ic Larry Brown’s Contributions to Parametric Inference, Decision Theory and Foundations: A Survey By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST James O. Berger, Anirban DasGupta. Source: Statistical Science, Volume 34, Number 4, 621--634.Abstract: This article gives a panoramic survey of the general area of parametric statistical inference, decision theory and foundations of statistics for the period 1965–2010 through the lens of Larry Brown’s contributions to varied aspects of this massive area. The article goes over sufficiency, shrinkage estimation, admissibility, minimaxity, complete class theorems, estimated confidence, conditional confidence procedures, Edgeworth and higher order asymptotic expansions, variational Bayes, Stein’s SURE, differential inequalities, geometrization of convergence rates, asymptotic equivalence, aspects of empirical process theory, inference after model selection, unified frequentist and Bayesian testing, and Wald’s sequential theory. A reasonably comprehensive bibliography is provided. Full Article
ic Comment: Statistical Inference from a Predictive Perspective By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Alessandro Rinaldo, Ryan J. Tibshirani, Larry Wasserman. Source: Statistical Science, Volume 34, Number 4, 599--603.Abstract: What is the meaning of a regression parameter? Why is this the de facto standard object of interest for statistical inference? These are delicate issues, especially when the model is misspecified. We argue that focusing on predictive quantities may be a desirable alternative. Full Article
ic Models as Approximations II: A Model-Free Theory of Parametric Regression By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Andreas Buja, Lawrence Brown, Arun Kumar Kuchibhotla, Richard Berk, Edward George, Linda Zhao. Source: Statistical Science, Volume 34, Number 4, 545--565.Abstract: We develop a model-free theory of general types of parametric regression for i.i.d. observations. The theory replaces the parameters of parametric models with statistical functionals, to be called “regression functionals,” defined on large nonparametric classes of joint ${x extrm{-}y}$ distributions, without assuming a correct model. Parametric models are reduced to heuristics to suggest plausible objective functions. An example of a regression functional is the vector of slopes of linear equations fitted by OLS to largely arbitrary ${x extrm{-}y}$ distributions, without assuming a linear model (see Part I). More generally, regression functionals can be defined by minimizing objective functions, solving estimating equations, or with ad hoc constructions. In this framework, it is possible to achieve the following: (1) define a notion of “well-specification” for regression functionals that replaces the notion of correct specification of models, (2) propose a well-specification diagnostic for regression functionals based on reweighting distributions and data, (3) decompose sampling variability of regression functionals into two sources, one due to the conditional response distribution and another due to the regressor distribution interacting with misspecification, both of order $N^{-1/2}$, (4) exhibit plug-in/sandwich estimators of standard error as limit cases of ${x extrm{-}y}$ bootstrap estimators, and (5) provide theoretical heuristics to indicate that ${x extrm{-}y}$ bootstrap standard errors may generally be preferred over sandwich estimators. Full Article
ic Conditionally Conjugate Mean-Field Variational Bayes for Logistic Models By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Daniele Durante, Tommaso Rigon. Source: Statistical Science, Volume 34, Number 3, 472--485.Abstract: Variational Bayes (VB) is a common strategy for approximate Bayesian inference, but simple methods are only available for specific classes of models including, in particular, representations having conditionally conjugate constructions within an exponential family. Models with logit components are an apparently notable exception to this class, due to the absence of conjugacy among the logistic likelihood and the Gaussian priors for the coefficients in the linear predictor. To facilitate approximate inference within this widely used class of models, Jaakkola and Jordan ( Stat. Comput. 10 (2000) 25–37) proposed a simple variational approach which relies on a family of tangent quadratic lower bounds of the logistic log-likelihood, thus restoring conjugacy between these approximate bounds and the Gaussian priors. This strategy is still implemented successfully, but few attempts have been made to formally understand the reasons underlying its excellent performance. Following a review on VB for logistic models, we cover this gap by providing a formal connection between the above bound and a recent Pólya-gamma data augmentation for logistic regression. Such a result places the computational methods associated with the aforementioned bounds within the framework of variational inference for conditionally conjugate exponential family models, thereby allowing recent advances for this class to be inherited also by the methods relying on Jaakkola and Jordan ( Stat. Comput. 10 (2000) 25–37). Full Article
ic An Overview of Semiparametric Extensions of Finite Mixture Models By projecteuclid.org Published On :: Fri, 11 Oct 2019 04:03 EDT Sijia Xiang, Weixin Yao, Guangren Yang. Source: Statistical Science, Volume 34, Number 3, 391--404.Abstract: Finite mixture models have offered a very important tool for exploring complex data structures in many scientific areas, such as economics, epidemiology and finance. Semiparametric mixture models, which were introduced into traditional finite mixture models in the past decade, have brought forth exciting developments in their methodologies, theories, and applications. In this article, we not only provide a selective overview of the newly-developed semiparametric mixture models, but also discuss their estimation methodologies, theoretical properties if applicable, and some open questions. Recent developments are also discussed. Full Article
ic Producing Official County-Level Agricultural Estimates in the United States: Needs and Challenges By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Nathan B. Cruze, Andreea L. Erciulescu, Balgobin Nandram, Wendy J. Barboza, Linda J. Young. Source: Statistical Science, Volume 34, Number 2, 301--316.Abstract: In the United States, county-level estimates of crop yield, production, and acreage published by the United States Department of Agriculture’s National Agricultural Statistics Service (USDA NASS) play an important role in determining the value of payments allotted to farmers and ranchers enrolled in several federal programs. Given the importance of these official county-level crop estimates, NASS continually strives to improve its crops county estimates program in terms of accuracy, reliability and coverage. In 2015, NASS engaged a panel of experts convened under the auspices of the National Academies of Sciences, Engineering, and Medicine Committee on National Statistics (CNSTAT) for guidance on implementing models that may synthesize multiple sources of information into a single estimate, provide defensible measures of uncertainty, and potentially increase the number of publishable county estimates. The final report titled Improving Crop Estimates by Integrating Multiple Data Sources was released in 2017. This paper discusses several needs and requirements for NASS county-level crop estimates that were illuminated during the activities of the CNSTAT panel. A motivating example of planted acreage estimation in Illinois illustrates several challenges that NASS faces as it considers adopting any explicit model for official crops county estimates. Full Article
ic The Importance of Being Clustered: Uncluttering the Trends of Statistics from 1970 to 2015 By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Laura Anderlucci, Angela Montanari, Cinzia Viroli. Source: Statistical Science, Volume 34, Number 2, 280--300.Abstract: In this paper, we retrace the recent history of statistics by analyzing all the papers published in five prestigious statistical journals since 1970, namely: The Annals of Statistics , Biometrika , Journal of the American Statistical Association , Journal of the Royal Statistical Society, Series B and Statistical Science . The aim is to construct a kind of “taxonomy” of the statistical papers by organizing and clustering them in main themes. In this sense being identified in a cluster means being important enough to be uncluttered in the vast and interconnected world of the statistical research. Since the main statistical research topics naturally born, evolve or die during time, we will also develop a dynamic clustering strategy, where a group in a time period is allowed to migrate or to merge into different groups in the following one. Results show that statistics is a very dynamic and evolving science, stimulated by the rise of new research questions and types of data. Full Article
ic Statistical Analysis of Zero-Inflated Nonnegative Continuous Data: A Review By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Lei Liu, Ya-Chen Tina Shih, Robert L. Strawderman, Daowen Zhang, Bankole A. Johnson, Haitao Chai. Source: Statistical Science, Volume 34, Number 2, 253--279.Abstract: Zero-inflated nonnegative continuous (or semicontinuous) data arise frequently in biomedical, economical, and ecological studies. Examples include substance abuse, medical costs, medical care utilization, biomarkers (e.g., CD4 cell counts, coronary artery calcium scores), single cell gene expression rates, and (relative) abundance of microbiome. Such data are often characterized by the presence of a large portion of zero values and positive continuous values that are skewed to the right and heteroscedastic. Both of these features suggest that no simple parametric distribution may be suitable for modeling such type of outcomes. In this paper, we review statistical methods for analyzing zero-inflated nonnegative outcome data. We will start with the cross-sectional setting, discussing ways to separate zero and positive values and introducing flexible models to characterize right skewness and heteroscedasticity in the positive values. We will then present models of correlated zero-inflated nonnegative continuous data, using random effects to tackle the correlation on repeated measures from the same subject and that across different parts of the model. We will also discuss expansion to related topics, for example, zero-inflated count and survival data, nonlinear covariate effects, and joint models of longitudinal zero-inflated nonnegative continuous data and survival. Finally, we will present applications to three real datasets (i.e., microbiome, medical costs, and alcohol drinking) to illustrate these methods. Example code will be provided to facilitate applications of these methods. Full Article
ic A Kernel Regression Procedure in the 3D Shape Space with an Application to Online Sales of Children’s Wear By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Gregorio Quintana-Ortí, Amelia Simó. Source: Statistical Science, Volume 34, Number 2, 236--252.Abstract: This paper is focused on kernel regression when the response variable is the shape of a 3D object represented by a configuration matrix of landmarks. Regression methods on this shape space are not trivial because this space has a complex finite-dimensional Riemannian manifold structure (non-Euclidean). Papers about it are scarce in the literature, the majority of them are restricted to the case of a single explanatory variable, and many of them are based on the approximated tangent space. In this paper, there are several methodological innovations. The first one is the adaptation of the general method for kernel regression analysis in manifold-valued data to the three-dimensional case of Kendall’s shape space. The second one is its generalization to the multivariate case and the addressing of the curse-of-dimensionality problem. Finally, we propose bootstrap confidence intervals for prediction. A simulation study is carried out to check the goodness of the procedure, and a comparison with a current approach is performed. Then, it is applied to a 3D database obtained from an anthropometric survey of the Spanish child population with a potential application to online sales of children’s wear. Full Article
ic Rejoinder: Bayes, Oracle Bayes, and Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Bradley Efron. Source: Statistical Science, Volume 34, Number 2, 234--235. Full Article
ic Comment: Variational Autoencoders as Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Yixin Wang, Andrew C. Miller, David M. Blei. Source: Statistical Science, Volume 34, Number 2, 229--233. Full Article
ic Comment: Empirical Bayes, Compound Decisions and Exchangeability By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Eitan Greenshtein, Ya’acov Ritov. Source: Statistical Science, Volume 34, Number 2, 224--228.Abstract: We present some personal reflections on empirical Bayes/ compound decision (EB/CD) theory following Efron (2019). In particular, we consider the role of exchangeability in the EB/CD theory and how it can be achieved when there are covariates. We also discuss the interpretation of EB/CD confidence interval, the theoretical efficiency of the CD procedure, and the impact of sparsity assumptions. Full Article
ic Comment: Empirical Bayes Interval Estimation By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Wenhua Jiang. Source: Statistical Science, Volume 34, Number 2, 219--223.Abstract: This is a contribution to the discussion of the enlightening paper by Professor Efron. We focus on empirical Bayes interval estimation. We discuss the oracle interval estimation rules, the empirical Bayes estimation of the oracle rule and the computation. Some numerical results are reported. Full Article
ic Comment: Bayes, Oracle Bayes and Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Aad van der Vaart. Source: Statistical Science, Volume 34, Number 2, 214--218. Full Article
ic Comment: Bayes, Oracle Bayes, and Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Nan Laird. Source: Statistical Science, Volume 34, Number 2, 206--208. Full Article
ic Comment: Bayes, Oracle Bayes, and Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Thomas A. Louis. Source: Statistical Science, Volume 34, Number 2, 202--205. Full Article
ic Bayes, Oracle Bayes and Empirical Bayes By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Bradley Efron. Source: Statistical Science, Volume 34, Number 2, 177--201.Abstract: This article concerns the Bayes and frequentist aspects of empirical Bayes inference. Some of the ideas explored go back to Robbins in the 1950s, while others are current. Several examples are discussed, real and artificial, illustrating the two faces of empirical Bayes methodology: “oracle Bayes” shows empirical Bayes in its most frequentist mode, while “finite Bayes inference” is a fundamentally Bayesian application. In either case, modern theory and computation allow us to present a sharp finite-sample picture of what is at stake in an empirical Bayes analysis. Full Article
ic A Conversation with Dick Dudley By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Vladimir Koltchinskii, Richard Nickl, Philippe Rigollet. Source: Statistical Science, Volume 34, Number 1, 169--175.Abstract: Richard Mansfield Dudley (Dick Dudley) was born in 1938. He received the A.B. from Harvard in 1952 and the Ph.D. from Princeton in 1962 (under the supervision of Gilbert Hunt and Edward Nelson). Following an appointment at UC Berkeley as an assistant professor, he joined the Department of Mathematics at MIT in 1967. Dick Dudley has made fundamental contributions to the theory of Gaussian processes and Probability in Banach Spaces. Among his major achievements is the development of a general framework for empirical processes theory, in particular, for uniform central limit theorems. These results have had and continue having tremendous impact in contemporary statistics and in mathematical foundations of machine learning. A more extensive biographical sketch is contained in the preface to the Selected works of R. M. Dudley (editors: E. Giné, V. Koltchinskii and R. Norvaisa) published in 2010. This conversation took place (mostly, via email) in the fall of 2017. Full Article
ic Gaussian Integrals and Rice Series in Crossing Distributions—to Compute the Distribution of Maxima and Other Features of Gaussian Processes By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Georg Lindgren. Source: Statistical Science, Volume 34, Number 1, 100--128.Abstract: We describe and compare how methods based on the classical Rice’s formula for the expected number, and higher moments, of level crossings by a Gaussian process stand up to contemporary numerical methods to accurately deal with crossing related characteristics of the sample paths. We illustrate the relative merits in accuracy and computing time of the Rice moment methods and the exact numerical method, developed since the late 1990s, on three groups of distribution problems, the maximum over a finite interval and the waiting time to first crossing, the length of excursions over a level, and the joint period/amplitude of oscillations. We also treat the notoriously difficult problem of dependence between successive zero crossing distances. The exact solution has been known since at least 2000, but it has remained largely unnoticed outside the ocean science community. Extensive simulation studies illustrate the accuracy of the numerical methods. As a historical introduction an attempt is made to illustrate the relation between Rice’s original formulation and arguments and the exact numerical methods. Full Article
ic Comment: Contributions of Model Features to BART Causal Inference Performance Using ACIC 2016 Competition Data By projecteuclid.org Published On :: Fri, 12 Apr 2019 04:00 EDT Nicole Bohme Carnegie. Source: Statistical Science, Volume 34, Number 1, 90--93.Abstract: With a thorough exposition of the methods and results of the 2016 Atlantic Causal Inference Competition, Dorie et al. have set a new standard for reproducibility and comparability of evaluations of causal inference methods. In particular, the open-source R package aciccomp2016, which permits reproduction of all datasets used in the competition, will be an invaluable resource for evaluation of future methodological developments. Building upon results from Dorie et al., we examine whether a set of potential modifications to Bayesian Additive Regression Trees (BART)—multiple chains in model fitting, using the propensity score as a covariate, targeted maximum likelihood estimation (TMLE), and computing symmetric confidence intervals—have a stronger impact on bias, RMSE, and confidence interval coverage in combination than they do alone. We find that bias in the estimate of SATT is minimal, regardless of the BART formulation. For purposes of CI coverage, however, all proposed modifications are beneficial—alone and in combination—but use of TMLE is least beneficial for coverage and results in considerably wider confidence intervals. Full Article
ic Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning By www.jneurosci.org Published On :: 2016-09-21T09:33:18-07:00 The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence–divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. SIGNIFICANCE STATEMENT The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Full Article
ic Smart women don't smoke / Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Road, London SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [1989?] Full Article
ic We thank you for not smoking / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
ic 'Smoke gets in your eyes' / Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stllness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
ic 'Smoking is slow-motion suicide' / Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 ING) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
ic Smoking affects us all. / Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
ic If you must smoke don't exhale / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
ic Passive smoking kills / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic Be nice to yourself and others / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic Pollution / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic Cleanair not smoke / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic No smoking no hate / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic No smoking zone / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic Heart burn. / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic Smoking is anti-social / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic Tapadh leibh airson nach do smoc sibh / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
ic No smoking is the norm / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic We thank you for not smoking / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
ic No smoking zone / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic We thank you for not smoking / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, [1988?] Full Article
ic If you must smoke don't exhale / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, [1988?] Full Article
ic Muchas gracias por no fumar / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, [1988?] Full Article
ic Merci de ne pas fumer / Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, [1988?] Full Article
ic Elle est classe, elle ne fume pas / Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Road, London SE23 1NG) : Cleanair, [1989?] Full Article
ic We thank you for not smoking / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?] Full Article
ic No smoking is the norm / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic Be nice to yourself and others / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair, Smoke-free Environment (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic दिल की जलन। = Heart burn. / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair (33 Stillness Rd, London, SE23 1NG), [1989?] Full Article
ic Dila jalana = Heart burn. / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article
ic Hārtabarna = Heart burn. / design : Biman Mullick. By search.wellcomelibrary.org Published On :: London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?] Full Article