general

Eighth annual report of the directors of the Glasgow Asylum for Lunatics, submitted, in terms of their charter, to a general meeting of contributors, 3rd January, 1822.

Glasgow : Hedderwick, 1822.




general

Elements of general anatomy / translated from the last French edition of P.A. Béclard, with notes and corrections by Robert Knox.

Edinburgh : MacLachlan and Stewart, 1830.




general

Elements of general pathology / by John Fletcher ; edited by John J. Drysdale and John R. Russell.

Edinburgh : MacLachlan, Stewart, 1842.




general

Elements of mineralogy : containing a general introduction to the science, with descriptions of the species / by James Nicol.

Edinburgh : A. and C. Black, 1873.




general

Encyclographie des sciences medicales : repertoire general de ces sciences, au XIX siecle.

Bruxelles : Etablissement Encyclographique, 1833-46.




general

An enquiry into the source from whence the symptoms of the scurvy and of putrid fevers, arise : and into the seat which those affections occupy in the animal oeconomy; with a view of ascertaining a more just idea of putrid diseases than has generally been

London : printed for J. Dodsley, 1782.




general

Epitome of the laws affecting health now in force in this country / compiled for the use of the general public by J.V. Vesey Fitzgerald.

London : Waterlow Bros. & Layton, 1885.




general

Essai statistique sur la mortalite du Canton de Geneve, pendant l'anne 1838, consideree tant en general que sous le rapport nosologique / par Marc d' Espine.

Londres : Paris, 1840.




general

A new orchard, and garden: or, the best way for planting, grafting, and to make any ground good, for a rich orchard: : particularly in the north and generally for the whole common-wealth as in nature, reason, situation, and all probability, may and doth a

London : printed by W. Wilson, for E. Brewster, and George Sawbridge, at the Bible on Ludgate-Hill, neere Fleet-bridge, 1653.




general

Generalised cepstral models for the spectrum of vector time series

Maddalena Cavicchioli.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 605--631.

Abstract:
The paper treats the modeling of stationary multivariate stochastic processes via a frequency domain model expressed in terms of cepstrum theory. The proposed model nests the vector exponential model of [20] as a special case, and extends the generalised cepstral model of [36] to the multivariate setting, answering a question raised by the last authors in their paper. Contemporarily, we extend the notion of generalised autocovariance function of [35] to vector time series. Then we derive explicit matrix formulas connecting generalised cepstral and autocovariance matrices of the process, and prove the consistency and asymptotic properties of the Whittle likelihood estimators of model parameters. Asymptotic theory for the special case of the vector exponential model is a significant addition to the paper of [20]. We also provide a mathematical machinery, based on matrix differentiation, and computational methods to derive our results, which differ significantly from those employed in the univariate case. The utility of the proposed model is illustrated through Monte Carlo simulation from a bivariate process characterized by a high dynamic range, and an empirical application on time varying minimum variance hedge ratios through the second moments of future and spot prices in the corn commodity market.




general

A general drift estimation procedure for stochastic differential equations with additive fractional noise

Fabien Panloup, Samy Tindel, Maylis Varvenne.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1075--1136.

Abstract:
In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.




general

Generalized bounds for active subspaces

Mario Teixeira Parente, Jonas Wallin, Barbara Wohlmuth.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 917--943.

Abstract:
In this article, we consider scenarios in which traditional estimates for the active subspace method based on probabilistic Poincaré inequalities are not valid due to unbounded Poincaré constants. Consequently, we propose a framework that allows to derive generalized estimates in the sense that it enables to control the trade-off between the size of the Poincaré constant and a weaker order of the final error bound. In particular, we investigate independently exponentially distributed random variables in dimension two or larger and give explicit expressions for corresponding Poincaré constants showing their dependence on the dimension of the problem. Finally, we suggest possibilities for future work that aim for extending the class of distributions applicable to the active subspace method as we regard this as an opportunity to enlarge its usability.




general

Generalized probabilistic principal component analysis of correlated data

Principal component analysis (PCA) is a well-established tool in machine learning and data processing. The principal axes in PCA were shown to be equivalent to the maximum marginal likelihood estimator of the factor loading matrix in a latent factor model for the observed data, assuming that the latent factors are independently distributed as standard normal distributions. However, the independence assumption may be unrealistic for many scenarios such as modeling multiple time series, spatial processes, and functional data, where the outcomes are correlated. In this paper, we introduce the generalized probabilistic principal component analysis (GPPCA) to study the latent factor model for multiple correlated outcomes, where each factor is modeled by a Gaussian process. Our method generalizes the previous probabilistic formulation of PCA (PPCA) by providing the closed-form maximum marginal likelihood estimator of the factor loadings and other parameters. Based on the explicit expression of the precision matrix in the marginal likelihood that we derived, the number of the computational operations is linear to the number of output variables. Furthermore, we also provide the closed-form expression of the marginal likelihood when other covariates are included in the mean structure. We highlight the advantage of GPPCA in terms of the practical relevance, estimation accuracy and computational convenience. Numerical studies of simulated and real data confirm the excellent finite-sample performance of the proposed approach.




general

Generalized Nonbacktracking Bounds on the Influence

This paper develops deterministic upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particular, our bounds exploit r-nonbacktracking walks and Fortuin-Kasteleyn-Ginibre (FKG) type inequalities, and are computed by message passing algorithms. Further, we provide parameterized versions of the bounds that control the trade-off between efficiency and accuracy. Finally, the tightness of the bounds is illustrated on various network models.




general

Fast Rates for General Unbounded Loss Functions: From ERM to Generalized Bayes

We present new excess risk bounds for general unbounded loss functions including log loss and squared loss, where the distribution of the losses may be heavy-tailed. The bounds hold for general estimators, but they are optimized when applied to $eta$-generalized Bayesian, MDL, and empirical risk minimization estimators. In the case of log loss, the bounds imply convergence rates for generalized Bayesian inference under misspecification in terms of a generalization of the Hellinger metric as long as the learning rate $eta$ is set correctly. For general loss functions, our bounds rely on two separate conditions: the $v$-GRIP (generalized reversed information projection) conditions, which control the lower tail of the excess loss; and the newly introduced witness condition, which controls the upper tail. The parameter $v$ in the $v$-GRIP conditions determines the achievable rate and is akin to the exponent in the Tsybakov margin condition and the Bernstein condition for bounded losses, which the $v$-GRIP conditions generalize; favorable $v$ in combination with small model complexity leads to $ ilde{O}(1/n)$ rates. The witness condition allows us to connect the excess risk to an 'annealed' version thereof, by which we generalize several previous results connecting Hellinger and Rényi divergence to KL divergence.




general

Generalized Optimal Matching Methods for Causal Inference

We develop an encompassing framework for matching, covariate balancing, and doubly-robust methods for causal inference from observational data called generalized optimal matching (GOM). The framework is given by generalizing a new functional-analytical formulation of optimal matching, giving rise to the class of GOM methods, for which we provide a single unified theory to analyze tractability and consistency. Many commonly used existing methods are included in GOM and, using their GOM interpretation, can be extended to optimally and automatically trade off balance for variance and outperform their standard counterparts. As a subclass, GOM gives rise to kernel optimal matching (KOM), which, as supported by new theoretical and empirical results, is notable for combining many of the positive properties of other methods in one. KOM, which is solved as a linearly-constrained convex-quadratic optimization problem, inherits both the interpretability and model-free consistency of matching but can also achieve the $sqrt{n}$-consistency of well-specified regression and the bias reduction and robustness of doubly robust methods. In settings of limited overlap, KOM enables a very transparent method for interval estimation for partial identification and robust coverage. We demonstrate this in examples with both synthetic and real data.




general

Application of weighted and unordered majorization orders in comparisons of parallel systems with exponentiated generalized gamma components

Abedin Haidari, Amir T. Payandeh Najafabadi, Narayanaswamy Balakrishnan.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 150--166.

Abstract:
Consider two parallel systems, say $A$ and $B$, with respective lifetimes $T_{1}$ and $T_{2}$ wherein independent component lifetimes of each system follow exponentiated generalized gamma distribution with possibly different exponential shape and scale parameters. We show here that $T_{2}$ is smaller than $T_{1}$ with respect to the usual stochastic order (reversed hazard rate order) if the vector of logarithm (the main vector) of scale parameters of System $B$ is weakly weighted majorized by that of System $A$, and if the vector of exponential shape parameters of System $A$ is unordered mojorized by that of System $B$. By means of some examples, we show that the above results can not be extended to the hazard rate and likelihood ratio orders. However, when the scale parameters of each system divide into two homogeneous groups, we verify that the usual stochastic and reversed hazard rate orders can be extended, respectively, to the hazard rate and likelihood ratio orders. The established results complete and strengthen some of the known results in the literature.




general

A Jackson network under general regime

Yair Y. Shaki.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 532--548.

Abstract:
We consider a Jackson network in a general heavy traffic diffusion regime with the $alpha$-parametrization . We also assume that each customer may abandon the system while waiting. We show that in this regime the queue-length process converges to a multi-dimensional regulated Ornstein–Uhlenbeck process.




general

On a phase transition in general order spline regression. (arXiv:2004.10922v2 [math.ST] UPDATED)

In the Gaussian sequence model $Y= heta_0 + varepsilon$ in $mathbb{R}^n$, we study the fundamental limit of approximating the signal $ heta_0$ by a class $Theta(d,d_0,k)$ of (generalized) splines with free knots. Here $d$ is the degree of the spline, $d_0$ is the order of differentiability at each inner knot, and $k$ is the maximal number of pieces. We show that, given any integer $dgeq 0$ and $d_0in{-1,0,ldots,d-1}$, the minimax rate of estimation over $Theta(d,d_0,k)$ exhibits the following phase transition: egin{equation*} egin{aligned} inf_{widetilde{ heta}}sup_{ hetainTheta(d,d_0, k)}mathbb{E}_ heta|widetilde{ heta} - heta|^2 asymp_d egin{cases} kloglog(16n/k), & 2leq kleq k_0,\ klog(en/k), & k geq k_0+1. end{cases} end{aligned} end{equation*} The transition boundary $k_0$, which takes the form $lfloor{(d+1)/(d-d_0) floor} + 1$, demonstrates the critical role of the regularity parameter $d_0$ in the separation between a faster $log log(16n)$ and a slower $log(en)$ rate. We further show that, once encouraging an additional '$d$-monotonicity' shape constraint (including monotonicity for $d = 0$ and convexity for $d=1$), the above phase transition is eliminated and the faster $kloglog(16n/k)$ rate can be achieved for all $k$. These results provide theoretical support for developing $ell_0$-penalized (shape-constrained) spline regression procedures as useful alternatives to $ell_1$- and $ell_2$-penalized ones.




general

A priori generalization error for two-layer ReLU neural network through minimum norm solution. (arXiv:1912.03011v3 [cs.LG] UPDATED)

We focus on estimating emph{a priori} generalization error of two-layer ReLU neural networks (NNs) trained by mean squared error, which only depends on initial parameters and the target function, through the following research line. We first estimate emph{a priori} generalization error of finite-width two-layer ReLU NN with constraint of minimal norm solution, which is proved by cite{zhang2019type} to be an equivalent solution of a linearized (w.r.t. parameter) finite-width two-layer NN. As the width goes to infinity, the linearized NN converges to the NN in Neural Tangent Kernel (NTK) regime citep{jacot2018neural}. Thus, we can derive the emph{a priori} generalization error of two-layer ReLU NN in NTK regime. The distance between NN in a NTK regime and a finite-width NN with gradient training is estimated by cite{arora2019exact}. Based on the results in cite{arora2019exact}, our work proves an emph{a priori} generalization error bound of two-layer ReLU NNs. This estimate uses the intrinsic implicit bias of the minimum norm solution without requiring extra regularity in the loss function. This emph{a priori} estimate also implies that NN does not suffer from curse of dimensionality, and a small generalization error can be achieved without requiring exponentially large number of neurons. In addition the research line proposed in this paper can also be used to study other properties of the finite-width network, such as the posterior generalization error.




general

Margin-Based Generalization Lower Bounds for Boosted Classifiers. (arXiv:1909.12518v4 [cs.LG] UPDATED)

Boosting is one of the most successful ideas in machine learning. The most well-accepted explanations for the low generalization error of boosting algorithms such as AdaBoost stem from margin theory. The study of margins in the context of boosting algorithms was initiated by Schapire, Freund, Bartlett and Lee (1998) and has inspired numerous boosting algorithms and generalization bounds. To date, the strongest known generalization (upper bound) is the $k$th margin bound of Gao and Zhou (2013). Despite the numerous generalization upper bounds that have been proved over the last two decades, nothing is known about the tightness of these bounds. In this paper, we give the first margin-based lower bounds on the generalization error of boosted classifiers. Our lower bounds nearly match the $k$th margin bound and thus almost settle the generalization performance of boosted classifiers in terms of margins.




general

Mental Conditioning to Perform Common Operations in General Surgery Training

9783319911649 978-3-319-91164-9




general

General medicine and surgery for dental practitioners

Greenwood, M. (Mark), author.
9783319977379 (electronic book)




general

General Notices




general

Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data

Niansheng Tang, Xiaodong Yan, Xingqiu Zhao.

Source: The Annals of Statistics, Volume 48, Number 1, 607--627.

Abstract:
This article considers simultaneous variable selection and parameter estimation as well as hypothesis testing in censored survival models where a parametric likelihood is not available. For the problem, we utilize certain growing dimensional general estimating equations and propose a penalized generalized empirical likelihood, where the general estimating equations are constructed based on the semiparametric efficiency bound of estimation with given moment conditions. The proposed penalized generalized empirical likelihood estimators enjoy the oracle properties, and the estimator of any fixed dimensional vector of nonzero parameters achieves the semiparametric efficiency bound asymptotically. Furthermore, we show that the penalized generalized empirical likelihood ratio test statistic has an asymptotic central chi-square distribution. The conditions of local and restricted global optimality of weighted penalized generalized empirical likelihood estimators are also discussed. We present a two-layer iterative algorithm for efficient implementation, and investigate its convergence property. The performance of the proposed methods is demonstrated by extensive simulation studies, and a real data example is provided for illustration.




general

Linear hypothesis testing for high dimensional generalized linear models

Chengchun Shi, Rui Song, Zhao Chen, Runze Li.

Source: The Annals of Statistics, Volume 47, Number 5, 2671--2703.

Abstract:
This paper is concerned with testing linear hypotheses in high dimensional generalized linear models. To deal with linear hypotheses, we first propose the constrained partial regularization method and study its statistical properties. We further introduce an algorithm for solving regularization problems with folded-concave penalty functions and linear constraints. To test linear hypotheses, we propose a partial penalized likelihood ratio test, a partial penalized score test and a partial penalized Wald test. We show that the limiting null distributions of these three test statistics are $chi^{2}$ distribution with the same degrees of freedom, and under local alternatives, they asymptotically follow noncentral $chi^{2}$ distributions with the same degrees of freedom and noncentral parameter, provided the number of parameters involved in the test hypothesis grows to $infty$ at a certain rate. Simulation studies are conducted to examine the finite sample performance of the proposed tests. Empirical analysis of a real data example is used to illustrate the proposed testing procedures.




general

Semi-supervised inference: General theory and estimation of means

Anru Zhang, Lawrence D. Brown, T. Tony Cai.

Source: The Annals of Statistics, Volume 47, Number 5, 2538--2566.

Abstract:
We propose a general semi-supervised inference framework focused on the estimation of the population mean. As usual in semi-supervised settings, there exists an unlabeled sample of covariate vectors and a labeled sample consisting of covariate vectors along with real-valued responses (“labels”). Otherwise, the formulation is “assumption-lean” in that no major conditions are imposed on the statistical or functional form of the data. We consider both the ideal semi-supervised setting where infinitely many unlabeled samples are available, as well as the ordinary semi-supervised setting in which only a finite number of unlabeled samples is available. Estimators are proposed along with corresponding confidence intervals for the population mean. Theoretical analysis on both the asymptotic distribution and $ell_{2}$-risk for the proposed procedures are given. Surprisingly, the proposed estimators, based on a simple form of the least squares method, outperform the ordinary sample mean. The simple, transparent form of the estimator lends confidence to the perception that its asymptotic improvement over the ordinary sample mean also nearly holds even for moderate size samples. The method is further extended to a nonparametric setting, in which the oracle rate can be achieved asymptotically. The proposed estimators are further illustrated by simulation studies and a real data example involving estimation of the homeless population.




general

Isotonic regression in general dimensions

Qiyang Han, Tengyao Wang, Sabyasachi Chatterjee, Richard J. Samworth.

Source: The Annals of Statistics, Volume 47, Number 5, 2440--2471.

Abstract:
We study the least squares regression function estimator over the class of real-valued functions on $[0,1]^{d}$ that are increasing in each coordinate. For uniformly bounded signals and with a fixed, cubic lattice design, we establish that the estimator achieves the minimax rate of order $n^{-min{2/(d+2),1/d}}$ in the empirical $L_{2}$ loss, up to polylogarithmic factors. Further, we prove a sharp oracle inequality, which reveals in particular that when the true regression function is piecewise constant on $k$ hyperrectangles, the least squares estimator enjoys a faster, adaptive rate of convergence of $(k/n)^{min(1,2/d)}$, again up to polylogarithmic factors. Previous results are confined to the case $dleq2$. Finally, we establish corresponding bounds (which are new even in the case $d=2$) in the more challenging random design setting. There are two surprising features of these results: first, they demonstrate that it is possible for a global empirical risk minimisation procedure to be rate optimal up to polylogarithmic factors even when the corresponding entropy integral for the function class diverges rapidly; second, they indicate that the adaptation rate for shape-constrained estimators can be strictly worse than the parametric rate.




general

Generalized cluster trees and singular measures

Yen-Chi Chen.

Source: The Annals of Statistics, Volume 47, Number 4, 2174--2203.

Abstract:
In this paper we study the $alpha $-cluster tree ($alpha $-tree) under both singular and nonsingular measures. The $alpha $-tree uses probability contents within a set created by the ordering of points to construct a cluster tree so that it is well defined even for singular measures. We first derive the convergence rate for a density level set around critical points, which leads to the convergence rate for estimating an $alpha $-tree under nonsingular measures. For singular measures, we study how the kernel density estimator (KDE) behaves and prove that the KDE is not uniformly consistent but pointwise consistent after rescaling. We further prove that the estimated $alpha $-tree fails to converge in the $L_{infty }$ metric but is still consistent under the integrated distance. We also observe a new type of critical points—the dimensional critical points (DCPs)—of a singular measure. DCPs are points that contribute to cluster tree topology but cannot be defined using density gradient. Building on the analysis of the KDE and DCPs, we prove the topological consistency of an estimated $alpha $-tree.




general

Correction: Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects

Trang Quynh Nguyen, Elizabeth A. Stuart.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 518--520.




general

Feature selection for generalized varying coefficient mixed-effect models with application to obesity GWAS

Wanghuan Chu, Runze Li, Jingyuan Liu, Matthew Reimherr.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 276--298.

Abstract:
Motivated by an empirical analysis of data from a genome-wide association study on obesity, measured by the body mass index (BMI), we propose a two-step gene-detection procedure for generalized varying coefficient mixed-effects models with ultrahigh dimensional covariates. The proposed procedure selects significant single nucleotide polymorphisms (SNPs) impacting the mean BMI trend, some of which have already been biologically proven to be “fat genes.” The method also discovers SNPs that significantly influence the age-dependent variability of BMI. The proposed procedure takes into account individual variations of genetic effects and can also be directly applied to longitudinal data with continuous, binary or count responses. We employ Monte Carlo simulation studies to assess the performance of the proposed method and further carry out causal inference for the selected SNPs.




general

A general theory for preferential sampling in environmental networks

Joe Watson, James V. Zidek, Gavin Shaddick.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2662--2700.

Abstract:
This paper presents a general model framework for detecting the preferential sampling of environmental monitors recording an environmental process across space and/or time. This is achieved by considering the joint distribution of an environmental process with a site-selection process that considers where and when sites are placed to measure the process. The environmental process may be spatial, temporal or spatio-temporal in nature. By sharing random effects between the two processes, the joint model is able to establish whether site placement was stochastically dependent of the environmental process under study. Furthermore, if stochastic dependence is identified between the two processes, then inferences about the probability distribution of the spatio-temporal process will change, as will predictions made of the process across space and time. The embedding into a spatio-temporal framework also allows for the modelling of the dynamic site-selection process itself. Real-world factors affecting both the size and location of the network can be easily modelled and quantified. Depending upon the choice of the population of locations considered for selection across space and time under the site-selection process, different insights about the precise nature of preferential sampling can be obtained. The general framework developed in the paper is designed to be easily and quickly fit using the R-INLA package. We apply this framework to a case study involving particulate air pollution over the UK where a major reduction in the size of a monitoring network through time occurred. It is demonstrated that a significant response-biased reduction in the air quality monitoring network occurred, namely the relocation of monitoring sites to locations with the highest pollution levels, and the routine removal of sites at locations with the lowest. We also show that the network was consistently unrepresenting levels of particulate matter seen across much of GB throughout the operating life of the network. Finally we show that this may have led to a severe overreporting of the population-average exposure levels experienced across GB. This could have great impacts on estimates of the health effects of black smoke levels.




general

Kernel and wavelet density estimators on manifolds and more general metric spaces

Galatia Cleanthous, Athanasios G. Georgiadis, Gerard Kerkyacharian, Pencho Petrushev, Dominique Picard.

Source: Bernoulli, Volume 26, Number 3, 1832--1862.

Abstract:
We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established and discussed.




general

Convergence of the age structure of general schemes of population processes

Jie Yen Fan, Kais Hamza, Peter Jagers, Fima Klebaner.

Source: Bernoulli, Volume 26, Number 2, 893--926.

Abstract:
We consider a family of general branching processes with reproduction parameters depending on the age of the individual as well as the population age structure and a parameter $K$, which may represent the carrying capacity. These processes are Markovian in the age structure. In a previous paper ( Proc. Steklov Inst. Math. 282 (2013) 90–105), the Law of Large Numbers as $K o infty $ was derived. Here we prove the central limit theorem, namely the weak convergence of the fluctuation processes in an appropriate Skorokhod space. We also show that the limit is driven by a stochastic partial differential equation.




general

A Feynman–Kac result via Markov BSDEs with generalised drivers

Elena Issoglio, Francesco Russo.

Source: Bernoulli, Volume 26, Number 1, 728--766.

Abstract:
In this paper, we investigate BSDEs where the driver contains a distributional term (in the sense of generalised functions) and derive general Feynman–Kac formulae related to these BSDEs. We introduce an integral operator to give sense to the equation and then we show the existence of a strong solution employing results on a related PDE. Due to the irregularity of the driver, the $Y$-component of a couple $(Y,Z)$ solving the BSDE is not necessarily a semimartingale but a weak Dirichlet process.




general

Weak convergence of quantile and expectile processes under general assumptions

Tobias Zwingmann, Hajo Holzmann.

Source: Bernoulli, Volume 26, Number 1, 323--351.

Abstract:
We show weak convergence of quantile and expectile processes to Gaussian limit processes in the space of bounded functions endowed with an appropriate semimetric which is based on the concepts of epi- and hypo- convergence as introduced in A. Bücher, J. Segers and S. Volgushev (2014), ‘ When Uniform Weak Convergence Fails: Empirical Processes for Dependence Functions and Residuals via Epi- and Hypographs ’, Annals of Statistics 42 . We impose assumptions for which it is known that weak convergence with respect to the supremum norm generally fails to hold. For quantiles, we consider stationary observations, where the marginal distribution function is assumed to be strictly increasing and continuous except for finitely many points and to admit strictly positive – possibly infinite – left- and right-sided derivatives. For expectiles, we focus on independent and identically distributed (i.i.d.) observations. Only a finite second moment and continuity at the boundary points but no further smoothness properties of the distribution function are required. We also show consistency of the bootstrap for this mode of convergence in the i.i.d. case for quantiles and expectiles.




general

Generalized Multiple Importance Sampling

Víctor Elvira, Luca Martino, David Luengo, Mónica F. Bugallo.

Source: Statistical Science, Volume 34, Number 1, 129--155.

Abstract:
Importance sampling (IS) methods are broadly used to approximate posterior distributions or their moments. In the standard IS approach, samples are drawn from a single proposal distribution and weighted adequately. However, since the performance in IS depends on the mismatch between the targeted and the proposal distributions, several proposal densities are often employed for the generation of samples. Under this multiple importance sampling (MIS) scenario, extensive literature has addressed the selection and adaptation of the proposal distributions, interpreting the sampling and weighting steps in different ways. In this paper, we establish a novel general framework with sampling and weighting procedures when more than one proposal is available. The new framework encompasses most relevant MIS schemes in the literature, and novel valid schemes appear naturally. All the MIS schemes are compared and ranked in terms of the variance of the associated estimators. Finally, we provide illustrative examples revealing that, even with a good choice of the proposal densities, a careful interpretation of the sampling and weighting procedures can make a significant difference in the performance of the method.




general

Retail stores in Fort William First Nation reopen to general public

Retail stores in Fort William First Nation (FWFN) reopened to the general public on May 5, but they are under new operating requirements, the band council announced Friday. However, the residential area of the First Nation remains accessible only to people who live in the community.



  • News/Canada/Thunder Bay

general

General Pediatric Attending Physicians' and Residents' Knowledge of Inpatient Hospital Finances

Physicians have little knowledge of health care costs and charges. Studies suggest that education and awareness of hospital finances can decrease unnecessary utilization of resources. Little is known about pediatricians’ awareness of the economics of health care delivery in the inpatient setting.

Both general pediatric attending physicians and trainees acknowledged a limited understanding of hospital finances, and they demonstrated a lack of awareness of costs, charges, and reimbursements for inpatient care. (Read the full article)




general

General Movements in Very Preterm Children and Neurodevelopment at 2 and 4 Years

Assessment of general movements (GM) in early infancy is predictive of adverse neurologic outcome, particularly cerebral palsy. There is limited evidence of the predictive value of GM for other domains of neurodevelopment such as language and cognitive impairment.

Abnormal GM in preterm infants in the first 3 months postterm are predictive of a range of neurodevelopmental outcomes in early childhood. GM at 3 months are more accurate at distinguishing later neurodevelopment impairment than those at 1 month. (Read the full article)




general

US Attorney General William Barr Has Encryption All Wrong

Attorney General William Barr has a completely wrong-headed take on encryption, and he's not the only one. Adding backdoors to secure services is a terrible idea, despite its popularity with law enforcement.




general

Biden to scale up campaign as anxiety grows ahead of general election

Former Vice President Joe Biden has approved a series of new hires that will significantly expand his campaign ahead of the general election fight with President Trump.




general

Parliament to nominate new Auditor General for Scotland

The Scottish Parliament will next week (Tuesday 10 March) be invited to nominate Stephen Boyle to Her Majesty the Queen for appointment as the new Auditor General for Scotland.




general

Online tutor helps general public turn COVID-19 prevention efforts into action

Penn State researchers have developed a comprehensive online tutor to educate the general public about the science behind COVID-19 and appropriate steps anyone can take to help reduce its transmission.




general

Attorney General Jennings challenges Trump administration’s move to gut asylum seekers’ protections

Coalition of 21 attorneys general argues changes violate federal law and judicial precedent Attorney General Kathy Jennings joined Friday a group of 21 state attorneys general to challenge the Trump administration’s proposed changes to asylum standards. If implemented, these changes would allow the Executive branch to arbitrarily deny asylum claims to immigrants seeking haven from […]



  • Department of Justice
  • Department of Justice Press Releases
  • News

general

Attorney General Jennings Joins Lawsuit Opposing Trump Administration’s Rule Allowing Prolonged Detention of Children

Attorney General Kathy Jennings today announced that she is joining a lawsuit opposing the Trump Administration’s new rule circumventing the Flores Settlement Agreement, which has governed the treatment of children in immigration custody since 1997. In the complaint before the U.S. District Court for the Central District of California, the coalition argues that the rule eliminates several critical protections […]



  • Department of Justice
  • Department of Justice Press Releases
  • News

general

Attorney General seeks dissolution of 15 Delaware LLCs and corporations used for criminal activities

Fraudulent companies include shells owned by Manafort, Gates, and Cohen; others used to undermine democratic processes and launder drug money Attorney General Kathy Jennings announced Thursday that the she has filed actions in the state Court of Chancery to dissolve 15 Delaware business entities for involvement in criminal activities. State law allows the Attorney General […]



  • Department of Justice
  • Department of Justice Press Releases
  • News

general

Attorney General Kathy Jennings’ Statement on Conaway Verdict

Attorney General Kathy Jennings today released the following statement after a jury returned a guilty verdict against Clay Conaway for Rape 4th Degree: “The message today is no means no. I am grateful for the jury’s decision, for the work of our excellent trial team, for the investigative work of the Delaware State Police, and […]



  • Criminal Division
  • Department of Justice
  • Department of Justice Press Releases
  • Attorney General Kathy Jennings
  • Delaware Department of Justice

general

Attorney General Jennings Announces Multistate Settlement with Johnson & Johnson, Ethicon, Inc.

Delaware Attorney General Kathleen Jennings announced Thursday a multistate settlement with Johnson & Johnson and its subsidiary, Ethicon, Inc., for their deceptive marketing of transvaginal surgical mesh devices. A multistate investigation found the companies violated state consumer protection laws by misrepresenting the safety and effectiveness of the devices and failing to sufficiently disclose risks associated […]



  • Consumer Protection
  • Department of Justice
  • Department of Justice Press Releases
  • Attorney General Kathy Jennings
  • Delaware Department of Justice
  • Division of Fraud and Consumer Protection
  • Johnson & Johnson

general

Attorney General Jennings secures relief for over 120 teachers in connection with their retirement accounts

A broker-dealer operating in Delaware, Horace Mann Investors, Inc., has agreed to provide settlement payments to numerous customers with IRA accounts opened by one of its registered representatives, Dieter Hofmann.



  • Department of Justice
  • Department of Justice Press Releases
  • News