures with a lone pair (SbX3 units), the degree of lone pair expression is largely determined by whether the antimony–chalcogen units are connected or not, suggesting a cooperative effect. Isolated SbX3 units have larger X—Sb—X bond angles and therefore weaker lone pair expression than connected units. Since increased lone pair expression is equivalent to an increased orbital interaction (covalent bonding), which typically leads to increased heat conduction, this can explain the previously established correlation between larger bond angles and lower thermal conductivity. Thus, it appears that for these chalcogenides, lone pair expression and thermal conductivity may be related through the degree of covalency of the system. Full Article text
era Structural and functional characterization of CMP-N-acetylneuraminate synthetase from Vibrio cholerae By scripts.iucr.org Published On :: 2019-05-31 Several pathogenic bacteria utilize sialic acid, including host-derived N-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, including Neisseria meningitidis, Haemophilus influenzae, Pasteurella multocida and Vibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, from Vibrio cholerae are reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+ in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure of V. cholerae CMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process. Full Article text
era Structural comparison of protiated, H/D-exchanged and deuterated human carbonic anhydrase IX By scripts.iucr.org Published On :: 2019-08-22 Human carbonic anhydrase IX (CA IX) expression is upregulated in hypoxic solid tumours, promoting cell survival and metastasis. This observation has made CA IX a target for the development of CA isoform-selective inhibitors. To enable structural studies of CA IX–inhibitor complexes using X-ray and neutron crystallography, a CA IX surface variant (CA IXSV; the catalytic domain with six surface amino-acid substitutions) has been developed that can be routinely crystallized. Here, the preparation of protiated (H/H), H/D-exchanged (H/D) and deuterated (D/D) CA IXSV for crystallographic studies and their structural comparison are described. Four CA IXSV X-ray crystal structures are compared: two H/H crystal forms, an H/D crystal form and a D/D crystal form. The overall active-site organization in each version is essentially the same, with only minor positional changes in active-site solvent, which may be owing to deuteration and/or resolution differences. Analysis of the crystal unit-cell packing reveals different crystallographic and noncrystallographic dimers of CA IXSV compared with previous reports. To our knowledge, this is the first report comparing three different deuterium-labelled crystal structures of the same protein, marking an important step in validating the active-site structure of CA IXSV for neutron protein crystallography. Full Article text
era Non-merohedral twinning: from minerals to proteins By scripts.iucr.org Published On :: 2019-11-19 In contrast to twinning by merohedry, the reciprocal lattices of the different domains of non-merohedral twins do not overlap exactly. This leads to three kinds of reflections: reflections with no overlap, reflections with an exact overlap and reflections with a partial overlap of a reflection from a second domain. This complicates the unit-cell determination, indexing, data integration and scaling of X-ray diffraction data. However, with hindsight it is possible to detwin the data because there are reflections that are not affected by the twinning. In this article, the successful solution and refinement of one mineral, one organometallic and two protein non-merohedral twins using a common strategy are described. The unit-cell constants and the orientation matrices were determined by the program CELL_NOW. The data were then integrated with SAINT. TWINABS was used for scaling, empirical absorption corrections and the generation of two different data files, one with detwinned data for structure solution and refinement and a second one for (usually more accurate) structure refinement against total integrated intensities. The structures were solved by experimental phasing using SHELXT for the first two structures and SHELXC/D/E for the two protein structures; all models were refined with SHELXL. Full Article text
era What is the structural chemistry of the living organism at its temperature and pressure? By scripts.iucr.org Published On :: 2020-02-06 The three probes of the structure of matter (X-rays, neutrons and electrons) in biology have complementary properties and strengths. The balance between these three probes within their strengths and weaknesses is perceived to change, even dramatically so at times. For the study of combined states of order and disorder, NMR crystallography is also applicable. Of course, to understand biological systems the required perspectives are surely physiologically relevant temperatures and relevant chemical conditions, as well as a minimal perturbation owing to the needs of the probe itself. These remain very tough challenges because, for example, cryoEM by its very nature will never be performed at room temperature, crystallization often requires nonphysiological chemical conditions, and X-rays and electrons cause beam damage. However, integrated structural biology techniques and functional assays provide a package towards physiological relevance of any given study. Reporting of protein crystal structures, and their associated database entries, could usefully indicate how close to the biological situation they are, as discussed in detail in this feature article. Full Article text
era ALEPH: a network-oriented approach for the generation of fragment-based libraries and for structure interpretation By scripts.iucr.org Published On :: 2020-02-26 The analysis of large structural databases reveals general features and relationships among proteins, providing useful insight. A different approach is required to characterize ubiquitous secondary-structure elements, where flexibility is essential in order to capture small local differences. The ALEPH software is optimized for the analysis and the extraction of small protein folds by relying on their geometry rather than on their sequence. The annotation of the structural variability of a given fold provides valuable information for fragment-based molecular-replacement methods, in which testing alternative model hypotheses can succeed in solving difficult structures when no homology models are available or are successful. ARCIMBOLDO_BORGES combines the use of composite secondary-structure elements as a search model with density modification and tracing to reveal the rest of the structure when both steps are successful. This phasing method relies on general fold libraries describing variations around a given pattern of β-sheets and helices extracted using ALEPH. The program introduces characteristic vectors defined from the main-chain atoms as a way to describe the geometrical properties of the structure. ALEPH encodes structural properties in a graph network, the exploration of which allows secondary-structure annotation, decomposition of a structure into small compact folds, generation of libraries of models representing a variation of a given fold and finally superposition of these folds onto a target structure. These functions are available through a graphical interface designed to interactively show the results of structure manipulation, annotation, fold decomposition, clustering and library generation. ALEPH can produce pictures of the graphs, structures and folds for publication purposes. Full Article text
era From space group to space groupoid: the partial symmetry of low-temperature E-vanillyl oxime By scripts.iucr.org Published On :: 2019-07-23 The phase transition of E-vanillyl oxime {1-[(E)-(hydroxyimino)methyl]-4-hydroxy-3-methoxybenzene, C8H9NO3} has been analysed by single-crystal and powder X-ray diffraction. The high-temperature (HT) phase (P21/a, Z' = 1) transforms into the low-temperature (LT) phase (threefold superstructure, Poverline{1}, Z' = 6) at ca 190 K. The point operations lost on cooling, {m[010], 2[010]}, are retained as twin operations and constitute the twin law. The screw rotations and glide reflections are retained in the LT phase as partial operations acting on a subset of Euclidean space {b E}^3. The full symmetry of the LT phase, including partial operations, is described by a disconnected space groupoid which is built of three connected components. Full Article text
era The influence of deuteration on the crystal structure of hybrid halide perovskites: a temperature-dependent neutron diffraction study of FAPbBr3 By scripts.iucr.org Published On :: 2020-03-20 This paper discusses the full structural solution of the hybrid perovskite formamidinium lead tribromide (FAPbBr3) and its temperature-dependent phase transitions in the range from 3 K to 300 K using neutron powder diffraction and synchrotron X-ray diffraction. Special emphasis is put on the influence of deuteration on formamidinium, its position in the unit cell and disordering in comparison to fully hydrogenated FAPbBr3. The temperature-dependent measurements show that deuteration critically influences the crystal structures, i.e. results in partially-ordered temperature-dependent structural modifications in which two symmetry-independent molecule positions with additional dislocation of the molecular centre atom and molecular angle inclinations are present. Full Article text
era Volt-per-Ångstrom terahertz fields from X-ray free-electron lasers By scripts.iucr.org Published On :: 2020-04-29 The electron linear accelerators driving modern X-ray free-electron lasers can emit intense, tunable, quasi-monochromatic terahertz (THz) transients with peak electric fields of V Å−1 and peak magnetic fields in excess of 10 T when a purpose-built, compact, superconducting THz undulator is implemented. New research avenues such as X-ray movies of THz-driven mode-selective chemistry come into reach by making dual use of the ultra-short GeV electron bunches, possible by a rather minor extension of the infrastructure. Full Article text
era A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method By scripts.iucr.org Published On :: 2019-06-14 The room-temperature experiment has been revisited for macromolecular crystallography. Despite being limited by radiation damage, such experiments reveal structural differences depending on temperature, and it is expected that they will be able to probe structures that are physiologically alive. For such experiments, the humid-air and glue-coating (HAG) method for humidity-controlled experiments is proposed. The HAG method improves the stability of most crystals in capillary-free experiments and is applicable at both cryogenic and ambient temperatures. To expand the thermal versatility of the HAG method, a new humidifier and a protein-crystal-handling workbench have been developed. The devices provide temperatures down to 4°C and successfully maintain growth at that temperature of bovine cytochrome c oxidase crystals, which are highly sensitive to temperature variation. Hence, the humidifier and protein-crystal-handling workbench have proved useful for temperature-sensitive samples and will help reveal temperature-dependent variations in protein structures. Full Article text
era Correlative vibrational spectroscopy and 2D X-ray diffraction to probe the mineralization of bone in phosphate-deficient mice By scripts.iucr.org Published On :: 2019-08-23 Bone crystallite chemistry and structure change during bone maturation. However, these properties of bone can also be affected by limited uptake of the chemical constituents of the mineral by the animal. This makes probing the effect of bone-mineralization-related diseases a complicated task. Here it is shown that the combination of vibrational spectroscopy with two-dimensional X-ray diffraction can provide unparalleled information on the changes in bone chemistry and structure associated with different bone pathologies (phosphate deficiency) and/or health conditions (pregnancy, lactation). Using a synergistic analytical approach, it was possible to trace the effect that changes in the remodelling regime have on the bone mineral chemistry and structure in normal and mineral-deficient (hypophosphatemic) mice. The results indicate that hypophosphatemic mice have increased bone remodelling, increased carbonate content and decreased crystallinity of the bone mineral, as well as increased misalignment of crystallites within the bone tissue. Pregnant and lactating mice that are normal and hypophosphatemic showed changes in the chemistry and misalignment of the apatite crystals that can be related to changes in remodelling rates associated with different calcium demand during pregnancy and lactation. Full Article text
era POWGEN: rebuild of a third-generation powder diffractometer at the Spallation Neutron Source By scripts.iucr.org Published On :: 2019-10-01 The neutron powder diffractometer POWGEN at the Spallation Neutron Source has recently (2017–2018) undergone an upgrade which resulted in an increased detector complement along with a full overhaul of the structural design of the instrument. The current instrument has a solid angular coverage of 1.2 steradians and maintains the original third-generation concept, providing a single-histogram data set over a wide d-spacing range and high resolution to access large unit cells, detailed structural refinements and in situ/operando measurements. Full Article text
era Li-ion half-cells studied operando during cycling by small-angle neutron scattering By scripts.iucr.org Published On :: 2020-01-31 Small-angle neutron scattering (SANS) was recently applied to the in situ and operando study of the charge/discharge process in Li-ion battery full-cells based on a pouch cell design. Here, this work is continued in a half-cell with a graphite electrode cycled versus a metallic lithium counter electrode, in a study conducted on the SANS-1 instrument of the neutron source FRM II at the Heinz Maier-Leibnitz Zentrum in Garching, Germany. It is confirmed that the SANS integrated intensity signal varies as a function of graphite lithiation, and this variation can be explained by changes in the squared difference in scattering length density between graphite and the electrolyte. The scattering contrast change upon graphite lithiation/delithiation calculated from a multi-phase neutron scattering model is in good agreement with the experimentally measured values. Due to the finite coherence length, the observed SANS contrast, which mostly stems from scattering between the (lithiated) graphite and the electrolyte phase, contains local information on the mesoscopic scale, which allows the development of lithiated phases in the graphite to be followed. The shape of the SANS signal curve can be explained by a core–shell model with step-wise (de)lithiation from the surface. Here, for the first time, X-ray diffraction, SANS and theory are combined to give a full picture of graphite lithiation in a half-cell. The goal of this contribution is to confirm the correlation between the integrated SANS data obtained during operando measurements of an Li-ion half-cell and the electrochemical processes of lithiation/delithiation in micro-scaled graphite particles. For a deeper understanding of this correlation, modelling and experimental data for SANS and results from X-ray diffraction were taken into account. Full Article text
era A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method By journals.iucr.org Published On :: A new temperature-controllable humidifier for X-ray diffraction has been developed. It is shown that the humidifier can successfully maintain protein crystal growth at a temperature lower than room temperature. Full Article text
era Optimization of crystallization of biological macromolecules using dialysis combined with temperature control By journals.iucr.org Published On :: This article describes rational strategies for the optimization of crystal growth using precise in situ control of the temperature and chemical composition of the crystallization solution through dialysis, to generate crystals of the specific sizes required for different downstream structure determination approaches. Full Article text
era A thermal-gradient approach to variable-temperature measurements resolved in space By journals.iucr.org Published On :: A new approach to variable-temperature measurements is presented, where the sample temperature changes continuously as a function of position. Full Article text
era The modulated low-temperature structure of malayaite, CaSnOSiO4 By scripts.iucr.org Published On :: 2020-04-16 The crystal structure of the mineral malayaite has been studied by single-crystal X-ray diffraction at a temperature of 20 K and by calculation of its phonon dispersion using density functional perturbation theory. The X-ray diffraction data show first-order satellite diffraction maxima at positions q = 0.2606 (8)b*, that are absent at room temperature. The computed phonon dispersion indicates unstable modes associated with dynamic displacements of the Ca atoms. The largest-frequency modulus of these phonon instabilities is located close to a wavevector of q = 0.3b*. These results indicate that the malayaite crystal structure is incommensurately modulated by static displacement of the Ca atoms at low temperatures, caused by the softening of an optic phonon with Bg symmetry. Full Article text
era The modulated low-temperature structure of malayaite, CaSnOSiO4 By journals.iucr.org Published On :: The crystal structure of malayaite, CaSnOSiO4, at T = 20 K has been refined, based on the presence of satellite reflections with a modulation vector of 0.26b*. The structural modulation is attributed to a soft optic phonon, dominated by motion of the Ca atoms. Full Article text
era Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway By journals.iucr.org Published On :: Insights were obtained into the structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway for the biosynthesis of lysine. Full Article text
era Structure of the dihydrolipoamide succinyltransferase catalytic domain from Escherichia coli in a novel crystal form: a tale of a common protein crystallization contaminant By scripts.iucr.org Published On :: 2019-08-29 The crystallization of amidase, the ultimate enzyme in the Trp-dependent auxin-biosynthesis pathway, from Arabidopsis thaliana was attempted using protein samples with at least 95% purity. Cube-shaped crystals that were assumed to be amidase crystals that belonged to space group I4 (unit-cell parameters a = b = 128.6, c = 249.7 Å) were obtained and diffracted to 3.0 Å resolution. Molecular replacement using structures from the PDB containing the amidase signature fold as search models was unsuccessful in yielding a convincing solution. Using the Sequence-Independent Molecular replacement Based on Available Databases (SIMBAD) program, it was discovered that the structure corresponded to dihydrolipoamide succinyltransferase from Escherichia coli (PDB entry 1c4t), which is considered to be a common crystallization contaminant protein. The structure was refined to an Rwork of 23.0% and an Rfree of 27.2% at 3.0 Å resolution. The structure was compared with others of the same protein deposited in the PDB. This is the first report of the structure of dihydrolipoamide succinyltransferase isolated without an expression tag and in this novel crystal form. Full Article text
era Crystal structure of an oxidized mutant of human mitochondrial branched-chain aminotransferase By scripts.iucr.org Published On :: 2020-01-01 This study presents the crystal structure of a thiol variant of the human mitochondrial branched-chain aminotransferase protein. Human branched-chain aminotransferase (hBCAT) catalyzes the transamination of the branched-chain amino acids leucine, valine and isoleucine and α-ketoglutarate to their respective α-keto acids and glutamate. hBCAT activity is regulated by a CXXC center located approximately 10 Å from the active site. This redox-active center facilitates recycling between the reduced and oxidized states, representing hBCAT in its active and inactive forms, respectively. Site-directed mutagenesis of the redox sensor (Cys315) results in a significant loss of activity, with no loss of activity reported on the mutation of the resolving cysteine (Cys318), which allows the reversible formation of a disulfide bond between Cys315 and Cys318. The crystal structure of the oxidized form of the C318A variant was used to better understand the contributions of the individual cysteines and their oxidation states. The structure reveals the modified CXXC center in a conformation similar to that in the oxidized wild type, supporting the notion that its regulatory mechanism depends on switching the Cys315 side chain between active and inactive conformations. Moreover, the structure reveals conformational differences in the N-terminal and inter-domain region that may correlate with the inactivated state of the CXXC center. Full Article text
era The thermodynamic profile and molecular interactions of a C(9)-cytisine derivative-binding acetylcholine-binding protein from Aplysia californica By scripts.iucr.org Published On :: 2020-02-03 Cytisine, a natural product with high affinity for clinically relevant nicotinic acetylcholine receptors (nAChRs), is used as a smoking-cessation agent. The compound displays an excellent clinical profile and hence there is an interest in derivatives that may be further improved or find use in the treatment of other conditions. Here, the binding of a cytisine derivative modified by the addition of a 3-(hydroxypropyl) moiety (ligand 4) to Aplysia californica acetylcholine-binding protein (AcAChBP), a surrogate for nAChR orthosteric binding sites, was investigated. Isothermal titration calorimetry revealed that the favorable binding of cytisine and its derivative to AcAChBP is driven by the enthalpic contribution, which dominates an unfavorable entropic component. Although ligand 4 had a less unfavorable entropic contribution compared with cytisine, the affinity for AcAChBP was significantly diminished owing to the magnitude of the reduction in the enthalpic component. The high-resolution crystal structure of the AcAChBP–4 complex indicated close similarities in the protein–ligand interactions involving the parts of 4 common to cytisine. The point of difference, the 3-(hydroxypropyl) substituent, appears to influence the conformation of the Met133 side chain and helps to form an ordered solvent structure at the edge of the orthosteric binding site. Full Article text
era Appalachian Trail survey aims hidden cameras at large predators By insider.si.edu Published On :: Wed, 20 May 2009 16:56:18 +0000 Describing his project of counting bears, bobcats and other predatory mammals along the Appalachian Trail, National Zoological Park wildlife ecologist William McShea looks to American literature for a comparison. The post Appalachian Trail survey aims hidden cameras at large predators appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity conservation conservation biology Smithsonian's National Zoo
era Camera traps & radio collars reveal hoarding strategies of the South American agouti By insider.si.edu Published On :: Wed, 02 Dec 2009 14:53:22 +0000 In a series of ongoing experiments on Barro Colorado Island in the Panama Canal, Kays and other researchers are using camera traps, radio collars and palm nuts with tracking transmitters attached to them to take a closer look at the nut-hoarding strategies of the agouti. The post Camera traps & radio collars reveal hoarding strategies of the South American agouti appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity camera traps mammals South America Tropical Research Institute
era New study sees mother’s milk as a communications link that shapes infant temperament By insider.si.edu Published On :: Tue, 02 Mar 2010 17:39:48 +0000 The study found that infants whose mothers had higher levels of available milk energy soon after their birth, coped more effectively (moved around more, explored more, ate and drank) and showed greater confidence (were more playful, exploratory, curious and active) with this novel situation. The post New study sees mother’s milk as a communications link that shapes infant temperament appeared first on Smithsonian Insider. Full Article Animals Anthropology Research News Science & Nature mammals primates Smithsonian's National Zoo
era Shera, a 5-year-old lioness at the National Zoological Park By insider.si.edu Published On :: Thu, 09 Sep 2010 13:30:48 +0000 On Aug, 31, the Smithsonian’s National Zoo welcomed this year’s second litter of African lion (Panthera leo) cubs. Five-year-old Shera (shown at right) gave birth […] The post Shera, a 5-year-old lioness at the National Zoological Park appeared first on Smithsonian Insider. Full Article Animals Spotlight animal births conservation endangered species mammals Smithsonian's National Zoo veterinary medicine
era GPS and camera traps to replace radio antennas in tracking animals on Barro Colorado Island By insider.si.edu Published On :: Tue, 07 Dec 2010 16:03:40 +0000 On the Smithsonian Tropical Research Institute's Barro Colorado Island in the Panama Canal, staff members are taking down a network of seven tall Automated Radio Telemetry System towers used to track animals wearing radio-transmitters. Scientists on the island are switching to GPS and camera trap systems to produce more data with less infrastructure. The post GPS and camera traps to replace radio antennas in tracking animals on Barro Colorado Island appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature camera traps climate change conservation conservation biology technology Tropical Research Institute
era Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals By insider.si.edu Published On :: Mon, 24 Jan 2011 17:43:02 +0000 A recent experiment by scientists at the Smithsonian Tropical Research Institute in Panama has revealed just how rising atmospheric carbon dioxide will deliver a one-two […] The post Rising ocean temperatures and acidity may deliver deadly one-two punch to the world’s corals appeared first on Smithsonian Insider. Full Article Marine Science Research News Science & Nature biodiversity carbon dioxide climate change coral reefs ocean acidification Tropical Research Institute
era New interactive World Wide Telescope tour chronicles career of Harvard-Smithsonian astronomer John Huchra By insider.si.edu Published On :: Fri, 28 Jan 2011 12:43:50 +0000 To honor Harvard-Smithsonian astronomer John Huchra, who passed away in October 2010, his friends and colleagues at the Harvard-Smithsonian Center for Astrophysics have created a […] The post New interactive World Wide Telescope tour chronicles career of Harvard-Smithsonian astronomer John Huchra appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astrophysics Center for Astrophysics | Harvard & Smithsonian
era Surprise! Rare animals caught on camera at “Smithsonian WILD!” By insider.si.edu Published On :: Thu, 24 Feb 2011 19:18:18 +0000 Smithsonian WILD! a new Web site from the Smithsonian Conservation Biology Institute designed to showcase the use of motion-triggered 'camera traps' by Smithsonian researchers, has been launched at the Web address siwild.si.edu. The post Surprise! Rare animals caught on camera at “Smithsonian WILD!” appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature biodiversity camera traps conservation biology endangered species mammals Smithsonian Conservation Biology Institute Smithsonian's National Zoo
era Tiny creatures collected 100 years ago confirm accelerating carbon uptake in Antarctic Ocean By insider.si.edu Published On :: Thu, 03 Mar 2011 15:16:46 +0000 Tiny Antarctic marine creatures collected 100 years ago by British Royal Navy explorer Robert Falcon Scott are giving scientists new clues about polar environmental change. The post Tiny creatures collected 100 years ago confirm accelerating carbon uptake in Antarctic Ocean appeared first on Smithsonian Insider. Full Article Animals Marine Science Research News Science & Nature carbon dioxide climate change conservation biology National Museum of Natural History
era New candidate for “coldest star” is same temperature as a hot cup of coffee By insider.si.edu Published On :: Thu, 24 Mar 2011 14:58:26 +0000 There is a new candidate for coldest known star: a brown dwarf with about the same temperature as a hot cup of coffee. That’s cool enough to begin crossing the blurry line between small cold stars and big hot planets. The post New candidate for “coldest star” is same temperature as a hot cup of coffee appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory
era Harvard-Smithsonian Center for Astrophysics to own and operate ALMA Vertex Prototype Antenna By insider.si.edu Published On :: Tue, 05 Apr 2011 17:56:54 +0000 The Harvard-Smithsonian Center for Astrophysics has been selected by the National Science Foundation as the recipient of a 12-meter (39-foot) radio antenna designed for submillimeter-wavelength astronomy. The ALMA Vertex Prototype Antenna was one of three antennas built as prototypes for the Atacama Large Millimeter Array, a 66-dish radio observatory currently being constructed in Chile. The post Harvard-Smithsonian Center for Astrophysics to own and operate ALMA Vertex Prototype Antenna appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astronomy biodiversity Center for Astrophysics | Harvard & Smithsonian technology
era Top 10 gallery celebrates the Infrared Array Camera aboard the Spitzer Space Telescope By insider.si.edu Published On :: Mon, 16 Apr 2012 15:34:13 +0000 For the last 1,000 days the Infrared Array Camera, aboard NASA’s Spitzer Space Telescope, has been operating continuously to probe the universe from its most distant regions to our local solar neighborhood. The post Top 10 gallery celebrates the Infrared Array Camera aboard the Spitzer Space Telescope appeared first on Smithsonian Insider. Full Article Science & Nature Space astronomy astrophysics Center for Astrophysics | Harvard & Smithsonian Smithsonian Astrophysical Observatory
era Zoo scientists find sudden stream temperature changes boost hellbender immune systems By insider.si.edu Published On :: Tue, 10 Sep 2013 18:24:39 +0000 Hellbenders, aquatic salamanders from the eastern United States, are surprisingly good at dealing with unpredictable weather. In a recent study published in the Journal of […] The post Zoo scientists find sudden stream temperature changes boost hellbender immune systems appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature carbon dioxide climate change conservation conservation biology Smithsonian Conservation Biology Institute Smithsonian's National Zoo