hr 3D Dymaxion Map animation for Safari, Chrome and Firefox By www.cssplay.co.uk Published On :: 2012-05-24 Using CSS3 transitions, transforms and keyframes to produce a 3D Dymaxion Map of the Earth's surface. Full Article
hr CSS play responsive 'swipe' slideshow version three By www.cssplay.co.uk Published On :: 2013-12-16 An update to the Swipe Me! slideshow to add extra fuctions and simplify usage. Full Article
hr Northwest Forest Plan-the first 10 years (1994-2003): socioeconomic monitoring of the Klamath National Forest and three local communities. By www.fs.fed.us Published On :: Thu, 06 Nov 2008 08:00:00 PST This report examines socioeconomic changes that took place between 1990 and 2003 on and around lands managed by the Klamath National Forest in California to assess the effects of the Northwest Forest Plan (the Plan) on rural economies and communities there. Three case communities were studied: Scott Valley, Butte Valley, and Mid-Klamath. Full Article
hr Northwest Forest Plan-The First 10 Years: Socioeconomic Monitoring of The Olympic National Forest and Three Local Communities By www.fs.fed.us Published On :: Mon, 31 Jul 2006 12:00:00 PST This report examines socioeconomic changes that occurred between 1990 and 2000 associated with implementation of the Northwest Forest Plan (the Plan) in the Olympic National Forest in western Washington. We used a combination of quantitative data from the U.S. census and the USDA Forest Service, historical documents, and interviews from Forest Service employees and members of three case study communities-Quilcene, the Lake Quinault area, and the Quinault Indian Nation. We explore how the Plan affected the flow of socioeconomic benefits associated with the Olympic National Forest, such as the production of forest commodities and forest-based recreation, agency jobs, procurement contract work for ecosystem management activities, grants for community economic assistance, payments to county governments, and opportunities for collaborative forest management. The greatest change in socioeconomic benefits derived from the forest was the curtailment of timber harvest activities. This not only affected timber industry jobs in local communities, but also resulted in declining agency budgets and staff reductions. Mitigation efforts varied. Ecosystem management contracts declined and shifted from labor-intensive to equipment-intensive activities, with about half of all contractors from the Olympic Peninsula. Economic assistance grants benefited communities that had the staff and resources to develop projects and apply for monies, but provided little benefit to communities without those resources. Payments to counties served as an important source of revenue for rural schools and roads. We also examine socioeconomic changes that occurred in the case study communities, and the influence of forest management policy on these changes. Between 1990 and 2000 all three communities showed a decrease in population, an increase in median age, a decline in timber industry-related employment, and an increase in service-industry and government jobs. Quilcene's proximity to the larger urban centers has attracted professional and service industry workers that commute to larger economic hubs. Lake Quinault area residents are increasingly turning to tourism, and its growing Latino population works in the cedar shake and floral greens industries. For the Quinault Indian Nation, employment in tribal government and its casino has helped offset job losses in the fishing and timber industries. Many changes observed in the communities were a result of the prior restructuring of the forest products industry, national economic trends, and demographic shifts. However, for Quilcene and Lake Quinault, which were highly dependent on the national forest for timber and served as Forest Service district headquarters, the loss of timber industry and Forest Service jobs associated with the Plan led to substantial job losses and crises in the economic and social capital of these communities. Full Article
hr Northwest Forest Plan (The First 10 Years 1994-2003): Socioeconomic Monitoring of Coos Bay District and Three Local Communities By www.fs.fed.us Published On :: Mon, 31 Jul 2006 14:26:36 PST This case study examines the socioeconomic changes that took place between 1990 and 2000 in and around lands managed by the Bureau of Land Management (BLM) Coos Bay District in southwestern Oregon for purposes of assessing the effects of the Northwest Forest Plan (the Plan) on rural economies and communities in the Coos Bay region. Full Article
hr User guide for HCR Estimator 2.0: software to calculate cost and revenue thresholds for harvesting small-diameter ponderosa pine By www.fs.fed.us Published On :: Thu, 22 May 2008 14:00:00 PST The HCR (Harvest Cost-Revenue) Estimator is engineering and financial analysis software used to evaluate stand-level financial thresholds for harvesting smalldiameter ponderosa pine (Pinus ponderosa Dougl. ex Laws.) in the Southwest United States. The Windows-based program helps contractors and planners to identify costs associated with tree selection, residual handling, transportation of raw materials, and equipment used. Costs are compared against total financial return for regionally based market opportunities to arrive at potential net profit. Information is used to identify per-acre cost thresholds, for contract appraisal, and for prioritizing project planning for wildfire fuel reduction treatments and forest restoration efforts. Full Article
hr A closer look at forests on the edge: future development on private forests in three states By www.fs.fed.us Published On :: Mon, 16 Jun 2008 09:15:00 PST Privately owned forests provide many public benefits, including clean water and air, wildlife habitat, and recreational opportunities. By 2030, 44.2 million acres of rural private forest land across the conterminous United States are projected to experience substantial increases in residential development. As housing density increases, the public benefits provided by private forests can be permanently altered. We examine factors behind projected patterns of residential development and conversion of private forest land by 2030 in northwestern Washington, southern Maine, and northwestern Georgia. Some key factors affecting the extent of future residential housing include (1) population growth from migration into an area; (2) historical settlement patterns, topography, and land ownership; and (3) land use planning and zoning. Full Article
hr Ecological foundations for fire management in North American forest and shrubland ecosystems By www.fs.fed.us Published On :: Thu, 19 Mar 2009 11:45:00 PST This synthesis provides an ecological foundation for management of the diverse ecosystems and fire regimes of North America, based on scientific principles of fire interactions with vegetation, fuels, and biophysical processes. Although a large amount of scientific data on fire exists, most of those data have been collected at small spatial and temporal scales. Thus, it is challenging to develop consistent science-based plans for large spatial and temporal scales where most fire management and planning occur. Understanding the regional geographic context of fire regimes is critical for developing appropriate and sustainable management strategies and policy. The degree to which human intervention has modified fire frequency, intensity, and severity varies greatly among different ecosystems, and must be considered when planning to alter fuel loads or implement restorative treatments. Detailed discussion of six ecosystems--ponderosa pine forest (western North America), chaparral (California), boreal forest (Alaska and Canada), Great Basin sagebrush (intermountain West), pine and pine-hardwood forests (Southern Appalachian Mountains), and longleaf pine (Southeastern United States)--illustrates the complexity of fire regimes and that fire management requires a clear regional focus that recognizes where conflicts might exist between fire hazard reduction and resource needs. In some systems, such as ponderosa pine, treatments are usually compatible with both fuel reduction and resource needs, whereas in others, such as chaparral, the potential exists for conflicts that need to be closely evaluated. Managing fire regimes in a changing climate and social environment requires a strong scientific basis for developing fire management and policy. Full Article
hr Oregon’s forest products industry and timber harvest, 2008: industry trends and impacts of the Great Recession through 2010. By www.fs.fed.us Published On :: Mon., 10 Sep 2012 13:00:00 PST This report traces the flow of Oregon’s 2008 timber harvest through the primary timber processing industry and provides a description of the structure, operation, and condition of Oregon’s forest products industry as a whole. It is the second in a series of reports that update the status of the industry every 5 years. Based on a census conducted in 2009 and 2010, we provide detailed information about the industry in 2008, and discuss historical changes as well as more recent trends in harvest, production, and sales. To convey the severe market and economic conditions that existed in 2008, 2009, and 2010, we also provide updated information on the industry and its inputs and outputs through 2010. Full Article
hr Rollins welcomed as Threat Characterization and Management Program Manager By www.fs.fed.us Published On :: 2017-03-02 The U.S. Forest Service’s Pacific Northwest (PNW) Research Station is pleased to announce the arrival of Matt Rollins as the Threat Characterization and Management (TCM) Program Manager. Full Article
hr New cost estimates for carbon sequestration through afforestation in the United States By www.fs.fed.us Published On :: Wed, 21 May 2014 9:55:00 PST This report provides new cost estimates for carbon sequestration through afforestation in the United States. We extend existing studies of carbon sequestration costs in several important ways, while ensuring the transparency of our approach. We clearly identify all components of our cost estimates so that other researchers can reconstruct our results as well as use our data for other purposes. Our cost estimates have five distinguishing features: (1) we estimate costs for each county in the contiguous United States; (2) we include afforestation of rangeland, in addition to cropland and pasture; (3) our opportunity cost estimates account for capitalized returns to future development (including associated option values) in addition to returns to agricultural production; (4) we develop a new set of forest establishment costs for each county; and (5) we incorporate data on Holdridge life zones to limit afforestation in locations where temperature and moisture availability prohibit forest growth. We find that at a carbon price of $50/ton, approximately 200 million tons of carbon would be sequestered annually through afforestation. At a price of $100/ton, an additional 100 million tons of carbon would be sequestered each year. Our estimates closely match those in earlier econometric studies for relatively low carbon prices, but diverge at higher carbon prices. Accounting for climatic constraints on forest expansion has important effects on cost estimates. Full Article
hr Climate change through an intersectional lens: gendered vulnerability and resilience in indigenous communities in the United States By www.fs.fed.us Published On :: Thur, 03 Mar 2016 9:55:00 PST Over the past decade, wood-energy use in Alaska has grown dramatically. Full Article
hr Economic and environmental benefits of community-scale cordwood hydronic heaters in Alaska—three case studies By www.fs.fed.us Published On :: Thur, 03 Mar 2016 9:55:00 PST Over the past decade, the use of wood for thermal energy in Alaska has grown significantly. Since 2000, nearly 30 new thermal wood-energy installations in Alaska have been established. Full Article
hr Oregon's forest products industry and timber harvest 2013 with trends through 2014. By www.fs.fed.us Published On :: Wed, 30 Nov 2016 9:55:00 PST This report traces the flow of Oregon's 2013 timber harvest through the primary wood products industry and provides detailed description of the structure, timber use, operations, and condition of Oregon's forest products sector. Full Article
hr Variation In Shrub and Herb Cover and Production On Ungrazed Pine and Sagebrush Sites In Eastern Oregon: A 27-Year Photomonitoring Study By www.fs.fed.us Published On :: Fri, 30 Mar 2007 09:30:00 PST Study objectives were to evaluate yearly fluctuations in herbage canopy cover and production to aid in defining characteristics of range condition guides. Sites are located in the forested Blue Mountains of central Oregon. They were selected from those used to develop range condition guides where soil, topographic, and vegetation parameters were measured as a characterization of best range condition. Plant community dominants were ponderosa pine/pinegrass, ponderosa pine/bitterbrush/Idaho fescue savanna, low sagebrush/bluebunch wheatgrass, and rigid sagebrush scabland. None of the sites were grazed during the previous 30 years or during the 27-year study. Each location was permanently marked by fence posts, and a meter board was placed 10 m down an established transect line. Photographs (color slides) were taken down the transect with closeups left and right of the meter board. Sampling was limited to August 1-4 each year when canopy cover and herbage production were determined. Both total canopy cover and herbage production varied by about a 2.4-fold difference on each site over the 27 years. Apparently "good range condition" may be something of a "running target" and lacks a well-defined set of parameters. Canopy cover is a poor parameter for characterizing range condition. Three of the four plant communities were dominated by bunchgrasses. Abundance of seedheads is commonly used to indicate good range health. But on these sites, seedheads were not produced about half the time. Because these sites were in "good range condition," lack of seedhead production may indicate maximum competition in the community. Maximum competition and maximum vigor do not seem to be synonymous. These bunchgrass communities varied in their greenness on the first of August each year from cured brown to rather vibrant green suggesting important annual differences in phenology. The pinegrass community, being dominated by rhizomatous species, showed surprising variance in seedhead production. Pinegrass did not flower, but Wheeler's bluegrass, lupine, and Scouler's woolyweed were quite variable, averaging inflorescences only 75 percent of the time. Full Article
hr Advances in threat assessment and their application to forest and rangeland management. By www.fs.fed.us Published On :: Tue, 14 Oct 2010 10:37:00 PST In July 2006, more than 170 researchers and managers from the United States, Canada, and Mexico convened in Boulder, Colorado, to discuss the state of the science in environmental threat assessment. This two-volume general technical report compiles peer-reviewed papers that were among those presented during the 3-day conference. Papers are organized by four broad topical sections—Land, Air and Water, Fire, and Pests/Biota—and are divided into syntheses and case studies. Full Article
hr Sculpture three times the size of the Angel of the North could still go-ahead By www.chroniclelive.co.uk Published On :: Sat, 9 May 2020 15:00:00 +0000 The design for a towering new tourist attraction known as the Elizabeth Landmark was selected in 2018, and divided public opinion Full Article North East News
hr Mum who battled cancer three times vows to 'never let terrible disease' beat her By www.chroniclelive.co.uk Published On :: Sat, 9 May 2020 15:00:00 +0000 Jackie Pexton, who is part of the Macmillian Toon Angels, has raised over £52,000 to show her support for the charity that has been a lifeline for her Full Article North East News
hr David Walliams threatens to 'sue' Simon Cowell over backstage crash By www.chroniclelive.co.uk Published On :: Sat, 9 May 2020 18:57:17 +0000 Simon Cowell took the while at the Britain's Got Talent auditions by David isn't happy when crashes into another vehicle Full Article TV
hr KOA/Denver Reaches Three Year Extension Deal To Air University Of Colorado Sports By www.allaccess.com Published On :: Thu, 07 May 2020 01:20:01 -0700 iHEARTMEDIA News-Talk KOA-A-K231AA-K231BQ/DENVER has agreed to a three-year extension of its deal with rightsholder LEARFIELD IMG COLLEGE's BUFFALO SPORTS PROPERTIES to serve as radio … more Full Article
hr Three NI recycling centres have reopened to the public By www.belfastlive.co.uk Published On :: Fri, 8 May 2020 04:00:00 +0000 It has been two weeks since Executive issued guidelines for reopening Full Article Belfast News
hr Christine and Frank Lampard's £12m Chelsea home burgled By www.belfastlive.co.uk Published On :: Fri, 8 May 2020 08:08:27 +0000 Around £60,000 worth of watches and jewellery were reportedly taken Full Article Belfast News
hr Shop workers facing increasing threats during Covid-19 pandemic By www.belfastlive.co.uk Published On :: Fri, 8 May 2020 20:06:10 +0000 Calls have been made for a zero tolerance policy against threats in essential stores Full Article News
hr US firm threatens Belfast cuts amid Covid-19 pandemic, union says By www.belfastlive.co.uk Published On :: Sat, 9 May 2020 04:00:00 +0000 "The threat to these workers' livelihoods is the height of corporate greed" says Unite Full Article News
hr Journalists at two Belfast newspapers threatened by loyalists By www.belfastlive.co.uk Published On :: Sat, 9 May 2020 09:40:09 +0000 Both newspapers are owned by Independent News and Media (INM) Full Article News
hr Stinger used to stop car in dramatic police chase through Co Antrim By www.belfastlive.co.uk Published On :: Sat, 9 May 2020 10:48:12 +0000 The car chase unfolded in the early hours of Saturday morning Full Article News
hr Cox Media Group Pres./CEO Kim Guthrie Exits By www.allaccess.com Published On :: Wed, 06 May 2020 06:22:08 -0700 COX MEDIA GROUP Pres./CEO KIM GUTHRIE has decided to move on from the organization after a 22-plus year career with the company. Executive Chairman STEVE PRUETT will serve as the Interim … more Full Article
hr Chris Oliviero Returns To Entercom As New York SVP/Market Manager By www.allaccess.com Published On :: Wed, 06 May 2020 06:31:42 -0700 CHRIS OLIVIERO has returned to ENTERCOM as SVP/Market Manager for the NEW YORK cluster, News WINS-A, News WCBS-A, Sports WFAN-A-F, Alternative WNYL (ALT 92.3), AC WNEW (NEW 102.7), Country … more Full Article
hr 41st Annual Blues Music Awards Winners Announced; Christone “Kingfish” Ingram The Big Winner By www.allaccess.com Published On :: Mon, 04 May 2020 12:23:35 -0700 On MAY 3rd, THE BLUES FOUNDATION – celebrating 40 years - held a virtual BLUE MUSIC AWARS (BMAs) ceremony. The 41st annual event was hosted by SHEMEKIA COPELAND, and the presenters … more Full Article
hr The new pandemic threat: People may die because they’re not calling 911 By newsroom.heart.org Published On :: Wed, 22 Apr 2020 21:00:00 GMT DALLAS, April 22, 2020 — Reports from the front lines of hospitals indicate a marked drop in the number of heart attacks and strokes nationally. But, COVID-19 is definitely not stopping people from having heart attacks, strokes and cardiac arrests. We ... Full Article
hr American Heart Association issues call to action to prevent venous thromboembolism in hospitalized patients By newsroom.heart.org Published On :: Thu, 07 May 2020 13:00:00 GMT Statement Highlights: The projected annual cost of preventable hospital-acquired venous thromboembolism (VTE) is $7 billion to $10 billion per year. Most estimates place the US annual incidence of diagnosed VTE in adults at 1 to 2 per 1000 per... Full Article
hr Miniature version of human vein allows study of deep vein thrombosis By newsroom.heart.org Published On :: Tue, 05 May 2020 14:00:00 GMT Research Highlights: The Vein-Chip device, a miniaturized version of a large human vein, allowed scientists to study changes in vein wall cells, blood flow and other functions that lead to deep vein thrombosis in humans. The device focused on venous ... Full Article
hr Move through the tough times, together, with tWitch and Allison Boss, dancing duo and TV personalities By newsroom.heart.org Published On :: Mon, 20 Apr 2020 17:00:00 GMT DALLAS, April 20, 2020 — With the coronavirus (COVID-19) pandemic changing the daily routines of many Americans, the American Heart Association, the leading voluntary health organization focused on heart and brain health for all, is committed to help... Full Article
hr The Three Levels of Emotional Design By feedproxy.google.com Published On :: Mon, 01 Jul 2019 13:54:57 +0000 To design positive emotional experiences you must understand human emotion. The subject of emotions is complex largely because everything we do is either influenced by, or directly caused by, emotion. Factor in the range and capacity different individuals have for emotion, add in the fact most emotions occur subconsciously, and round this out with the […] The post The Three Levels of Emotional Design appeared first on Psychology of Web Design | 3.7 Blog. Full Article Psychology of Design User Experience Web Design
hr The chronic and evolving neurological consequences of traumatic brain injury By feedproxy.google.com Published On :: Wed, 07 Aug 2019 15:48:01 EDT Traumatic brain injury (TBI) can have lifelong and dynamic effects on health and wellbeing. Research on the longterm consequences emphasises that, for many patients, TBI should be conceptualised as a chronic health condition. Evidence suggests that functional outcomes after TBI can show improvement or deterioration up to two decades after injury, and rates of all-cause mortality remain elevated for many years. Furthermore, TBI represents a risk factor for a variety of neurological illnesses, including epilepsy, stroke, and neurodegenerative disease. With respect to neurodegeneration after TBI, post-mortem studies on the long-term neuropathology after injury have identified complex persisting and evolving abnormalities best described as polypathology, which includes chronic traumatic encephalopathy. Despite growing awareness of the lifelong consequences of TBI, substantial gaps in research exist. Improvements are therefore needed in understanding chronic pathologies and their implications for survivors of TBI, which could inform long-term health management in this sizeable patient population. Full Article
hr Cedar Rapids RoughRiders, USHL conduct annual drafts despite uncertain times By feedproxy.google.com Published On :: Sun, 03 May 2020 12:15:38 PDT CEDAR RAPIDS — The United States Hockey League conducts its annual drafts Monday and Tuesday. It’s a 3 p.m. start for Monday’s Phase I draft of players with a 2004 birth date.... Full Article Minor League Sports
hr Big Ten extends suspension of team activities through June 1 By feedproxy.google.com Published On :: Mon, 04 May 2020 13:17:56 PDT Last week, University of Iowa President Bruce Harreld made some waves when he announced at a Board of Regents meeting UI athletics plans to resume practice on June 1. Monday, the Big Ten announced... Full Article Iowa Football
hr Cedar Rapids RoughRiders take son of longtime coach with 1st pick in USHL Draft, Phase I By feedproxy.google.com Published On :: Mon, 04 May 2020 16:38:37 PDT CEDAR RAPIDS — Yes, Mark Carlson is good friends with his father. But make zero mistake here. Cade Littler is a hockey player. That’s the biggest thing and why the Cedar Rapids... Full Article Minor League Sports
hr USHL Draft: Another Tonelli coming in for Cedar Rapids RoughRiders By feedproxy.google.com Published On :: Tue, 05 May 2020 17:44:07 PDT CEDAR RAPIDS — The Zmolek family has been good for the Cedar Rapids RoughRiders. Really good. The Tonelli family is right up there, too. Cedar Rapids selected Zack Tonelli with their... Full Article Minor League Sports
hr Tony Paoli steps down as Cedar Rapids RoughRiders high school hockey coach By feedproxy.google.com Published On :: Thu, 07 May 2020 12:48:12 PDT CEDAR RAPIDS — Tony Paoli announced Thursday that he is stepping down after four years as head coach of the Cedar Rapids RoughRiders high school hockey team. Paoli did amazing work, taking... Full Article Minor League Sports
hr Three Essential Follow-Up Emails Every WooCommerce Store Needs By feedproxy.google.com Published On :: Thu, 09 Apr 2020 15:00:00 +0000 It’s more important than ever to follow up with existing customers. Learn how to save a ton of time by automating your most important follow-up emails. The post Three Essential Follow-Up Emails Every WooCommerce Store Needs appeared first on WooCommerce. Full Article Blog Marketing
hr Through The Lens of Photographer Jessica Antola By www.fubiz.net Published On :: Sat, 09 May 2020 06:52:58 +0000 Au carrefour de la mode et de l’image documentaire, Jessica Antola photographie des tissus, mais avant tout des personnes. Elle construit avec eux une relation de confiance et en retour, ses modèles lui offrent une petite fenêtre ouverte sur leur vie. Tout d’abord, vous avez travaillé dans l’industrie de la mode. Ainsi, votre amour pour […] Full Article Photography Travel
hr Revolution Two: Chrome Theme By feedproxy.google.com Published On :: Sun, 03 May 2020 18:08:31 +0000 Benefits include the Chrome theme, unlimited theme support answered by our experts, customization techniques with our detailed theme tutorials and professional design services available by our list of recommended designers. The post Revolution Two: Chrome Theme appeared first on WPCult. Full Article Premium Premium Theme Revolution 2 Revolution Two: Chrome
hr NickThrolson.com By feedproxy.google.com Published On :: Sat, 09 May 2020 06:08:41 +0000 The post NickThrolson.com appeared first on WPCult. Full Article Showcase
hr Concurrency & Multithreading in iOS By feedproxy.google.com Published On :: Tue, 25 Feb 2020 08:00:00 -0500 Concurrency is the notion of multiple things happening at the same time. This is generally achieved either via time-slicing, or truly in parallel if multiple CPU cores are available to the host operating system. We've all experienced a lack of concurrency, most likely in the form of an app freezing up when running a heavy task. UI freezes don't necessarily occur due to the absence of concurrency — they could just be symptoms of buggy software — but software that doesn't take advantage of all the computational power at its disposal is going to create these freezes whenever it needs to do something resource-intensive. If you've profiled an app hanging in this way, you'll probably see a report that looks like this: Anything related to file I/O, data processing, or networking usually warrants a background task (unless you have a very compelling excuse to halt the entire program). There aren't many reasons that these tasks should block your user from interacting with the rest of your application. Consider how much better the user experience of your app could be if instead, the profiler reported something like this: Analyzing an image, processing a document or a piece of audio, or writing a sizeable chunk of data to disk are examples of tasks that could benefit greatly from being delegated to background threads. Let's dig into how we can enforce such behavior into our iOS applications. A Brief History In the olden days, the maximum amount of work per CPU cycle that a computer could perform was determined by the clock speed. As processor designs became more compact, heat and physical constraints started becoming limiting factors for higher clock speeds. Consequentially, chip manufacturers started adding additional processor cores on each chip in order to increase total performance. By increasing the number of cores, a single chip could execute more CPU instructions per cycle without increasing its speed, size, or thermal output. There's just one problem... How can we take advantage of these extra cores? Multithreading. Multithreading is an implementation handled by the host operating system to allow the creation and usage of n amount of threads. Its main purpose is to provide simultaneous execution of two or more parts of a program to utilize all available CPU time. Multithreading is a powerful technique to have in a programmer's toolbelt, but it comes with its own set of responsibilities. A common misconception is that multithreading requires a multi-core processor, but this isn't the case — single-core CPUs are perfectly capable of working on many threads, but we'll take a look in a bit as to why threading is a problem in the first place. Before we dive in, let's look at the nuances of what concurrency and parallelism mean using a simple diagram: In the first situation presented above, we observe that tasks can run concurrently, but not in parallel. This is similar to having multiple conversations in a chatroom, and interleaving (context-switching) between them, but never truly conversing with two people at the same time. This is what we call concurrency. It is the illusion of multiple things happening at the same time when in reality, they're switching very quickly. Concurrency is about dealing with lots of things at the same time. Contrast this with the parallelism model, in which both tasks run simultaneously. Both execution models exhibit multithreading, which is the involvement of multiple threads working towards one common goal. Multithreading is a generalized technique for introducing a combination of concurrency and parallelism into your program. The Burden of Threads A modern multitasking operating system like iOS has hundreds of programs (or processes) running at any given moment. However, most of these programs are either system daemons or background processes that have very low memory footprint, so what is really needed is a way for individual applications to make use of the extra cores available. An application (process) can have many threads (sub-processes) operating on shared memory. Our goal is to be able to control these threads and use them to our advantage. Historically, introducing concurrency to an app has required the creation of one or more threads. Threads are low-level constructs that need to be managed manually. A quick skim through Apple's Threaded Programming Guide is all it takes to see how much complexity threaded code adds to a codebase. In addition to building an app, the developer has to: Responsibly create new threads, adjusting that number dynamically as system conditions change Manage them carefully, deallocating them from memory once they have finished executing Leverage synchronization mechanisms like mutexes, locks, and semaphores to orchestrate resource access between threads, adding even more overhead to application code Mitigate risks associated with coding an application that assumes most of the costs associated with creating and maintaining any threads it uses, and not the host OS This is unfortunate, as it adds enormous levels of complexity and risk without any guarantees of improved performance. Grand Central Dispatch iOS takes an asynchronous approach to solving the concurrency problem of managing threads. Asynchronous functions are common in most programming environments, and are often used to initiate tasks that might take a long time, like reading a file from the disk, or downloading a file from the web. When invoked, an asynchronous function executes some work behind the scenes to start a background task, but returns immediately, regardless of how long the original task might takes to actually complete. A core technology that iOS provides for starting tasks asynchronously is Grand Central Dispatch (or GCD for short). GCD abstracts away thread management code and moves it down to the system level, exposing a light API to define tasks and execute them on an appropriate dispatch queue. GCD takes care of all thread management and scheduling, providing a holistic approach to task management and execution, while also providing better efficiency than traditional threads. Let's take a look at the main components of GCD: What've we got here? Let's start from the left: DispatchQueue.main: The main thread, or the UI thread, is backed by a single serial queue. All tasks are executed in succession, so it is guaranteed that the order of execution is preserved. It is crucial that you ensure all UI updates are designated to this queue, and that you never run any blocking tasks on it. We want to ensure that the app's run loop (called CFRunLoop) is never blocked in order to maintain the highest framerate. Subsequently, the main queue has the highest priority, and any tasks pushed onto this queue will get executed immediately. DispatchQueue.global: A set of global concurrent queues, each of which manage their own pool of threads. Depending on the priority of your task, you can specify which specific queue to execute your task on, although you should resort to using default most of the time. Because tasks on these queues are executed concurrently, it doesn't guarantee preservation of the order in which tasks were queued. Notice how we're not dealing with individual threads anymore? We're dealing with queues which manage a pool of threads internally, and you will shortly see why queues are a much more sustainable approach to multhreading. Serial Queues: The Main Thread As an exercise, let's look at a snippet of code below, which gets fired when the user presses a button in the app. The expensive compute function can be anything. Let's pretend it is post-processing an image stored on the device. import UIKit class ViewController: UIViewController { @IBAction func handleTap(_ sender: Any) { compute() } private func compute() -> Void { // Pretending to post-process a large image. var counter = 0 for _ in 0..<9999999 { counter += 1 } } } At first glance, this may look harmless, but if you run this inside of a real app, the UI will freeze completely until the loop is terminated, which will take... a while. We can prove it by profiling this task in Instruments. You can fire up the Time Profiler module of Instruments by going to Xcode > Open Developer Tool > Instruments in Xcode's menu options. Let's look at the Threads module of the profiler and see where the CPU usage is highest. We can see that the Main Thread is clearly at 100% capacity for almost 5 seconds. That's a non-trivial amount of time to block the UI. Looking at the call tree below the chart, we can see that the Main Thread is at 99.9% capacity for 4.43 seconds! Given that a serial queue works in a FIFO manner, tasks will always complete in the order in which they were inserted. Clearly the compute() method is the culprit here. Can you imagine clicking a button just to have the UI freeze up on you for that long? Background Threads How can we make this better? DispatchQueue.global() to the rescue! This is where background threads come in. Referring to the GCD architecture diagram above, we can see that anything that is not the Main Thread is a background thread in iOS. They can run alongside the Main Thread, leaving it fully unoccupied and ready to handle other UI events like scrolling, responding to user events, animating etc. Let's make a small change to our button click handler above: class ViewController: UIViewController { @IBAction func handleTap(_ sender: Any) { DispatchQueue.global(qos: .userInitiated).async { [unowned self] in self.compute() } } private func compute() -> Void { // Pretending to post-process a large image. var counter = 0 for _ in 0..<9999999 { counter += 1 } } } Unless specified, a snippet of code will usually default to execute on the Main Queue, so in order to force it to execute on a different thread, we'll wrap our compute call inside of an asynchronous closure that gets submitted to the DispatchQueue.global queue. Keep in mind that we aren't really managing threads here. We're submitting tasks (in the form of closures or blocks) to the desired queue with the assumption that it is guaranteed to execute at some point in time. The queue decides which thread to allocate the task to, and it does all the hard work of assessing system requirements and managing the actual threads. This is the magic of Grand Central Dispatch. As the old adage goes, you can't improve what you can't measure. So we measured our truly terrible button click handler, and now that we've improved it, we'll measure it once again to get some concrete data with regards to performance. Looking at the profiler again, it's quite clear to us that this is a huge improvement. The task takes an identical amount of time, but this time, it's happening in the background without locking up the UI. Even though our app is doing the same amount of work, the perceived performance is much better because the user will be free to do other things while the app is processing. You may have noticed that we accessed a global queue of .userInitiated priority. This is an attribute we can use to give our tasks a sense of urgency. If we run the same task on a global queue of and pass it a qos attribute of background , iOS will think it's a utility task, and thus allocate fewer resources to execute it. So, while we don't have control over when our tasks get executed, we do have control over their priority. A Note on Main Thread vs. Main Queue You might be wondering why the Profiler shows "Main Thread" and why we're referring to it as the "Main Queue". If you refer back to the GCD architecture we described above, the Main Queue is solely responsible for managing the Main Thread. The Dispatch Queues section in the Concurrency Programming Guide says that "the main dispatch queue is a globally available serial queue that executes tasks on the application’s main thread. Because it runs on your application’s main thread, the main queue is often used as a key synchronization point for an application." The terms "execute on the Main Thread" and "execute on the Main Queue" can be used interchangeably. Concurrent Queues So far, our tasks have been executed exclusively in a serial manner. DispatchQueue.main is by default a serial queue, and DispatchQueue.global gives you four concurrent dispatch queues depending on the priority parameter you pass in. Let's say we want to take five images, and have our app process them all in parallel on background threads. How would we go about doing that? We can spin up a custom concurrent queue with an identifier of our choosing, and allocate those tasks there. All that's required is the .concurrent attribute during the construction of the queue. class ViewController: UIViewController { let queue = DispatchQueue(label: "com.app.concurrentQueue", attributes: .concurrent) let images: [UIImage] = [UIImage].init(repeating: UIImage(), count: 5) @IBAction func handleTap(_ sender: Any) { for img in images { queue.async { [unowned self] in self.compute(img) } } } private func compute(_ img: UIImage) -> Void { // Pretending to post-process a large image. var counter = 0 for _ in 0..<9999999 { counter += 1 } } } Running that through the profiler, we can see that the app is now spinning up 5 discrete threads to parallelize a for-loop. Parallelization of N Tasks So far, we've looked at pushing computationally expensive task(s) onto background threads without clogging up the UI thread. But what about executing parallel tasks with some restrictions? How can Spotify download multiple songs in parallel, while limiting the maximum number up to 3? We can go about this in a few ways, but this is a good time to explore another important construct in multithreaded programming: semaphores. Semaphores are signaling mechanisms. They are commonly used to control access to a shared resource. Imagine a scenario where a thread can lock access to a certain section of the code while it executes it, and unlocks after it's done to let other threads execute the said section of the code. You would see this type of behavior in database writes and reads, for example. What if you want only one thread writing to a database and preventing any reads during that time? This is a common concern in thread-safety called Readers-writer lock. Semaphores can be used to control concurrency in our app by allowing us to lock n number of threads. let kMaxConcurrent = 3 // Or 1 if you want strictly ordered downloads! let semaphore = DispatchSemaphore(value: kMaxConcurrent) let downloadQueue = DispatchQueue(label: "com.app.downloadQueue", attributes: .concurrent) class ViewController: UIViewController { @IBAction func handleTap(_ sender: Any) { for i in 0..<15 { downloadQueue.async { [unowned self] in // Lock shared resource access semaphore.wait() // Expensive task self.download(i + 1) // Update the UI on the main thread, always! DispatchQueue.main.async { tableView.reloadData() // Release the lock semaphore.signal() } } } } func download(_ songId: Int) -> Void { var counter = 0 // Simulate semi-random download times. for _ in 0..<Int.random(in: 999999...10000000) { counter += songId } } } Notice how we've effectively restricted our download system to limit itself to k number of downloads. The moment one download finishes (or thread is done executing), it decrements the semaphore, allowing the managing queue to spawn another thread and start downloading another song. You can apply a similar pattern to database transactions when dealing with concurrent reads and writes. Semaphores usually aren't necessary for code like the one in our example, but they become more powerful when you need to enforce synchronous behavior whille consuming an asynchronous API. The above could would work just as well with a custom NSOperationQueue with a maxConcurrentOperationCount, but it's a worthwhile tangent regardless. Finer Control with OperationQueue GCD is great when you want to dispatch one-off tasks or closures into a queue in a 'set-it-and-forget-it' fashion, and it provides a very lightweight way of doing so. But what if we want to create a repeatable, structured, long-running task that produces associated state or data? And what if we want to model this chain of operations such that they can be cancelled, suspended and tracked, while still working with a closure-friendly API? Imagine an operation like this: This would be quite cumbersome to achieve with GCD. We want a more modular way of defining a group of tasks while maintaining readability and also exposing a greater amount of control. In this case, we can use Operation objects and queue them onto an OperationQueue, which is a high-level wrapper around DispatchQueue. Let's look at some of the benefits of using these abstractions and what they offer in comparison to the lower-level GCI API: You may want to create dependencies between tasks, and while you could do this via GCD, you're better off defining them concretely as Operation objects, or units of work, and pushing them onto your own queue. This would allow for maximum reusability since you may use the same pattern elsewhere in an application. The Operation and OperationQueue classes have a number of properties that can be observed, using KVO (Key Value Observing). This is another important benefit if you want to monitor the state of an operation or operation queue. Operations can be paused, resumed, and cancelled. Once you dispatch a task using Grand Central Dispatch, you no longer have control or insight into the execution of that task. The Operation API is more flexible in that respect, giving the developer control over the operation's life cycle. OperationQueue allows you to specify the maximum number of queued operations that can run simultaneously, giving you a finer degree of control over the concurrency aspects. The usage of Operation and OperationQueue could fill an entire blog post, but let's look at a quick example of what modeling dependencies looks like. (GCD can also create dependencies, but you're better off dividing up large tasks into a series of composable sub-tasks.) In order to create a chain of operations that depend on one another, we could do something like this: class ViewController: UIViewController { var queue = OperationQueue() var rawImage = UIImage? = nil let imageUrl = URL(string: "https://example.com/portrait.jpg")! @IBOutlet weak var imageView: UIImageView! let downloadOperation = BlockOperation { let image = Downloader.downloadImageWithURL(url: imageUrl) OperationQueue.main.async { self.rawImage = image } } let filterOperation = BlockOperation { let filteredImage = ImgProcessor.addGaussianBlur(self.rawImage) OperationQueue.main.async { self.imageView = filteredImage } } filterOperation.addDependency(downloadOperation) [downloadOperation, filterOperation].forEach { queue.addOperation($0) } } So why not opt for a higher level abstraction and avoid using GCD entirely? While GCD is ideal for inline asynchronous processing, Operation provides a more comprehensive, object-oriented model of computation for encapsulating all of the data around structured, repeatable tasks in an application. Developers should use the highest level of abstraction possible for any given problem, and for scheduling consistent, repeated work, that abstraction is Operation. Other times, it makes more sense to sprinkle in some GCD for one-off tasks or closures that we want to fire. We can mix both OperationQueue and GCD to get the best of both worlds. The Cost of Concurrency DispatchQueue and friends are meant to make it easier for the application developer to execute code concurrently. However, these technologies do not guarantee improvements to the efficiency or responsiveness in an application. It is up to you to use queues in a manner that is both effective and does not impose an undue burden on other resources. For example, it's totally viable to create 10,000 tasks and submit them to a queue, but doing so would allocate a nontrivial amount of memory and introduce a lot of overhead for the allocation and deallocation of operation blocks. This is the opposite of what you want! It's best to profile your app thoroughly to ensure that concurrency is enhancing your app's performance and not degrading it. We've talked about how concurrency comes at a cost in terms of complexity and allocation of system resources, but introducing concurrency also brings a host of other risks like: Deadlock: A situation where a thread locks a critical portion of the code and can halt the application's run loop entirely. In the context of GCD, you should be very careful when using the dispatchQueue.sync { } calls as you could easily get yourself in situations where two synchronous operations can get stuck waiting for each other. Priority Inversion: A condition where a lower priority task blocks a high priority task from executing, which effectively inverts their priorities. GCD allows for different levels of priority on its background queues, so this is quite easily a possibility. Producer-Consumer Problem: A race condition where one thread is creating a data resource while another thread is accessing it. This is a synchronization problem, and can be solved using locks, semaphores, serial queues, or a barrier dispatch if you're using concurrent queues in GCD. ...and many other sorts of locking and data-race conditions that are hard to debug! Thread safety is of the utmost concern when dealing with concurrency. Parting Thoughts + Further Reading If you've made it this far, I applaud you. Hopefully this article gives you a lay of the land when it comes to multithreading techniques on iOS, and how you can use some of them in your app. We didn't get to cover many of the lower-level constructs like locks, mutexes and how they help us achieve synchronization, nor did we get to dive into concrete examples of how concurrency can hurt your app. We'll save those for another day, but you can dig into some additional reading and videos if you're eager to dive deeper. Building Concurrent User Interfaces on iOS (WWDC 2012) Concurrency and Parallelism: Understanding I/O Apple's Official Concurrency Programming Guide Mutexes and Closure Capture in Swift Locks, Thread Safety, and Swift Advanced NSOperations (WWDC 2015) NSHipster: NSOperation Full Article Code
hr Concurrency & Multithreading in iOS By feedproxy.google.com Published On :: Tue, 25 Feb 2020 08:00:00 -0500 Concurrency is the notion of multiple things happening at the same time. This is generally achieved either via time-slicing, or truly in parallel if multiple CPU cores are available to the host operating system. We've all experienced a lack of concurrency, most likely in the form of an app freezing up when running a heavy task. UI freezes don't necessarily occur due to the absence of concurrency — they could just be symptoms of buggy software — but software that doesn't take advantage of all the computational power at its disposal is going to create these freezes whenever it needs to do something resource-intensive. If you've profiled an app hanging in this way, you'll probably see a report that looks like this: Anything related to file I/O, data processing, or networking usually warrants a background task (unless you have a very compelling excuse to halt the entire program). There aren't many reasons that these tasks should block your user from interacting with the rest of your application. Consider how much better the user experience of your app could be if instead, the profiler reported something like this: Analyzing an image, processing a document or a piece of audio, or writing a sizeable chunk of data to disk are examples of tasks that could benefit greatly from being delegated to background threads. Let's dig into how we can enforce such behavior into our iOS applications. A Brief History In the olden days, the maximum amount of work per CPU cycle that a computer could perform was determined by the clock speed. As processor designs became more compact, heat and physical constraints started becoming limiting factors for higher clock speeds. Consequentially, chip manufacturers started adding additional processor cores on each chip in order to increase total performance. By increasing the number of cores, a single chip could execute more CPU instructions per cycle without increasing its speed, size, or thermal output. There's just one problem... How can we take advantage of these extra cores? Multithreading. Multithreading is an implementation handled by the host operating system to allow the creation and usage of n amount of threads. Its main purpose is to provide simultaneous execution of two or more parts of a program to utilize all available CPU time. Multithreading is a powerful technique to have in a programmer's toolbelt, but it comes with its own set of responsibilities. A common misconception is that multithreading requires a multi-core processor, but this isn't the case — single-core CPUs are perfectly capable of working on many threads, but we'll take a look in a bit as to why threading is a problem in the first place. Before we dive in, let's look at the nuances of what concurrency and parallelism mean using a simple diagram: In the first situation presented above, we observe that tasks can run concurrently, but not in parallel. This is similar to having multiple conversations in a chatroom, and interleaving (context-switching) between them, but never truly conversing with two people at the same time. This is what we call concurrency. It is the illusion of multiple things happening at the same time when in reality, they're switching very quickly. Concurrency is about dealing with lots of things at the same time. Contrast this with the parallelism model, in which both tasks run simultaneously. Both execution models exhibit multithreading, which is the involvement of multiple threads working towards one common goal. Multithreading is a generalized technique for introducing a combination of concurrency and parallelism into your program. The Burden of Threads A modern multitasking operating system like iOS has hundreds of programs (or processes) running at any given moment. However, most of these programs are either system daemons or background processes that have very low memory footprint, so what is really needed is a way for individual applications to make use of the extra cores available. An application (process) can have many threads (sub-processes) operating on shared memory. Our goal is to be able to control these threads and use them to our advantage. Historically, introducing concurrency to an app has required the creation of one or more threads. Threads are low-level constructs that need to be managed manually. A quick skim through Apple's Threaded Programming Guide is all it takes to see how much complexity threaded code adds to a codebase. In addition to building an app, the developer has to: Responsibly create new threads, adjusting that number dynamically as system conditions change Manage them carefully, deallocating them from memory once they have finished executing Leverage synchronization mechanisms like mutexes, locks, and semaphores to orchestrate resource access between threads, adding even more overhead to application code Mitigate risks associated with coding an application that assumes most of the costs associated with creating and maintaining any threads it uses, and not the host OS This is unfortunate, as it adds enormous levels of complexity and risk without any guarantees of improved performance. Grand Central Dispatch iOS takes an asynchronous approach to solving the concurrency problem of managing threads. Asynchronous functions are common in most programming environments, and are often used to initiate tasks that might take a long time, like reading a file from the disk, or downloading a file from the web. When invoked, an asynchronous function executes some work behind the scenes to start a background task, but returns immediately, regardless of how long the original task might takes to actually complete. A core technology that iOS provides for starting tasks asynchronously is Grand Central Dispatch (or GCD for short). GCD abstracts away thread management code and moves it down to the system level, exposing a light API to define tasks and execute them on an appropriate dispatch queue. GCD takes care of all thread management and scheduling, providing a holistic approach to task management and execution, while also providing better efficiency than traditional threads. Let's take a look at the main components of GCD: What've we got here? Let's start from the left: DispatchQueue.main: The main thread, or the UI thread, is backed by a single serial queue. All tasks are executed in succession, so it is guaranteed that the order of execution is preserved. It is crucial that you ensure all UI updates are designated to this queue, and that you never run any blocking tasks on it. We want to ensure that the app's run loop (called CFRunLoop) is never blocked in order to maintain the highest framerate. Subsequently, the main queue has the highest priority, and any tasks pushed onto this queue will get executed immediately. DispatchQueue.global: A set of global concurrent queues, each of which manage their own pool of threads. Depending on the priority of your task, you can specify which specific queue to execute your task on, although you should resort to using default most of the time. Because tasks on these queues are executed concurrently, it doesn't guarantee preservation of the order in which tasks were queued. Notice how we're not dealing with individual threads anymore? We're dealing with queues which manage a pool of threads internally, and you will shortly see why queues are a much more sustainable approach to multhreading. Serial Queues: The Main Thread As an exercise, let's look at a snippet of code below, which gets fired when the user presses a button in the app. The expensive compute function can be anything. Let's pretend it is post-processing an image stored on the device. import UIKit class ViewController: UIViewController { @IBAction func handleTap(_ sender: Any) { compute() } private func compute() -> Void { // Pretending to post-process a large image. var counter = 0 for _ in 0..<9999999 { counter += 1 } } } At first glance, this may look harmless, but if you run this inside of a real app, the UI will freeze completely until the loop is terminated, which will take... a while. We can prove it by profiling this task in Instruments. You can fire up the Time Profiler module of Instruments by going to Xcode > Open Developer Tool > Instruments in Xcode's menu options. Let's look at the Threads module of the profiler and see where the CPU usage is highest. We can see that the Main Thread is clearly at 100% capacity for almost 5 seconds. That's a non-trivial amount of time to block the UI. Looking at the call tree below the chart, we can see that the Main Thread is at 99.9% capacity for 4.43 seconds! Given that a serial queue works in a FIFO manner, tasks will always complete in the order in which they were inserted. Clearly the compute() method is the culprit here. Can you imagine clicking a button just to have the UI freeze up on you for that long? Background Threads How can we make this better? DispatchQueue.global() to the rescue! This is where background threads come in. Referring to the GCD architecture diagram above, we can see that anything that is not the Main Thread is a background thread in iOS. They can run alongside the Main Thread, leaving it fully unoccupied and ready to handle other UI events like scrolling, responding to user events, animating etc. Let's make a small change to our button click handler above: class ViewController: UIViewController { @IBAction func handleTap(_ sender: Any) { DispatchQueue.global(qos: .userInitiated).async { [unowned self] in self.compute() } } private func compute() -> Void { // Pretending to post-process a large image. var counter = 0 for _ in 0..<9999999 { counter += 1 } } } Unless specified, a snippet of code will usually default to execute on the Main Queue, so in order to force it to execute on a different thread, we'll wrap our compute call inside of an asynchronous closure that gets submitted to the DispatchQueue.global queue. Keep in mind that we aren't really managing threads here. We're submitting tasks (in the form of closures or blocks) to the desired queue with the assumption that it is guaranteed to execute at some point in time. The queue decides which thread to allocate the task to, and it does all the hard work of assessing system requirements and managing the actual threads. This is the magic of Grand Central Dispatch. As the old adage goes, you can't improve what you can't measure. So we measured our truly terrible button click handler, and now that we've improved it, we'll measure it once again to get some concrete data with regards to performance. Looking at the profiler again, it's quite clear to us that this is a huge improvement. The task takes an identical amount of time, but this time, it's happening in the background without locking up the UI. Even though our app is doing the same amount of work, the perceived performance is much better because the user will be free to do other things while the app is processing. You may have noticed that we accessed a global queue of .userInitiated priority. This is an attribute we can use to give our tasks a sense of urgency. If we run the same task on a global queue of and pass it a qos attribute of background , iOS will think it's a utility task, and thus allocate fewer resources to execute it. So, while we don't have control over when our tasks get executed, we do have control over their priority. A Note on Main Thread vs. Main Queue You might be wondering why the Profiler shows "Main Thread" and why we're referring to it as the "Main Queue". If you refer back to the GCD architecture we described above, the Main Queue is solely responsible for managing the Main Thread. The Dispatch Queues section in the Concurrency Programming Guide says that "the main dispatch queue is a globally available serial queue that executes tasks on the application’s main thread. Because it runs on your application’s main thread, the main queue is often used as a key synchronization point for an application." The terms "execute on the Main Thread" and "execute on the Main Queue" can be used interchangeably. Concurrent Queues So far, our tasks have been executed exclusively in a serial manner. DispatchQueue.main is by default a serial queue, and DispatchQueue.global gives you four concurrent dispatch queues depending on the priority parameter you pass in. Let's say we want to take five images, and have our app process them all in parallel on background threads. How would we go about doing that? We can spin up a custom concurrent queue with an identifier of our choosing, and allocate those tasks there. All that's required is the .concurrent attribute during the construction of the queue. class ViewController: UIViewController { let queue = DispatchQueue(label: "com.app.concurrentQueue", attributes: .concurrent) let images: [UIImage] = [UIImage].init(repeating: UIImage(), count: 5) @IBAction func handleTap(_ sender: Any) { for img in images { queue.async { [unowned self] in self.compute(img) } } } private func compute(_ img: UIImage) -> Void { // Pretending to post-process a large image. var counter = 0 for _ in 0..<9999999 { counter += 1 } } } Running that through the profiler, we can see that the app is now spinning up 5 discrete threads to parallelize a for-loop. Parallelization of N Tasks So far, we've looked at pushing computationally expensive task(s) onto background threads without clogging up the UI thread. But what about executing parallel tasks with some restrictions? How can Spotify download multiple songs in parallel, while limiting the maximum number up to 3? We can go about this in a few ways, but this is a good time to explore another important construct in multithreaded programming: semaphores. Semaphores are signaling mechanisms. They are commonly used to control access to a shared resource. Imagine a scenario where a thread can lock access to a certain section of the code while it executes it, and unlocks after it's done to let other threads execute the said section of the code. You would see this type of behavior in database writes and reads, for example. What if you want only one thread writing to a database and preventing any reads during that time? This is a common concern in thread-safety called Readers-writer lock. Semaphores can be used to control concurrency in our app by allowing us to lock n number of threads. let kMaxConcurrent = 3 // Or 1 if you want strictly ordered downloads! let semaphore = DispatchSemaphore(value: kMaxConcurrent) let downloadQueue = DispatchQueue(label: "com.app.downloadQueue", attributes: .concurrent) class ViewController: UIViewController { @IBAction func handleTap(_ sender: Any) { for i in 0..<15 { downloadQueue.async { [unowned self] in // Lock shared resource access semaphore.wait() // Expensive task self.download(i + 1) // Update the UI on the main thread, always! DispatchQueue.main.async { tableView.reloadData() // Release the lock semaphore.signal() } } } } func download(_ songId: Int) -> Void { var counter = 0 // Simulate semi-random download times. for _ in 0..<Int.random(in: 999999...10000000) { counter += songId } } } Notice how we've effectively restricted our download system to limit itself to k number of downloads. The moment one download finishes (or thread is done executing), it decrements the semaphore, allowing the managing queue to spawn another thread and start downloading another song. You can apply a similar pattern to database transactions when dealing with concurrent reads and writes. Semaphores usually aren't necessary for code like the one in our example, but they become more powerful when you need to enforce synchronous behavior whille consuming an asynchronous API. The above could would work just as well with a custom NSOperationQueue with a maxConcurrentOperationCount, but it's a worthwhile tangent regardless. Finer Control with OperationQueue GCD is great when you want to dispatch one-off tasks or closures into a queue in a 'set-it-and-forget-it' fashion, and it provides a very lightweight way of doing so. But what if we want to create a repeatable, structured, long-running task that produces associated state or data? And what if we want to model this chain of operations such that they can be cancelled, suspended and tracked, while still working with a closure-friendly API? Imagine an operation like this: This would be quite cumbersome to achieve with GCD. We want a more modular way of defining a group of tasks while maintaining readability and also exposing a greater amount of control. In this case, we can use Operation objects and queue them onto an OperationQueue, which is a high-level wrapper around DispatchQueue. Let's look at some of the benefits of using these abstractions and what they offer in comparison to the lower-level GCI API: You may want to create dependencies between tasks, and while you could do this via GCD, you're better off defining them concretely as Operation objects, or units of work, and pushing them onto your own queue. This would allow for maximum reusability since you may use the same pattern elsewhere in an application. The Operation and OperationQueue classes have a number of properties that can be observed, using KVO (Key Value Observing). This is another important benefit if you want to monitor the state of an operation or operation queue. Operations can be paused, resumed, and cancelled. Once you dispatch a task using Grand Central Dispatch, you no longer have control or insight into the execution of that task. The Operation API is more flexible in that respect, giving the developer control over the operation's life cycle. OperationQueue allows you to specify the maximum number of queued operations that can run simultaneously, giving you a finer degree of control over the concurrency aspects. The usage of Operation and OperationQueue could fill an entire blog post, but let's look at a quick example of what modeling dependencies looks like. (GCD can also create dependencies, but you're better off dividing up large tasks into a series of composable sub-tasks.) In order to create a chain of operations that depend on one another, we could do something like this: class ViewController: UIViewController { var queue = OperationQueue() var rawImage = UIImage? = nil let imageUrl = URL(string: "https://example.com/portrait.jpg")! @IBOutlet weak var imageView: UIImageView! let downloadOperation = BlockOperation { let image = Downloader.downloadImageWithURL(url: imageUrl) OperationQueue.main.async { self.rawImage = image } } let filterOperation = BlockOperation { let filteredImage = ImgProcessor.addGaussianBlur(self.rawImage) OperationQueue.main.async { self.imageView = filteredImage } } filterOperation.addDependency(downloadOperation) [downloadOperation, filterOperation].forEach { queue.addOperation($0) } } So why not opt for a higher level abstraction and avoid using GCD entirely? While GCD is ideal for inline asynchronous processing, Operation provides a more comprehensive, object-oriented model of computation for encapsulating all of the data around structured, repeatable tasks in an application. Developers should use the highest level of abstraction possible for any given problem, and for scheduling consistent, repeated work, that abstraction is Operation. Other times, it makes more sense to sprinkle in some GCD for one-off tasks or closures that we want to fire. We can mix both OperationQueue and GCD to get the best of both worlds. The Cost of Concurrency DispatchQueue and friends are meant to make it easier for the application developer to execute code concurrently. However, these technologies do not guarantee improvements to the efficiency or responsiveness in an application. It is up to you to use queues in a manner that is both effective and does not impose an undue burden on other resources. For example, it's totally viable to create 10,000 tasks and submit them to a queue, but doing so would allocate a nontrivial amount of memory and introduce a lot of overhead for the allocation and deallocation of operation blocks. This is the opposite of what you want! It's best to profile your app thoroughly to ensure that concurrency is enhancing your app's performance and not degrading it. We've talked about how concurrency comes at a cost in terms of complexity and allocation of system resources, but introducing concurrency also brings a host of other risks like: Deadlock: A situation where a thread locks a critical portion of the code and can halt the application's run loop entirely. In the context of GCD, you should be very careful when using the dispatchQueue.sync { } calls as you could easily get yourself in situations where two synchronous operations can get stuck waiting for each other. Priority Inversion: A condition where a lower priority task blocks a high priority task from executing, which effectively inverts their priorities. GCD allows for different levels of priority on its background queues, so this is quite easily a possibility. Producer-Consumer Problem: A race condition where one thread is creating a data resource while another thread is accessing it. This is a synchronization problem, and can be solved using locks, semaphores, serial queues, or a barrier dispatch if you're using concurrent queues in GCD. ...and many other sorts of locking and data-race conditions that are hard to debug! Thread safety is of the utmost concern when dealing with concurrency. Parting Thoughts + Further Reading If you've made it this far, I applaud you. Hopefully this article gives you a lay of the land when it comes to multithreading techniques on iOS, and how you can use some of them in your app. We didn't get to cover many of the lower-level constructs like locks, mutexes and how they help us achieve synchronization, nor did we get to dive into concrete examples of how concurrency can hurt your app. We'll save those for another day, but you can dig into some additional reading and videos if you're eager to dive deeper. Building Concurrent User Interfaces on iOS (WWDC 2012) Concurrency and Parallelism: Understanding I/O Apple's Official Concurrency Programming Guide Mutexes and Closure Capture in Swift Locks, Thread Safety, and Swift Advanced NSOperations (WWDC 2015) NSHipster: NSOperation Full Article Code
hr Sassy reindeer Christmas greeting By traceygrady.com Published On :: Fri, 12 Oct 2018 02:22:29 +0000 An illustration created for a Christmas message for clients of Tracey Grady Design, and for use on social media. Full Article Illustration
hr Reducing brain damage in sport without losing the thrills By feedproxy.google.com Published On :: Tue, 17 Mar 2020 10:36:11 EDT When Olympic gold medallist Shona McCallin was hit on the side of her head by a seemingly innocuous shoulder challenge, she suffered what was originally thought to be a concussion. Full Article
hr Fluid Dog Illustrations by Marina Okhromenko By icanbecreative.com Published On :: Sun, 15 Mar 2020 21:27:25 PDT Fluid design of swirling dogs are captured by Moscow-based illustrator Marina Okhromenko in her colorful digital illustrations, she depicts expressions of joy that makes us adore more our canine... Full Article Design Inspiration
hr Concurrency & Multithreading in iOS By feedproxy.google.com Published On :: Tue, 25 Feb 2020 08:00:00 -0500 Concurrency is the notion of multiple things happening at the same time. This is generally achieved either via time-slicing, or truly in parallel if multiple CPU cores are available to the host operating system. We've all experienced a lack of concurrency, most likely in the form of an app freezing up when running a heavy task. UI freezes don't necessarily occur due to the absence of concurrency — they could just be symptoms of buggy software — but software that doesn't take advantage of all the computational power at its disposal is going to create these freezes whenever it needs to do something resource-intensive. If you've profiled an app hanging in this way, you'll probably see a report that looks like this: Anything related to file I/O, data processing, or networking usually warrants a background task (unless you have a very compelling excuse to halt the entire program). There aren't many reasons that these tasks should block your user from interacting with the rest of your application. Consider how much better the user experience of your app could be if instead, the profiler reported something like this: Analyzing an image, processing a document or a piece of audio, or writing a sizeable chunk of data to disk are examples of tasks that could benefit greatly from being delegated to background threads. Let's dig into how we can enforce such behavior into our iOS applications. A Brief History In the olden days, the maximum amount of work per CPU cycle that a computer could perform was determined by the clock speed. As processor designs became more compact, heat and physical constraints started becoming limiting factors for higher clock speeds. Consequentially, chip manufacturers started adding additional processor cores on each chip in order to increase total performance. By increasing the number of cores, a single chip could execute more CPU instructions per cycle without increasing its speed, size, or thermal output. There's just one problem... How can we take advantage of these extra cores? Multithreading. Multithreading is an implementation handled by the host operating system to allow the creation and usage of n amount of threads. Its main purpose is to provide simultaneous execution of two or more parts of a program to utilize all available CPU time. Multithreading is a powerful technique to have in a programmer's toolbelt, but it comes with its own set of responsibilities. A common misconception is that multithreading requires a multi-core processor, but this isn't the case — single-core CPUs are perfectly capable of working on many threads, but we'll take a look in a bit as to why threading is a problem in the first place. Before we dive in, let's look at the nuances of what concurrency and parallelism mean using a simple diagram: In the first situation presented above, we observe that tasks can run concurrently, but not in parallel. This is similar to having multiple conversations in a chatroom, and interleaving (context-switching) between them, but never truly conversing with two people at the same time. This is what we call concurrency. It is the illusion of multiple things happening at the same time when in reality, they're switching very quickly. Concurrency is about dealing with lots of things at the same time. Contrast this with the parallelism model, in which both tasks run simultaneously. Both execution models exhibit multithreading, which is the involvement of multiple threads working towards one common goal. Multithreading is a generalized technique for introducing a combination of concurrency and parallelism into your program. The Burden of Threads A modern multitasking operating system like iOS has hundreds of programs (or processes) running at any given moment. However, most of these programs are either system daemons or background processes that have very low memory footprint, so what is really needed is a way for individual applications to make use of the extra cores available. An application (process) can have many threads (sub-processes) operating on shared memory. Our goal is to be able to control these threads and use them to our advantage. Historically, introducing concurrency to an app has required the creation of one or more threads. Threads are low-level constructs that need to be managed manually. A quick skim through Apple's Threaded Programming Guide is all it takes to see how much complexity threaded code adds to a codebase. In addition to building an app, the developer has to: Responsibly create new threads, adjusting that number dynamically as system conditions change Manage them carefully, deallocating them from memory once they have finished executing Leverage synchronization mechanisms like mutexes, locks, and semaphores to orchestrate resource access between threads, adding even more overhead to application code Mitigate risks associated with coding an application that assumes most of the costs associated with creating and maintaining any threads it uses, and not the host OS This is unfortunate, as it adds enormous levels of complexity and risk without any guarantees of improved performance. Grand Central Dispatch iOS takes an asynchronous approach to solving the concurrency problem of managing threads. Asynchronous functions are common in most programming environments, and are often used to initiate tasks that might take a long time, like reading a file from the disk, or downloading a file from the web. When invoked, an asynchronous function executes some work behind the scenes to start a background task, but returns immediately, regardless of how long the original task might takes to actually complete. A core technology that iOS provides for starting tasks asynchronously is Grand Central Dispatch (or GCD for short). GCD abstracts away thread management code and moves it down to the system level, exposing a light API to define tasks and execute them on an appropriate dispatch queue. GCD takes care of all thread management and scheduling, providing a holistic approach to task management and execution, while also providing better efficiency than traditional threads. Let's take a look at the main components of GCD: What've we got here? Let's start from the left: DispatchQueue.main: The main thread, or the UI thread, is backed by a single serial queue. All tasks are executed in succession, so it is guaranteed that the order of execution is preserved. It is crucial that you ensure all UI updates are designated to this queue, and that you never run any blocking tasks on it. We want to ensure that the app's run loop (called CFRunLoop) is never blocked in order to maintain the highest framerate. Subsequently, the main queue has the highest priority, and any tasks pushed onto this queue will get executed immediately. DispatchQueue.global: A set of global concurrent queues, each of which manage their own pool of threads. Depending on the priority of your task, you can specify which specific queue to execute your task on, although you should resort to using default most of the time. Because tasks on these queues are executed concurrently, it doesn't guarantee preservation of the order in which tasks were queued. Notice how we're not dealing with individual threads anymore? We're dealing with queues which manage a pool of threads internally, and you will shortly see why queues are a much more sustainable approach to multhreading. Serial Queues: The Main Thread As an exercise, let's look at a snippet of code below, which gets fired when the user presses a button in the app. The expensive compute function can be anything. Let's pretend it is post-processing an image stored on the device. import UIKit class ViewController: UIViewController { @IBAction func handleTap(_ sender: Any) { compute() } private func compute() -> Void { // Pretending to post-process a large image. var counter = 0 for _ in 0..<9999999 { counter += 1 } } } At first glance, this may look harmless, but if you run this inside of a real app, the UI will freeze completely until the loop is terminated, which will take... a while. We can prove it by profiling this task in Instruments. You can fire up the Time Profiler module of Instruments by going to Xcode > Open Developer Tool > Instruments in Xcode's menu options. Let's look at the Threads module of the profiler and see where the CPU usage is highest. We can see that the Main Thread is clearly at 100% capacity for almost 5 seconds. That's a non-trivial amount of time to block the UI. Looking at the call tree below the chart, we can see that the Main Thread is at 99.9% capacity for 4.43 seconds! Given that a serial queue works in a FIFO manner, tasks will always complete in the order in which they were inserted. Clearly the compute() method is the culprit here. Can you imagine clicking a button just to have the UI freeze up on you for that long? Background Threads How can we make this better? DispatchQueue.global() to the rescue! This is where background threads come in. Referring to the GCD architecture diagram above, we can see that anything that is not the Main Thread is a background thread in iOS. They can run alongside the Main Thread, leaving it fully unoccupied and ready to handle other UI events like scrolling, responding to user events, animating etc. Let's make a small change to our button click handler above: class ViewController: UIViewController { @IBAction func handleTap(_ sender: Any) { DispatchQueue.global(qos: .userInitiated).async { [unowned self] in self.compute() } } private func compute() -> Void { // Pretending to post-process a large image. var counter = 0 for _ in 0..<9999999 { counter += 1 } } } Unless specified, a snippet of code will usually default to execute on the Main Queue, so in order to force it to execute on a different thread, we'll wrap our compute call inside of an asynchronous closure that gets submitted to the DispatchQueue.global queue. Keep in mind that we aren't really managing threads here. We're submitting tasks (in the form of closures or blocks) to the desired queue with the assumption that it is guaranteed to execute at some point in time. The queue decides which thread to allocate the task to, and it does all the hard work of assessing system requirements and managing the actual threads. This is the magic of Grand Central Dispatch. As the old adage goes, you can't improve what you can't measure. So we measured our truly terrible button click handler, and now that we've improved it, we'll measure it once again to get some concrete data with regards to performance. Looking at the profiler again, it's quite clear to us that this is a huge improvement. The task takes an identical amount of time, but this time, it's happening in the background without locking up the UI. Even though our app is doing the same amount of work, the perceived performance is much better because the user will be free to do other things while the app is processing. You may have noticed that we accessed a global queue of .userInitiated priority. This is an attribute we can use to give our tasks a sense of urgency. If we run the same task on a global queue of and pass it a qos attribute of background , iOS will think it's a utility task, and thus allocate fewer resources to execute it. So, while we don't have control over when our tasks get executed, we do have control over their priority. A Note on Main Thread vs. Main Queue You might be wondering why the Profiler shows "Main Thread" and why we're referring to it as the "Main Queue". If you refer back to the GCD architecture we described above, the Main Queue is solely responsible for managing the Main Thread. The Dispatch Queues section in the Concurrency Programming Guide says that "the main dispatch queue is a globally available serial queue that executes tasks on the application’s main thread. Because it runs on your application’s main thread, the main queue is often used as a key synchronization point for an application." The terms "execute on the Main Thread" and "execute on the Main Queue" can be used interchangeably. Concurrent Queues So far, our tasks have been executed exclusively in a serial manner. DispatchQueue.main is by default a serial queue, and DispatchQueue.global gives you four concurrent dispatch queues depending on the priority parameter you pass in. Let's say we want to take five images, and have our app process them all in parallel on background threads. How would we go about doing that? We can spin up a custom concurrent queue with an identifier of our choosing, and allocate those tasks there. All that's required is the .concurrent attribute during the construction of the queue. class ViewController: UIViewController { let queue = DispatchQueue(label: "com.app.concurrentQueue", attributes: .concurrent) let images: [UIImage] = [UIImage].init(repeating: UIImage(), count: 5) @IBAction func handleTap(_ sender: Any) { for img in images { queue.async { [unowned self] in self.compute(img) } } } private func compute(_ img: UIImage) -> Void { // Pretending to post-process a large image. var counter = 0 for _ in 0..<9999999 { counter += 1 } } } Running that through the profiler, we can see that the app is now spinning up 5 discrete threads to parallelize a for-loop. Parallelization of N Tasks So far, we've looked at pushing computationally expensive task(s) onto background threads without clogging up the UI thread. But what about executing parallel tasks with some restrictions? How can Spotify download multiple songs in parallel, while limiting the maximum number up to 3? We can go about this in a few ways, but this is a good time to explore another important construct in multithreaded programming: semaphores. Semaphores are signaling mechanisms. They are commonly used to control access to a shared resource. Imagine a scenario where a thread can lock access to a certain section of the code while it executes it, and unlocks after it's done to let other threads execute the said section of the code. You would see this type of behavior in database writes and reads, for example. What if you want only one thread writing to a database and preventing any reads during that time? This is a common concern in thread-safety called Readers-writer lock. Semaphores can be used to control concurrency in our app by allowing us to lock n number of threads. let kMaxConcurrent = 3 // Or 1 if you want strictly ordered downloads! let semaphore = DispatchSemaphore(value: kMaxConcurrent) let downloadQueue = DispatchQueue(label: "com.app.downloadQueue", attributes: .concurrent) class ViewController: UIViewController { @IBAction func handleTap(_ sender: Any) { for i in 0..<15 { downloadQueue.async { [unowned self] in // Lock shared resource access semaphore.wait() // Expensive task self.download(i + 1) // Update the UI on the main thread, always! DispatchQueue.main.async { tableView.reloadData() // Release the lock semaphore.signal() } } } } func download(_ songId: Int) -> Void { var counter = 0 // Simulate semi-random download times. for _ in 0..<Int.random(in: 999999...10000000) { counter += songId } } } Notice how we've effectively restricted our download system to limit itself to k number of downloads. The moment one download finishes (or thread is done executing), it decrements the semaphore, allowing the managing queue to spawn another thread and start downloading another song. You can apply a similar pattern to database transactions when dealing with concurrent reads and writes. Semaphores usually aren't necessary for code like the one in our example, but they become more powerful when you need to enforce synchronous behavior whille consuming an asynchronous API. The above could would work just as well with a custom NSOperationQueue with a maxConcurrentOperationCount, but it's a worthwhile tangent regardless. Finer Control with OperationQueue GCD is great when you want to dispatch one-off tasks or closures into a queue in a 'set-it-and-forget-it' fashion, and it provides a very lightweight way of doing so. But what if we want to create a repeatable, structured, long-running task that produces associated state or data? And what if we want to model this chain of operations such that they can be cancelled, suspended and tracked, while still working with a closure-friendly API? Imagine an operation like this: This would be quite cumbersome to achieve with GCD. We want a more modular way of defining a group of tasks while maintaining readability and also exposing a greater amount of control. In this case, we can use Operation objects and queue them onto an OperationQueue, which is a high-level wrapper around DispatchQueue. Let's look at some of the benefits of using these abstractions and what they offer in comparison to the lower-level GCI API: You may want to create dependencies between tasks, and while you could do this via GCD, you're better off defining them concretely as Operation objects, or units of work, and pushing them onto your own queue. This would allow for maximum reusability since you may use the same pattern elsewhere in an application. The Operation and OperationQueue classes have a number of properties that can be observed, using KVO (Key Value Observing). This is another important benefit if you want to monitor the state of an operation or operation queue. Operations can be paused, resumed, and cancelled. Once you dispatch a task using Grand Central Dispatch, you no longer have control or insight into the execution of that task. The Operation API is more flexible in that respect, giving the developer control over the operation's life cycle. OperationQueue allows you to specify the maximum number of queued operations that can run simultaneously, giving you a finer degree of control over the concurrency aspects. The usage of Operation and OperationQueue could fill an entire blog post, but let's look at a quick example of what modeling dependencies looks like. (GCD can also create dependencies, but you're better off dividing up large tasks into a series of composable sub-tasks.) In order to create a chain of operations that depend on one another, we could do something like this: class ViewController: UIViewController { var queue = OperationQueue() var rawImage = UIImage? = nil let imageUrl = URL(string: "https://example.com/portrait.jpg")! @IBOutlet weak var imageView: UIImageView! let downloadOperation = BlockOperation { let image = Downloader.downloadImageWithURL(url: imageUrl) OperationQueue.main.async { self.rawImage = image } } let filterOperation = BlockOperation { let filteredImage = ImgProcessor.addGaussianBlur(self.rawImage) OperationQueue.main.async { self.imageView = filteredImage } } filterOperation.addDependency(downloadOperation) [downloadOperation, filterOperation].forEach { queue.addOperation($0) } } So why not opt for a higher level abstraction and avoid using GCD entirely? While GCD is ideal for inline asynchronous processing, Operation provides a more comprehensive, object-oriented model of computation for encapsulating all of the data around structured, repeatable tasks in an application. Developers should use the highest level of abstraction possible for any given problem, and for scheduling consistent, repeated work, that abstraction is Operation. Other times, it makes more sense to sprinkle in some GCD for one-off tasks or closures that we want to fire. We can mix both OperationQueue and GCD to get the best of both worlds. The Cost of Concurrency DispatchQueue and friends are meant to make it easier for the application developer to execute code concurrently. However, these technologies do not guarantee improvements to the efficiency or responsiveness in an application. It is up to you to use queues in a manner that is both effective and does not impose an undue burden on other resources. For example, it's totally viable to create 10,000 tasks and submit them to a queue, but doing so would allocate a nontrivial amount of memory and introduce a lot of overhead for the allocation and deallocation of operation blocks. This is the opposite of what you want! It's best to profile your app thoroughly to ensure that concurrency is enhancing your app's performance and not degrading it. We've talked about how concurrency comes at a cost in terms of complexity and allocation of system resources, but introducing concurrency also brings a host of other risks like: Deadlock: A situation where a thread locks a critical portion of the code and can halt the application's run loop entirely. In the context of GCD, you should be very careful when using the dispatchQueue.sync { } calls as you could easily get yourself in situations where two synchronous operations can get stuck waiting for each other. Priority Inversion: A condition where a lower priority task blocks a high priority task from executing, which effectively inverts their priorities. GCD allows for different levels of priority on its background queues, so this is quite easily a possibility. Producer-Consumer Problem: A race condition where one thread is creating a data resource while another thread is accessing it. This is a synchronization problem, and can be solved using locks, semaphores, serial queues, or a barrier dispatch if you're using concurrent queues in GCD. ...and many other sorts of locking and data-race conditions that are hard to debug! Thread safety is of the utmost concern when dealing with concurrency. Parting Thoughts + Further Reading If you've made it this far, I applaud you. Hopefully this article gives you a lay of the land when it comes to multithreading techniques on iOS, and how you can use some of them in your app. We didn't get to cover many of the lower-level constructs like locks, mutexes and how they help us achieve synchronization, nor did we get to dive into concrete examples of how concurrency can hurt your app. We'll save those for another day, but you can dig into some additional reading and videos if you're eager to dive deeper. Building Concurrent User Interfaces on iOS (WWDC 2012) Concurrency and Parallelism: Understanding I/O Apple's Official Concurrency Programming Guide Mutexes and Closure Capture in Swift Locks, Thread Safety, and Swift Advanced NSOperations (WWDC 2015) NSHipster: NSOperation Full Article Code