ic U.S. chief justice puts hold on disclosure of Russia investigation materials By news.yahoo.com Published On :: Fri, 08 May 2020 11:50:21 -0400 U.S. Chief Justice John Roberts on Friday put a temporary hold on the disclosure to a Democratic-led House of Representatives committee of grand jury material redacted from former Special Counsel Robert Mueller's report on Russian interference in the 2016 election. The U.S. Court of Appeals for the District of Columbia Circuit ruled in March that the materials had to be disclosed to the House Judiciary Committee and refused to put that decision on hold. The appeals court said the materials had to be handed over by May 11 if the Supreme Court did not intervene. Full Article
ic Boeing says it's about to start building the 737 Max plane again in the middle of the coronavirus pandemic, even though it already has more planes than it can deliver By news.yahoo.com Published On :: Fri, 08 May 2020 12:44:06 -0400 Boeing CEO Dave Calhoun said the company was aiming to resume production this month, despite the ongoing grounding and coronavirus pandemic. Full Article
ic Delta, citing health concerns, drops service to 10 US airports. Is yours on the list? By news.yahoo.com Published On :: Fri, 08 May 2020 18:41:45 -0400 Delta said it is making the move to protect employees amid the coronavirus pandemic, but planes have been flying near empty Full Article
ic 'We Cannot Police Our Way Out of a Pandemic.' Experts, Police Union Say NYPD Should Not Be Enforcing Social Distance Rules Amid COVID-19 By news.yahoo.com Published On :: Thu, 07 May 2020 17:03:38 -0400 The New York City police department (NYPD) is conducting an internal investigation into a May 2 incident involving the violent arrests of multiple people, allegedly members of a group who were not social distancing Full Article
ic ‘Selfish, tribal and divided’: Barack Obama warns of changes to American way of life in leaked audio slamming Trump administration By news.yahoo.com Published On :: Sat, 09 May 2020 07:22:00 -0400 Barack Obama said the “rule of law is at risk” following the justice department’s decision to drop charges against former Trump advisor Mike Flynn, as he issued a stark warning about the long-term impact on the American way of life by his successor. Full Article
ic Cruz gets his hair cut at salon whose owner was jailed for defying Texas coronavirus restrictions By news.yahoo.com Published On :: Fri, 08 May 2020 19:28:43 -0400 After his haircut, Sen. Ted Cruz said, "It was ridiculous to see somebody sentenced to seven days in jail for cutting hair." Full Article
ic Meet the Ohio health expert who has a fan club — and Republicans trying to stop her By news.yahoo.com Published On :: Sat, 09 May 2020 05:04:00 -0400 Some Buckeyes are not comfortable being told by a "woman in power" to quarantine, one expert said. Full Article
ic The McMichaels can't be charged with a hate crime by the state in the shooting death of Ahmaud Arbery because the law doesn't exist in Georgia By news.yahoo.com Published On :: Fri, 08 May 2020 17:07:36 -0400 Georgia is one of four states that doesn't have a hate crime law. Arbery's killing has reignited calls for legislation. Full Article
ic Nearly one-third of Americans believe a coronavirus vaccine exists and is being withheld, survey finds By news.yahoo.com Published On :: Fri, 08 May 2020 16:49:35 -0400 The Democracy Fund + UCLA Nationscape Project found some misinformation about the coronavirus is more widespread that you might think. Full Article
ic Coronavirus: Chinese official admits health system weaknesses By news.yahoo.com Published On :: Sat, 09 May 2020 11:02:40 -0400 China says it will improve public health systems after criticism of its early response to the virus. Full Article
ic Bayesian Sparse Multivariate Regression with Asymmetric Nonlocal Priors for Microbiome Data Analysis By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Kurtis Shuler, Marilou Sison-Mangus, Juhee Lee. Source: Bayesian Analysis, Volume 15, Number 2, 559--578.Abstract: We propose a Bayesian sparse multivariate regression method to model the relationship between microbe abundance and environmental factors for microbiome data. We model abundance counts of operational taxonomic units (OTUs) with a negative binomial distribution and relate covariates to the counts through regression. Extending conventional nonlocal priors, we construct asymmetric nonlocal priors for regression coefficients to efficiently identify relevant covariates and their effect directions. We build a hierarchical model to facilitate pooling of information across OTUs that produces parsimonious results with improved accuracy. We present simulation studies that compare variable selection performance under the proposed model to those under Bayesian sparse regression models with asymmetric and symmetric local priors and two frequentist models. The simulations show the proposed model identifies important covariates and yields coefficient estimates with favorable accuracy compared with the alternatives. The proposed model is applied to analyze an ocean microbiome dataset collected over time to study the association of harmful algal bloom conditions with microbial communities. Full Article
ic Function-Specific Mixing Times and Concentration Away from Equilibrium By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Maxim Rabinovich, Aaditya Ramdas, Michael I. Jordan, Martin J. Wainwright. Source: Bayesian Analysis, Volume 15, Number 2, 505--532.Abstract: Slow mixing is the central hurdle is applications of Markov chains, especially those used for Monte Carlo approximations (MCMC). In the setting of Bayesian inference, it is often only of interest to estimate the stationary expectations of a small set of functions, and so the usual definition of mixing based on total variation convergence may be too conservative. Accordingly, we introduce function-specific analogs of mixing times and spectral gaps, and use them to prove Hoeffding-like function-specific concentration inequalities. These results show that it is possible for empirical expectations of functions to concentrate long before the underlying chain has mixed in the classical sense, and we show that the concentration rates we achieve are optimal up to constants. We use our techniques to derive confidence intervals that are sharper than those implied by both classical Markov-chain Hoeffding bounds and Berry-Esseen-corrected central limit theorem (CLT) bounds. For applications that require testing, rather than point estimation, we show similar improvements over recent sequential testing results for MCMC. We conclude by applying our framework to real-data examples of MCMC, providing evidence that our theory is both accurate and relevant to practice. Full Article
ic Bayesian Inference in Nonparanormal Graphical Models By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Jami J. Mulgrave, Subhashis Ghosal. Source: Bayesian Analysis, Volume 15, Number 2, 449--475.Abstract: Gaussian graphical models have been used to study intrinsic dependence among several variables, but the Gaussianity assumption may be restrictive in many applications. A nonparanormal graphical model is a semiparametric generalization for continuous variables where it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations on each of them. We consider a Bayesian approach in the nonparanormal graphical model by putting priors on the unknown transformations through a random series based on B-splines where the coefficients are ordered to induce monotonicity. A truncated normal prior leads to partial conjugacy in the model and is useful for posterior simulation using Gibbs sampling. On the underlying precision matrix of the transformed variables, we consider a spike-and-slab prior and use an efficient posterior Gibbs sampling scheme. We use the Bayesian Information Criterion to choose the hyperparameters for the spike-and-slab prior. We present a posterior consistency result on the underlying transformation and the precision matrix. We study the numerical performance of the proposed method through an extensive simulation study and finally apply the proposed method on a real data set. Full Article
ic Dynamic Quantile Linear Models: A Bayesian Approach By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Kelly C. M. Gonçalves, Hélio S. Migon, Leonardo S. Bastos. Source: Bayesian Analysis, Volume 15, Number 2, 335--362.Abstract: The paper introduces a new class of models, named dynamic quantile linear models, which combines dynamic linear models with distribution-free quantile regression producing a robust statistical method. Bayesian estimation for the dynamic quantile linear model is performed using an efficient Markov chain Monte Carlo algorithm. The paper also proposes a fast sequential procedure suited for high-dimensional predictive modeling with massive data, where the generating process is changing over time. The proposed model is evaluated using synthetic and well-known time series data. The model is also applied to predict annual incidence of tuberculosis in the state of Rio de Janeiro and compared with global targets set by the World Health Organization. Full Article
ic A Novel Algorithmic Approach to Bayesian Logic Regression (with Discussion) By projecteuclid.org Published On :: Tue, 17 Mar 2020 04:00 EDT Aliaksandr Hubin, Geir Storvik, Florian Frommlet. Source: Bayesian Analysis, Volume 15, Number 1, 263--333.Abstract: Logic regression was developed more than a decade ago as a tool to construct predictors from Boolean combinations of binary covariates. It has been mainly used to model epistatic effects in genetic association studies, which is very appealing due to the intuitive interpretation of logic expressions to describe the interaction between genetic variations. Nevertheless logic regression has (partly due to computational challenges) remained less well known than other approaches to epistatic association mapping. Here we will adapt an advanced evolutionary algorithm called GMJMCMC (Genetically modified Mode Jumping Markov Chain Monte Carlo) to perform Bayesian model selection in the space of logic regression models. After describing the algorithmic details of GMJMCMC we perform a comprehensive simulation study that illustrates its performance given logic regression terms of various complexity. Specifically GMJMCMC is shown to be able to identify three-way and even four-way interactions with relatively large power, a level of complexity which has not been achieved by previous implementations of logic regression. We apply GMJMCMC to reanalyze QTL (quantitative trait locus) mapping data for Recombinant Inbred Lines in Arabidopsis thaliana and from a backcross population in Drosophila where we identify several interesting epistatic effects. The method is implemented in an R package which is available on github. Full Article
ic High-Dimensional Posterior Consistency for Hierarchical Non-Local Priors in Regression By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Xuan Cao, Kshitij Khare, Malay Ghosh. Source: Bayesian Analysis, Volume 15, Number 1, 241--262.Abstract: The choice of tuning parameters in Bayesian variable selection is a critical problem in modern statistics. In particular, for Bayesian linear regression with non-local priors, the scale parameter in the non-local prior density is an important tuning parameter which reflects the dispersion of the non-local prior density around zero, and implicitly determines the size of the regression coefficients that will be shrunk to zero. Current approaches treat the scale parameter as given, and suggest choices based on prior coverage/asymptotic considerations. In this paper, we consider the fully Bayesian approach introduced in (Wu, 2016) with the pMOM non-local prior and an appropriate Inverse-Gamma prior on the tuning parameter to analyze the underlying theoretical property. Under standard regularity assumptions, we establish strong model selection consistency in a high-dimensional setting, where $p$ is allowed to increase at a polynomial rate with $n$ or even at a sub-exponential rate with $n$ . Through simulation studies, we demonstrate that our model selection procedure can outperform other Bayesian methods which treat the scale parameter as given, and commonly used penalized likelihood methods, in a range of simulation settings. Full Article
ic Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Abhishek Bishoyi, Xiaojing Wang, Dipak K. Dey. Source: Bayesian Analysis, Volume 15, Number 1, 215--239.Abstract: Missing data often appear as a practical problem while applying classical models in the statistical analysis. In this paper, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another through Auto-mpg data taken from the StatLib library. Full Article
ic Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Fangzheng Xie, Yanxun Xu. Source: Bayesian Analysis, Volume 15, Number 1, 159--186.Abstract: We propose a kernel mixture of polynomials prior for Bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal contraction rate of the full posterior distribution up to a logarithmic factor by estimating metric entropies of certain function classes. Under the assumption that the degree of the polynomials is larger than the unknown smoothness level of the true function, the posterior contraction behavior can adapt to this smoothness level provided an upper bound is known. We also provide a frequentist sieve maximum likelihood estimator with a near-optimal convergence rate. We further investigate the application of the kernel mixture of polynomials to partial linear models and obtain both the near-optimal rate of contraction for the nonparametric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of the parametric component. The proposed method is illustrated with numerical examples and shows superior performance in terms of computational efficiency, accuracy, and uncertainty quantification compared to the local polynomial regression, DiceKriging, and the robust Gaussian stochastic process. Full Article
ic Latent Nested Nonparametric Priors (with Discussion) By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Federico Camerlenghi, David B. Dunson, Antonio Lijoi, Igor Prünster, Abel Rodríguez. Source: Bayesian Analysis, Volume 14, Number 4, 1303--1356.Abstract: Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalizing to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop a Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by-product. The results and their inferential implications are showcased on synthetic and real data. Full Article
ic Hierarchical Normalized Completely Random Measures for Robust Graphical Modeling By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Andrea Cremaschi, Raffaele Argiento, Katherine Shoemaker, Christine Peterson, Marina Vannucci. Source: Bayesian Analysis, Volume 14, Number 4, 1271--1301.Abstract: Gaussian graphical models are useful tools for exploring network structures in multivariate normal data. In this paper we are interested in situations where data show departures from Gaussianity, therefore requiring alternative modeling distributions. The multivariate $t$ -distribution, obtained by dividing each component of the data vector by a gamma random variable, is a straightforward generalization to accommodate deviations from normality such as heavy tails. Since different groups of variables may be contaminated to a different extent, Finegold and Drton (2014) introduced the Dirichlet $t$ -distribution, where the divisors are clustered using a Dirichlet process. In this work, we consider a more general class of nonparametric distributions as the prior on the divisor terms, namely the class of normalized completely random measures (NormCRMs). To improve the effectiveness of the clustering, we propose modeling the dependence among the divisors through a nonparametric hierarchical structure, which allows for the sharing of parameters across the samples in the data set. This desirable feature enables us to cluster together different components of multivariate data in a parsimonious way. We demonstrate through simulations that this approach provides accurate graphical model inference, and apply it to a case study examining the dependence structure in radiomics data derived from The Cancer Imaging Atlas. Full Article
ic Spatial Disease Mapping Using Directed Acyclic Graph Auto-Regressive (DAGAR) Models By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Abhirup Datta, Sudipto Banerjee, James S. Hodges, Leiwen Gao. Source: Bayesian Analysis, Volume 14, Number 4, 1221--1244.Abstract: Hierarchical models for regionally aggregated disease incidence data commonly involve region specific latent random effects that are modeled jointly as having a multivariate Gaussian distribution. The covariance or precision matrix incorporates the spatial dependence between the regions. Common choices for the precision matrix include the widely used ICAR model, which is singular, and its nonsingular extension which lacks interpretability. We propose a new parametric model for the precision matrix based on a directed acyclic graph (DAG) representation of the spatial dependence. Our model guarantees positive definiteness and, hence, in addition to being a valid prior for regional spatially correlated random effects, can also directly model the outcome from dependent data like images and networks. Theoretical results establish a link between the parameters in our model and the variance and covariances of the random effects. Simulation studies demonstrate that the improved interpretability of our model reaps benefits in terms of accurately recovering the latent spatial random effects as well as for inference on the spatial covariance parameters. Under modest spatial correlation, our model far outperforms the CAR models, while the performances are similar when the spatial correlation is strong. We also assess sensitivity to the choice of the ordering in the DAG construction using theoretical and empirical results which testify to the robustness of our model. We also present a large-scale public health application demonstrating the competitive performance of the model. Full Article
ic Estimating the Use of Public Lands: Integrated Modeling of Open Populations with Convolution Likelihood Ecological Abundance Regression By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Lutz F. Gruber, Erica F. Stuber, Lyndsie S. Wszola, Joseph J. Fontaine. Source: Bayesian Analysis, Volume 14, Number 4, 1173--1199.Abstract: We present an integrated open population model where the population dynamics are defined by a differential equation, and the related statistical model utilizes a Poisson binomial convolution likelihood. Key advantages of the proposed approach over existing open population models include the flexibility to predict related, but unobserved quantities such as total immigration or emigration over a specified time period, and more computationally efficient posterior simulation by elimination of the need to explicitly simulate latent immigration and emigration. The viability of the proposed method is shown in an in-depth analysis of outdoor recreation participation on public lands, where the surveyed populations changed rapidly and demographic population closure cannot be assumed even within a single day. Full Article
ic Implicit Copulas from Bayesian Regularized Regression Smoothers By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Nadja Klein, Michael Stanley Smith. Source: Bayesian Analysis, Volume 14, Number 4, 1143--1171.Abstract: We show how to extract the implicit copula of a response vector from a Bayesian regularized regression smoother with Gaussian disturbances. The copula can be used to compare smoothers that employ different shrinkage priors and function bases. We illustrate with three popular choices of shrinkage priors—a pairwise prior, the horseshoe prior and a g prior augmented with a point mass as employed for Bayesian variable selection—and both univariate and multivariate function bases. The implicit copulas are high-dimensional, have flexible dependence structures that are far from that of a Gaussian copula, and are unavailable in closed form. However, we show how they can be evaluated by first constructing a Gaussian copula conditional on the regularization parameters, and then integrating over these. Combined with non-parametric margins the regularized smoothers can be used to model the distribution of non-Gaussian univariate responses conditional on the covariates. Efficient Markov chain Monte Carlo schemes for evaluating the copula are given for this case. Using both simulated and real data, we show how such copula smoothing models can improve the quality of resulting function estimates and predictive distributions. Full Article
ic Post-Processing Posteriors Over Precision Matrices to Produce Sparse Graph Estimates By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Amir Bashir, Carlos M. Carvalho, P. Richard Hahn, M. Beatrix Jones. Source: Bayesian Analysis, Volume 14, Number 4, 1075--1090.Abstract: A variety of computationally efficient Bayesian models for the covariance matrix of a multivariate Gaussian distribution are available. However, all produce a relatively dense estimate of the precision matrix, and are therefore unsatisfactory when one wishes to use the precision matrix to consider the conditional independence structure of the data. This paper considers the posterior predictive distribution of model fit for these covariance models. We then undertake post-processing of the Bayes point estimate for the precision matrix to produce a sparse model whose expected fit lies within the upper 95% of the posterior predictive distribution of fit. The impact of the method for selecting the zero elements of the precision matrix is evaluated. Good results were obtained using models that encouraged a sparse posterior (G-Wishart, Bayesian adaptive graphical lasso) and selection using credible intervals. We also find that this approach is easily extended to the problem of finding a sparse set of elements that differ across a set of precision matrices, a natural summary when a common set of variables is observed under multiple conditions. We illustrate our findings with moderate dimensional data examples from finance and metabolomics. Full Article
ic Beyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Claudia Kirch, Matthew C. Edwards, Alexander Meier, Renate Meyer. Source: Bayesian Analysis, Volume 14, Number 4, 1037--1073.Abstract: Nonparametric Bayesian inference has seen a rapid growth over the last decade but only few nonparametric Bayesian approaches to time series analysis have been developed. Most existing approaches use Whittle’s likelihood for Bayesian modelling of the spectral density as the main nonparametric characteristic of stationary time series. It is known that the loss of efficiency using Whittle’s likelihood can be substantial. On the other hand, parametric methods are more powerful than nonparametric methods if the observed time series is close to the considered model class but fail if the model is misspecified. Therefore, we suggest a nonparametric correction of a parametric likelihood that takes advantage of the efficiency of parametric models while mitigating sensitivities through a nonparametric amendment. We use a nonparametric Bernstein polynomial prior on the spectral density with weights induced by a Dirichlet process and prove posterior consistency for Gaussian stationary time series. Bayesian posterior computations are implemented via an MH-within-Gibbs sampler and the performance of the nonparametrically corrected likelihood for Gaussian time series is illustrated in a simulation study and in three astronomy applications, including estimating the spectral density of gravitational wave data from the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). Full Article
ic Bayes Factors for Partially Observed Stochastic Epidemic Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Muteb Alharthi, Theodore Kypraios, Philip D. O’Neill. Source: Bayesian Analysis, Volume 14, Number 3, 927--956.Abstract: We consider the problem of model choice for stochastic epidemic models given partial observation of a disease outbreak through time. Our main focus is on the use of Bayes factors. Although Bayes factors have appeared in the epidemic modelling literature before, they can be hard to compute and little attention has been given to fundamental questions concerning their utility. In this paper we derive analytic expressions for Bayes factors given complete observation through time, which suggest practical guidelines for model choice problems. We adapt the power posterior method for computing Bayes factors so as to account for missing data and apply this approach to partially observed epidemics. For comparison, we also explore the use of a deviance information criterion for missing data scenarios. The methods are illustrated via examples involving both simulated and real data. Full Article
ic Extrinsic Gaussian Processes for Regression and Classification on Manifolds By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Lizhen Lin, Niu Mu, Pokman Cheung, David Dunson. Source: Bayesian Analysis, Volume 14, Number 3, 907--926.Abstract: Gaussian processes (GPs) are very widely used for modeling of unknown functions or surfaces in applications ranging from regression to classification to spatial processes. Although there is an increasingly vast literature on applications, methods, theory and algorithms related to GPs, the overwhelming majority of this literature focuses on the case in which the input domain corresponds to a Euclidean space. However, particularly in recent years with the increasing collection of complex data, it is commonly the case that the input domain does not have such a simple form. For example, it is common for the inputs to be restricted to a non-Euclidean manifold, a case which forms the motivation for this article. In particular, we propose a general extrinsic framework for GP modeling on manifolds, which relies on embedding of the manifold into a Euclidean space and then constructing extrinsic kernels for GPs on their images. These extrinsic Gaussian processes (eGPs) are used as prior distributions for unknown functions in Bayesian inferences. Our approach is simple and general, and we show that the eGPs inherit fine theoretical properties from GP models in Euclidean spaces. We consider applications of our models to regression and classification problems with predictors lying in a large class of manifolds, including spheres, planar shape spaces, a space of positive definite matrices, and Grassmannians. Our models can be readily used by practitioners in biological sciences for various regression and classification problems, such as disease diagnosis or detection. Our work is also likely to have impact in spatial statistics when spatial locations are on the sphere or other geometric spaces. Full Article
ic Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Mengyang Gu. Source: Bayesian Analysis, Volume 14, Number 3, 877--905.Abstract: Gaussian stochastic process (GaSP) has been widely used in two fundamental problems in uncertainty quantification, namely the emulation and calibration of mathematical models. Some objective priors, such as the reference prior, are studied in the context of emulating (approximating) computationally expensive mathematical models. In this work, we introduce a new class of priors, called the jointly robust prior, for both the emulation and calibration. This prior is designed to maintain various advantages from the reference prior. In emulation, the jointly robust prior has an appropriate tail decay rate as the reference prior, and is computationally simpler than the reference prior in parameter estimation. Moreover, the marginal posterior mode estimation with the jointly robust prior can separate the influential and inert inputs in mathematical models, while the reference prior does not have this property. We establish the posterior propriety for a large class of priors in calibration, including the reference prior and jointly robust prior in general scenarios, but the jointly robust prior is preferred because the calibrated mathematical model typically predicts the reality well. The jointly robust prior is used as the default prior in two new R packages, called “RobustGaSP” and “RobustCalibration”, available on CRAN for emulation and calibration, respectively. Full Article
ic Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Ioannis Ntzoufras, Claudia Tarantola, Monia Lupparelli. Source: Bayesian Analysis, Volume 14, Number 3, 797--823.Abstract: We introduce a novel Bayesian approach for quantitative learning for graphical log-linear marginal models. These models belong to curved exponential families that are difficult to handle from a Bayesian perspective. The likelihood cannot be analytically expressed as a function of the marginal log-linear interactions, but only in terms of cell counts or probabilities. Posterior distributions cannot be directly obtained, and Markov Chain Monte Carlo (MCMC) methods are needed. Finally, a well-defined model requires parameter values that lead to compatible marginal probabilities. Hence, any MCMC should account for this important restriction. We construct a fully automatic and efficient MCMC strategy for quantitative learning for such models that handles these problems. While the prior is expressed in terms of the marginal log-linear interactions, we build an MCMC algorithm that employs a proposal on the probability parameter space. The corresponding proposal on the marginal log-linear interactions is obtained via parameter transformation. We exploit a conditional conjugate setup to build an efficient proposal on probability parameters. The proposed methodology is illustrated by a simulation study and a real dataset. Full Article
ic Stochastic Approximations to the Pitman–Yor Process By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Julyan Arbel, Pierpaolo De Blasi, Igor Prünster. Source: Bayesian Analysis, Volume 14, Number 3, 753--771.Abstract: In this paper we consider approximations to the popular Pitman–Yor process obtained by truncating the stick-breaking representation. The truncation is determined by a random stopping rule that achieves an almost sure control on the approximation error in total variation distance. We derive the asymptotic distribution of the random truncation point as the approximation error $epsilon$ goes to zero in terms of a polynomially tilted positive stable random variable. The practical usefulness and effectiveness of this theoretical result is demonstrated by devising a sampling algorithm to approximate functionals of the $epsilon$ -version of the Pitman–Yor process. Full Article
ic Semiparametric Multivariate and Multiple Change-Point Modeling By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Stefano Peluso, Siddhartha Chib, Antonietta Mira. Source: Bayesian Analysis, Volume 14, Number 3, 727--751.Abstract: We develop a general Bayesian semiparametric change-point model in which separate groups of structural parameters (for example, location and dispersion parameters) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes is unknown and given by a Dirichlet process mixture prior. The properties of the proposed model are studied theoretically through the analysis of inter-arrival times and of the number of change-points in a given time interval. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a forward-backward algorithm for sampling the various regime indicators. Analysis with simulated data under various scenarios and an application to short-term interest rates are used to show the generality and usefulness of the proposed model. Full Article
ic Model Criticism in Latent Space By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Sohan Seth, Iain Murray, Christopher K. I. Williams. Source: Bayesian Analysis, Volume 14, Number 3, 703--725.Abstract: Model criticism is usually carried out by assessing if replicated data generated under the fitted model looks similar to the observed data, see e.g. Gelman, Carlin, Stern, and Rubin (2004, p. 165). This paper presents a method for latent variable models by pulling back the data into the space of latent variables, and carrying out model criticism in that space. Making use of a model's structure enables a more direct assessment of the assumptions made in the prior and likelihood. We demonstrate the method with examples of model criticism in latent space applied to factor analysis, linear dynamical systems and Gaussian processes. Full Article
ic Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Yushu Shi, Michael Martens, Anjishnu Banerjee, Purushottam Laud. Source: Bayesian Analysis, Volume 14, Number 3, 677--702.Abstract: Dirichlet process mixture (DPM) models provide flexible modeling for distributions of data as an infinite mixture of distributions from a chosen collection. Specifying priors for these models in individual data contexts can be challenging. In this paper, we introduce a scheme which requires the investigator to specify only simple scaling information. This is used to transform the data to a fixed scale on which a low information prior is constructed. Samples from the posterior with the rescaled data are transformed back for inference on the original scale. The low information prior is selected to provide a wide variety of components for the DPM to generate flexible distributions for the data on the fixed scale. The method can be applied to all DPM models with kernel functions closed under a suitable scaling transformation. Construction of the low information prior, however, is kernel dependent. Using DPM-of-Gaussians and DPM-of-Weibulls models as examples, we show that the method provides accurate estimates of a diverse collection of distributions that includes skewed, multimodal, and highly dispersed members. With the recommended priors, repeated data simulations show performance comparable to that of standard empirical estimates. Finally, we show weak convergence of posteriors with the proposed priors for both kernels considered. Full Article
ic A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control By projecteuclid.org Published On :: Fri, 31 May 2019 22:05 EDT Luis Gutiérrez, Andrés F. Barrientos, Jorge González, Daniel Taylor-Rodríguez. Source: Bayesian Analysis, Volume 14, Number 2, 649--675.Abstract: We propose a Bayesian nonparametric strategy to test for differences between a control group and several treatment regimes. Most of the existing tests for this type of comparison are based on the differences between location parameters. In contrast, our approach identifies differences across the entire distribution, avoids strong modeling assumptions over the distributions for each treatment, and accounts for multiple testing through the prior distribution on the space of hypotheses. The proposal is compared to other commonly used hypothesis testing procedures under simulated scenarios. Two real applications are also analyzed with the proposed methodology. Full Article
ic Alleviating Spatial Confounding for Areal Data Problems by Displacing the Geographical Centroids By projecteuclid.org Published On :: Fri, 31 May 2019 22:05 EDT Marcos Oliveira Prates, Renato Martins Assunção, Erica Castilho Rodrigues. Source: Bayesian Analysis, Volume 14, Number 2, 623--647.Abstract: Spatial confounding between the spatial random effects and fixed effects covariates has been recently discovered and showed that it may bring misleading interpretation to the model results. Techniques to alleviate this problem are based on decomposing the spatial random effect and fitting a restricted spatial regression. In this paper, we propose a different approach: a transformation of the geographic space to ensure that the unobserved spatial random effect added to the regression is orthogonal to the fixed effects covariates. Our approach, named SPOCK, has the additional benefit of providing a fast and simple computational method to estimate the parameters. Also, it does not constrain the distribution class assumed for the spatial error term. A simulation study and real data analyses are presented to better understand the advantages of the new method in comparison with the existing ones. Full Article
ic Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Marko Järvenpää, Michael U. Gutmann, Arijus Pleska, Aki Vehtari, Pekka Marttinen. Source: Bayesian Analysis, Volume 14, Number 2, 595--622.Abstract: Approximate Bayesian computation (ABC) is a method for Bayesian inference when the likelihood is unavailable but simulating from the model is possible. However, many ABC algorithms require a large number of simulations, which can be costly. To reduce the computational cost, Bayesian optimisation (BO) and surrogate models such as Gaussian processes have been proposed. Bayesian optimisation enables one to intelligently decide where to evaluate the model next but common BO strategies are not designed for the goal of estimating the posterior distribution. Our paper addresses this gap in the literature. We propose to compute the uncertainty in the ABC posterior density, which is due to a lack of simulations to estimate this quantity accurately, and define a loss function that measures this uncertainty. We then propose to select the next evaluation location to minimise the expected loss. Experiments show that the proposed method often produces the most accurate approximations as compared to common BO strategies. Full Article
ic A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Alberto Cassese, Weixuan Zhu, Michele Guindani, Marina Vannucci. Source: Bayesian Analysis, Volume 14, Number 2, 553--572.Abstract: In many applications, investigators monitor processes that vary in space and time, with the goal of identifying temporally persistent and spatially localized departures from a baseline or “normal” behavior. In this manuscript, we consider the monitoring of pneumonia and influenza (P&I) mortality, to detect influenza outbreaks in the continental United States, and propose a Bayesian nonparametric model selection approach to take into account the spatio-temporal dependence of outbreaks. More specifically, we introduce a zero-inflated conditionally identically distributed species sampling prior which allows borrowing information across time and to assign data to clusters associated to either a null or an alternate process. Spatial dependences are accounted for by means of a Markov random field prior, which allows to inform the selection based on inferences conducted at nearby locations. We show how the proposed modeling framework performs in an application to the P&I mortality data and in a simulation study, and compare with common threshold methods for detecting outbreaks over time, with more recent Markov switching based models, and with spike-and-slab Bayesian nonparametric priors that do not take into account spatio-temporal dependence. Full Article
ic Analysis of the Maximal a Posteriori Partition in the Gaussian Dirichlet Process Mixture Model By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Łukasz Rajkowski. Source: Bayesian Analysis, Volume 14, Number 2, 477--494.Abstract: Mixture models are a natural choice in many applications, but it can be difficult to place an a priori upper bound on the number of components. To circumvent this, investigators are turning increasingly to Dirichlet process mixture models (DPMMs). It is therefore important to develop an understanding of the strengths and weaknesses of this approach. This work considers the MAP (maximum a posteriori) clustering for the Gaussian DPMM (where the cluster means have Gaussian distribution and, for each cluster, the observations within the cluster have Gaussian distribution). Some desirable properties of the MAP partition are proved: ‘almost disjointness’ of the convex hulls of clusters (they may have at most one point in common) and (with natural assumptions) the comparability of sizes of those clusters that intersect any fixed ball with the number of observations (as the latter goes to infinity). Consequently, the number of such clusters remains bounded. Furthermore, if the data arises from independent identically distributed sampling from a given distribution with bounded support then the asymptotic MAP partition of the observation space maximises a function which has a straightforward expression, which depends only on the within-group covariance parameter. As the operator norm of this covariance parameter decreases, the number of clusters in the MAP partition becomes arbitrarily large, which may lead to the overestimation of the number of mixture components. Full Article
ic Efficient Bayesian Regularization for Graphical Model Selection By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Suprateek Kundu, Bani K. Mallick, Veera Baladandayuthapani. Source: Bayesian Analysis, Volume 14, Number 2, 449--476.Abstract: There has been an intense development in the Bayesian graphical model literature over the past decade; however, most of the existing methods are restricted to moderate dimensions. We propose a novel graphical model selection approach for large dimensional settings where the dimension increases with the sample size, by decoupling model fitting and covariance selection. First, a full model based on a complete graph is fit under a novel class of mixtures of inverse–Wishart priors, which induce shrinkage on the precision matrix under an equivalence with Cholesky-based regularization, while enabling conjugate updates. Subsequently, a post-fitting model selection step uses penalized joint credible regions to perform model selection. This allows our methods to be computationally feasible for large dimensional settings using a combination of straightforward Gibbs samplers and efficient post-fitting inferences. Theoretical guarantees in terms of selection consistency are also established. Simulations show that the proposed approach compares favorably with competing methods, both in terms of accuracy metrics and computation times. We apply this approach to a cancer genomics data example. Full Article
ic A Bayesian Approach to Statistical Shape Analysis via the Projected Normal Distribution By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Luis Gutiérrez, Eduardo Gutiérrez-Peña, Ramsés H. Mena. Source: Bayesian Analysis, Volume 14, Number 2, 427--447.Abstract: This work presents a Bayesian predictive approach to statistical shape analysis. A modeling strategy that starts with a Gaussian distribution on the configuration space, and then removes the effects of location, rotation and scale, is studied. This boils down to an application of the projected normal distribution to model the configurations in the shape space, which together with certain identifiability constraints, facilitates parameter interpretation. Having better control over the parameters allows us to generalize the model to a regression setting where the effect of predictors on shapes can be considered. The methodology is illustrated and tested using both simulated scenarios and a real data set concerning eight anatomical landmarks on a sagittal plane of the corpus callosum in patients with autism and in a group of controls. Full Article
ic Bayesian Effect Fusion for Categorical Predictors By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Daniela Pauger, Helga Wagner. Source: Bayesian Analysis, Volume 14, Number 2, 341--369.Abstract: We propose a Bayesian approach to obtain a sparse representation of the effect of a categorical predictor in regression type models. As this effect is captured by a group of level effects, sparsity cannot only be achieved by excluding single irrelevant level effects or the whole group of effects associated to this predictor but also by fusing levels which have essentially the same effect on the response. To achieve this goal, we propose a prior which allows for almost perfect as well as almost zero dependence between level effects a priori. This prior can alternatively be obtained by specifying spike and slab prior distributions on all effect differences associated to this categorical predictor. We show how restricted fusion can be implemented and develop an efficient MCMC (Markov chain Monte Carlo) method for posterior computation. The performance of the proposed method is investigated on simulated data and we illustrate its application on real data from EU-SILC (European Union Statistics on Income and Living Conditions). Full Article
ic Modeling Population Structure Under Hierarchical Dirichlet Processes By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Lloyd T. Elliott, Maria De Iorio, Stefano Favaro, Kaustubh Adhikari, Yee Whye Teh. Source: Bayesian Analysis, Volume 14, Number 2, 313--339.Abstract: We propose a Bayesian nonparametric model to infer population admixture, extending the hierarchical Dirichlet process to allow for correlation between loci due to linkage disequilibrium. Given multilocus genotype data from a sample of individuals, the proposed model allows inferring and classifying individuals as unadmixed or admixed, inferring the number of subpopulations ancestral to an admixed population and the population of origin of chromosomal regions. Our model does not assume any specific mutation process, and can be applied to most of the commonly used genetic markers. We present a Markov chain Monte Carlo (MCMC) algorithm to perform posterior inference from the model and we discuss some methods to summarize the MCMC output for the analysis of population admixture. Finally, we demonstrate the performance of the proposed model in a real application, using genetic data from the ectodysplasin-A receptor (EDAR) gene, which is considered to be ancestry-informative due to well-known variations in allele frequency as well as phenotypic effects across ancestry. The structure analysis of this dataset leads to the identification of a rare haplotype in Europeans. We also conduct a simulated experiment and show that our algorithm outperforms parametric methods. Full Article
ic Separable covariance arrays via the Tucker product, with applications to multivariate relational data By projecteuclid.org Published On :: Wed, 13 Jun 2012 14:27 EDT Peter D. HoffSource: Bayesian Anal., Volume 6, Number 2, 179--196.Abstract: Modern datasets are often in the form of matrices or arrays, potentially having correlations along each set of data indices. For example, data involving repeated measurements of several variables over time may exhibit temporal correlation as well as correlation among the variables. A possible model for matrix-valued data is the class of matrix normal distributions, which is parametrized by two covariance matrices, one for each index set of the data. In this article we discuss an extension of the matrix normal model to accommodate multidimensional data arrays, or tensors. We show how a particular array-matrix product can be used to generate the class of array normal distributions having separable covariance structure. We derive some properties of these covariance structures and the corresponding array normal distributions, and show how the array-matrix product can be used to define a semi-conjugate prior distribution and calculate the corresponding posterior distribution. We illustrate the methodology in an analysis of multivariate longitudinal network data which take the form of a four-way array. Full Article
ic Maximum Independent Component Analysis with Application to EEG Data By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Ruosi Guo, Chunming Zhang, Zhengjun Zhang. Source: Statistical Science, Volume 35, Number 1, 145--157.Abstract: In many scientific disciplines, finding hidden influential factors behind observational data is essential but challenging. The majority of existing approaches, such as the independent component analysis (${mathrm{ICA}}$), rely on linear transformation, that is, true signals are linear combinations of hidden components. Motivated from analyzing nonlinear temporal signals in neuroscience, genetics, and finance, this paper proposes the “maximum independent component analysis” (${mathrm{MaxICA}}$), based on max-linear combinations of components. In contrast to existing methods, ${mathrm{MaxICA}}$ benefits from focusing on significant major components while filtering out ignorable components. A major tool for parameter learning of ${mathrm{MaxICA}}$ is an augmented genetic algorithm, consisting of three schemes for the elite weighted sum selection, randomly combined crossover, and dynamic mutation. Extensive empirical evaluations demonstrate the effectiveness of ${mathrm{MaxICA}}$ in either extracting max-linearly combined essential sources in many applications or supplying a better approximation for nonlinearly combined source signals, such as $mathrm{EEG}$ recordings analyzed in this paper. Full Article
ic Statistical Inference for the Evolutionary History of Cancer Genomes By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Khanh N. Dinh, Roman Jaksik, Marek Kimmel, Amaury Lambert, Simon Tavaré. Source: Statistical Science, Volume 35, Number 1, 129--144.Abstract: Recent years have seen considerable work on inference about cancer evolution from mutations identified in cancer samples. Much of the modeling work has been based on classical models of population genetics, generalized to accommodate time-varying cell population size. Reverse-time, genealogical views of such models, commonly known as coalescents, have been used to infer aspects of the past of growing populations. Another approach is to use branching processes, the simplest scenario being the classical linear birth-death process. Inference from evolutionary models of DNA often exploits summary statistics of the sequence data, a common one being the so-called Site Frequency Spectrum (SFS). In a bulk tumor sequencing experiment, we can estimate for each site at which a novel somatic point mutation has arisen, the proportion of cells that carry that mutation. These numbers are then grouped into collections of sites which have similar mutant fractions. We examine how the SFS based on birth-death processes differs from those based on the coalescent model. This may stem from the different sampling mechanisms in the two approaches. However, we also show that despite this, they are quantitatively comparable for the range of parameters typical for tumor cell populations. We also present a model of tumor evolution with selective sweeps, and demonstrate how it may help in understanding the history of a tumor as well as the influence of data pre-processing. We illustrate the theory with applications to several examples from The Cancer Genome Atlas tumors. Full Article
ic Statistical Molecule Counting in Super-Resolution Fluorescence Microscopy: Towards Quantitative Nanoscopy By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Thomas Staudt, Timo Aspelmeier, Oskar Laitenberger, Claudia Geisler, Alexander Egner, Axel Munk. Source: Statistical Science, Volume 35, Number 1, 92--111.Abstract: Super-resolution microscopy is rapidly gaining importance as an analytical tool in the life sciences. A compelling feature is the ability to label biological units of interest with fluorescent markers in (living) cells and to observe them with considerably higher resolution than conventional microscopy permits. The images obtained this way, however, lack an absolute intensity scale in terms of numbers of fluorophores observed. In this article, we discuss state of the art methods to count such fluorophores and statistical challenges that come along with it. In particular, we suggest a modeling scheme for time series generated by single-marker-switching (SMS) microscopy that makes it possible to quantify the number of markers in a statistically meaningful manner from the raw data. To this end, we model the entire process of photon generation in the fluorophore, their passage through the microscope, detection and photoelectron amplification in the camera, and extraction of time series from the microscopic images. At the heart of these modeling steps is a careful description of the fluorophore dynamics by a novel hidden Markov model that operates on two timescales (HTMM). Besides the fluorophore number, information about the kinetic transition rates of the fluorophore’s internal states is also inferred during estimation. We comment on computational issues that arise when applying our model to simulated or measured fluorescence traces and illustrate our methodology on simulated data. Full Article
ic Statistical Methodology in Single-Molecule Experiments By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Chao Du, S. C. Kou. Source: Statistical Science, Volume 35, Number 1, 75--91.Abstract: Toward the last quarter of the 20th century, the emergence of single-molecule experiments enabled scientists to track and study individual molecules’ dynamic properties in real time. Unlike macroscopic systems’ dynamics, those of single molecules can only be properly described by stochastic models even in the absence of external noise. Consequently, statistical methods have played a key role in extracting hidden information about molecular dynamics from data obtained through single-molecule experiments. In this article, we survey the major statistical methodologies used to analyze single-molecule experimental data. Our discussion is organized according to the types of stochastic models used to describe single-molecule systems as well as major experimental data collection techniques. We also highlight challenges and future directions in the application of statistical methodologies to single-molecule experiments. Full Article
ic A Tale of Two Parasites: Statistical Modelling to Support Disease Control Programmes in Africa By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Peter J. Diggle, Emanuele Giorgi, Julienne Atsame, Sylvie Ntsame Ella, Kisito Ogoussan, Katherine Gass. Source: Statistical Science, Volume 35, Number 1, 42--50.Abstract: Vector-borne diseases have long presented major challenges to the health of rural communities in the wet tropical regions of the world, but especially in sub-Saharan Africa. In this paper, we describe the contribution that statistical modelling has made to the global elimination programme for one vector-borne disease, onchocerciasis. We explain why information on the spatial distribution of a second vector-borne disease, Loa loa, is needed before communities at high risk of onchocerciasis can be treated safely with mass distribution of ivermectin, an antifiarial medication. We show how a model-based geostatistical analysis of Loa loa prevalence survey data can be used to map the predictive probability that each location in the region of interest meets a WHO policy guideline for safe mass distribution of ivermectin and describe two applications: one is to data from Cameroon that assesses prevalence using traditional blood-smear microscopy; the other is to Africa-wide data that uses a low-cost questionnaire-based method. We describe how a recent technological development in image-based microscopy has resulted in a change of emphasis from prevalence alone to the bivariate spatial distribution of prevalence and the intensity of infection among infected individuals. We discuss how statistical modelling of the kind described here can contribute to health policy guidelines and decision-making in two ways. One is to ensure that, in a resource-limited setting, prevalence surveys are designed, and the resulting data analysed, as efficiently as possible. The other is to provide an honest quantification of the uncertainty attached to any binary decision by reporting predictive probabilities that a policy-defined condition for action is or is not met. Full Article
ic Some Statistical Issues in Climate Science By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Michael L. Stein. Source: Statistical Science, Volume 35, Number 1, 31--41.Abstract: Climate science is a field that is arguably both data-rich and data-poor. Data rich in that huge and quickly increasing amounts of data about the state of the climate are collected every day. Data poor in that important aspects of the climate are still undersampled, such as the deep oceans and some characteristics of the upper atmosphere. Data rich in that modern climate models can produce climatological quantities over long time periods with global coverage, including quantities that are difficult to measure and under conditions for which there is no data presently. Data poor in that the correspondence between climate model output to the actual climate, especially for future climate change due to human activities, is difficult to assess. The scope for fruitful interactions between climate scientists and statisticians is great, but requires serious commitments from researchers in both disciplines to understand the scientific and statistical nuances arising from the complex relationships between the data and the real-world problems. This paper describes a small fraction of some of the intellectual challenges that occur at the interface between climate science and statistics, including inferences for extremes for processes with seasonality and long-term trends, the use of climate model ensembles for studying extremes, the scope for using new data sources for studying space-time characteristics of environmental processes and a discussion of non-Gaussian space-time process models for climate variables. The paper concludes with a call to the statistical community to become more engaged in one of the great scientific and policy issues of our time, anthropogenic climate change and its impacts. Full Article
ic Statistical Theory Powering Data Science By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Junhui Cai, Avishai Mandelbaum, Chaitra H. Nagaraja, Haipeng Shen, Linda Zhao. Source: Statistical Science, Volume 34, Number 4, 669--691.Abstract: Statisticians are finding their place in the emerging field of data science. However, many issues considered “new” in data science have long histories in statistics. Examples of using statistical thinking are illustrated, which range from exploratory data analysis to measuring uncertainty to accommodating nonrandom samples. These examples are then applied to service networks, baseball predictions and official statistics. Full Article