oni

R3c-type LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) half-metals with multiple Dirac cones: a potential class of advanced spintronic materials

In the past three years, Dirac half-metals (DHMs) have attracted considerable attention and become a high-profile topic in spintronics becuase of their excellent physical properties such as 100% spin polarization and massless Dirac fermions. Two-dimensional DHMs proposed recently have not yet been experimentally synthesized and thus remain theoretical. As a result, their characteristics cannot be experimentally confirmed. In addition, many theoretically predicted Dirac materials have only a single cone, resulting in a nonlinear electromagnetic response with insufficient intensity and inadequate transport carrier efficiency near the Fermi level. Therefore, after several attempts, we have focused on a novel class of DHMs with multiple Dirac crossings to address the above limitations. In particular, we direct our attention to three-dimensional bulk materials. In this study, the discovery via first principles of an experimentally synthesized DHM LaNiO3 with many Dirac cones and complete spin polarization near the Fermi level is reported. It is also shown that the crystal structures of these materials are strongly correlated with their physical properties. The results indicate that many rhombohedral materials with the general formula LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) in the space group R3c are potential DHMs with multiple Dirac cones.




oni

Structural and kinetic insights into flavin-containing monooxygenase and calponin-homology domains in human MICAL3

MICAL is an oxidoreductase that participates in cytoskeleton reorganization via actin disassembly in the presence of NADPH. Although three MICALs (MICAL1, MICAL2 and MICAL3) have been identified in mammals, only the structure of mouse MICAL1 has been reported. Here, the first crystal structure of human MICAL3, which contains the flavin-containing monooxygenase (FMO) and calponin-homology (CH) domains, is reported. MICAL3 has an FAD/NADP-binding Rossmann-fold domain for mono­oxygenase activity like MICAL1. The FMO and CH domains of both MICAL3 and MICAL1 are highly similar in structure, but superimposition of the two structures shows a different relative position of the CH domain in the asymmetric unit. Based on kinetic analyses, the catalytic efficiency of MICAL3 dramatically increased on adding F-actin only when the CH domain was available. However, this did not occur when two residues, Glu213 and Arg530, were mutated in the FMO and CH domains, respectively. Overall, MICAL3 is structurally highly similar to MICAL1, which suggests that they may adopt the same catalytic mechanism, but the difference in the relative position of the CH domain produces a difference in F-actin substrate specificity.




oni

Structure and mechanism of copper–carbonic anhydrase II: a nitrite reductase

Nitric oxide (NO) promotes vasodilation through the activation of guanylate cyclase, resulting in the relaxation of the smooth muscle vasculature and a subsequent decrease in blood pressure. Therefore, its regulation is of interest for the treatment and prevention of heart disease. An example is pulmonary hypertension which is treated by targeting this NO/vasodilation pathway. In bacteria, plants and fungi, nitrite (NO2−) is utilized as a source of NO through enzymes known as nitrite reductases. These enzymes reduce NO2− to NO through a catalytic metal ion, often copper. Recently, several studies have shown nitrite reductase activity of mammalian carbonic anhydrase II (CAII), yet the molecular basis for this activity is unknown. Here we report the crystal structure of copper-bound human CAII (Cu–CAII) in complex with NO2− at 1.2 Å resolution. The structure exhibits Type 1 (T-1) and 2 (T-2) copper centers, analogous to bacterial nitrite reductases, both required for catalysis. The copper-substituted CAII active site is penta-coordinated with a `side-on' bound NO2−, resembling a T-2 center. At the N terminus, several residues that are normally disordered form a porphyrin ring-like configuration surrounding a second copper, acting as a T-1 center. A structural comparison with both apo- (without metal) and zinc-bound CAII (Zn–CAII) provides a mechanistic picture of how, in the presence of copper, CAII, with minimal conformational changes, can function as a nitrite reductase.




oni

Structural comparison of protiated, H/D-exchanged and deuterated human carbonic anhydrase IX

Human carbonic anhydrase IX (CA IX) expression is upregulated in hypoxic solid tumours, promoting cell survival and metastasis. This observation has made CA IX a target for the development of CA isoform-selective inhibitors. To enable structural studies of CA IX–inhibitor complexes using X-ray and neutron crystallography, a CA IX surface variant (CA IXSV; the catalytic domain with six surface amino-acid substitutions) has been developed that can be routinely crystallized. Here, the preparation of protiated (H/H), H/D-exchanged (H/D) and deuterated (D/D) CA IXSV for crystallographic studies and their structural comparison are described. Four CA IXSV X-ray crystal structures are compared: two H/H crystal forms, an H/D crystal form and a D/D crystal form. The overall active-site organization in each version is essentially the same, with only minor positional changes in active-site solvent, which may be owing to deuteration and/or resolution differences. Analysis of the crystal unit-cell packing reveals different crystallographic and noncrystallographic dimers of CA IXSV compared with previous reports. To our knowledge, this is the first report comparing three different deuterium-labelled crystal structures of the same protein, marking an important step in validating the active-site structure of CA IXSV for neutron protein crystallography.




oni

Shake-it-off: a simple ultrasonic cryo-EM specimen-preparation device

Although microscopes and image-analysis software for electron cryomicroscopy (cryo-EM) have improved dramatically in recent years, specimen-preparation methods have lagged behind. Most strategies still rely on blotting microscope grids with paper to produce a thin film of solution suitable for vitrification. This approach loses more than 99.9% of the applied sample and requires several seconds, leading to problematic air–water interface interactions for macromolecules in the resulting thin film of solution and complicating time-resolved studies. Recently developed self-wicking EM grids allow the use of small volumes of sample, with nanowires on the grid bars removing excess solution to produce a thin film within tens of milliseconds from sample application to freezing. Here, a simple cryo-EM specimen-preparation device that uses components from an ultrasonic humidifier to transfer protein solution onto a self-wicking EM grid is presented. The device is controlled by a Raspberry Pi single-board computer and all components are either widely available or can be manufactured by online services, allowing the device to be constructed in laboratories that specialize in cryo-EM rather than instrument design. The simple open-source design permits the straightforward customization of the instrument for specialized experiments.




oni

3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase

Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and β, encoded by trpA and trpB genes, that function as an αββα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0–S1–H1–S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2'. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in the dimer is recreated from two protein chains. The homodimer interface overlaps with the α–β interface of the tryptophan synthase αββα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the β subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings.




oni

Quantitative three-dimensional nondestructive imaging of whole anaerobic ammonium-oxidizing bacteria

Anaerobic ammonium-oxidizing (anammox) bacteria play a key role in the global nitrogen cycle and in nitrogenous wastewater treatment. The anammox bacteria ultrastructure is unique and distinctly different from that of other prokaryotic cells. The morphological structure of an organism is related to its function; however, research on the ultrastructure of intact anammox bacteria is lacking. In this study, in situ three-dimensional nondestructive ultrastructure imaging of a whole anammox cell was performed using synchrotron soft X-ray tomography (SXT) and the total variation-based simultaneous algebraic reconstruction technique (TV-SART). Statistical and quantitative analyses of the intact anammox bacteria were performed. High soft X-ray absorption composition inside anammoxosome was detected and verified to be relevant to iron-binding protein. On this basis, the shape adaptation of the anammox bacteria response to iron was explored.




oni

Comparative study of the around-Fermi electronic structure of 5d metals and metal-oxides by means of high-resolution X-ray emission and absorption spectroscopies

The composition of occupied and unoccupied electronic states in the vicinity of Fermi energies is vital for all materials and relates to their physical, chemical and mechanical properties. This work demonstrates how the combination of resonant and non-resonant X-ray emission spectroscopies supplemented with theoretical modelling allows for quantitative analysis of electronic states in 5d transition metal and metal-oxide materials. Application of X-rays provides element selectivity that, in combination with the penetrating properties of hard X-rays, allows determination of the composition of electronic states under working conditions, i.e. non-vacuum environment. Tungsten metal and tungsten oxide are evaluated to show the capability to simultaneously assess composition of around-band-gap electronic states as well as the character and magnitude of the crystal field splitting.




oni

Development of a scanning soft X-ray spectromicroscope to investigate local electronic structures on surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere

A scanning soft X-ray spectromicroscope was recently developed based mainly on the photon-in/photon-out measurement scheme for the investigation of local electronic structures on the surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere. The apparatus was installed at the soft X-ray beamline (BL17SU) at SPring-8. The characteristic features of the apparatus are described in detail. The feasibility of this spectromicroscope was demonstrated using soft X-ray undulator radiation. Here, based on these results, element-specific two-dimensional mapping and micro-XAFS (X-ray absorption fine structure) measurements are reported, as well as the observation of magnetic domain structures from using a reference sample of permalloy micro-dot patterns fabricated on a silicon substrate, with modest spatial resolution (e.g. ∼500 nm). Then, the X-ray radiation dose for Nafion® near the fluorine K-edge is discussed as a typical example of material that is not radiation hardened against a focused X-ray beam, for near future experiments.




oni

Fast continuous measurement of synchrotron powder diffraction synchronized with controlling gas and vapour pressures at beamline BL02B2 of SPring-8

A gas- and vapour-pressure control system synchronized with the continuous data acquisition of millisecond high-resolution powder diffraction measurements was developed to study structural change processes in gas storage and reaction materials such as metal organic framework compounds, zeolite and layered double hydroxide. The apparatus, which can be set up on beamline BL02B2 at SPring-8, mainly comprises a pressure control system of gases and vapour, a gas cell for a capillary sample, and six one-dimensional solid-state (MYTHEN) detectors. The pressure control system can be remotely controlled via developed software connected to a diffraction measurement system and can be operated in the closed gas and vapour line system. By using the temperature-control system on the sample, high-resolution powder diffraction data can be obtained under gas and vapour pressures ranging from 1 Pa to 130 kPa in temperatures ranging from 30 to 1473 K. This system enables one to perform automatic and high-throughput in situ X-ray powder diffraction experiments even at extremely low pressures. Furthermore, this developed system is useful for studying crystal structures during the adsorption/desorption processes, as acquired by millisecond and continuous powder diffraction measurements. The acquisition of diffraction data can be synchronized with the control of the pressure with a high frame rate of up to 100 Hz. In situ and time-resolved powder diffraction measurements are demonstrated for nanoporous Cu coordination polymer in various gas and vapour atmospheres.




oni

In meso crystallogenesis. Compatibility of the lipid cubic phase with the synthetic digitonin analogue, glyco-diosgenin

Digitonin has long been used as a mild detergent for extracting proteins from membranes for structure and function studies. As supplied commercially, digitonin is inhomogeneous and requires lengthy pre-treatment for reliable downstream use. Glyco-diosgenin (GDN) is a recently introduced synthetic surfactant with features that mimic digitonin. It is available in homogeneously pure form. GDN is proving to be a useful detergent, particularly in the area of single-particle cryo-electron microscopic studies of membrane integral proteins. With a view to using it as a detergent for crystallization trials by the in meso or lipid cubic phase method, it was important to establish the carrying capacity of the cubic mesophase for GDN. This was quantified in the current study using small-angle X-ray scattering for mesophase identification and phase microstructure characterization as a function of temperature and GDN concentration. The data show that the lipid cubic phase formed by hydrated monoolein tolerates GDN to concentrations orders of magnitude in excess of those used for membrane protein studies. Thus, having GDN in a typical membrane protein preparation should not deter use of the in meso method for crystallogenesis.




oni

Disorder in La1−xBa1+xGaO4−x/2 ionic conductor: resolving the pair distribution function through insight from first-principles modeling

Ba excess in LaBaGaO4 triggers ionic conductivity together with structural disorder. A direct correlation is found between the density functional theory model energy and the pair distribution function fit residual.




oni

A closer look at superionic phase transition in (NH4)4H2(SeO4)3: impedance spectroscopy under pressure

The proton-conducting material (NH4)4H2(SeO4)3 is examined to check whether its conductivity spectra are sensitive to subtle changes in the crystal structure and proton dynamics caused by external pressure. The AC conductivity was measured using impedance spectroscopy, in the frequency range from 100 Hz to 1 MHz, at temperatures 260 K < T < 400 K and pressures 0.1 MPa < p < 500 MPa. On the basis of the impedance spectra, carefully analyzed at different thermodynamic conditions, the p–T phase diagram of the crystal is constructed. It is found to be linear in the pressure range of the experiment, with the pressure coefficient value dTs/dp = −0.023 K MPa−1. The hydrostatic pressure effect on proton conductivity is also presented and discussed. Measurements of the electrical conductivity versus time were performed at a selected temperature T = 352.3 K and at pressures 0.1 MPa < p < 360 MPa. At fixed thermodynamic conditions (p = 302 MPa, T = 352.3 K), the sluggish solid–solid transformation from low conducting to superionic phase was induced. It is established that the kinetics of this transformation can be described by the Avrami model with an effective Avrami index value of about 4, which corresponds to the classical value associated with the homogeneous nucleation and three-dimensional growth of a new phase.




oni

A closer look at superionic phase transition in (NH4)4H2(SeO4)3: impedance spectroscopy under pressure

The proton-conducting crystal (NH4)4H2(SeO4)3 is examined to check whether its conductivity spectra and the phase transition to the superprotonic phase are sensitive to subtle changes in the crystal structure and proton dynamics caused by various thermodynamic conditions. It is established that the kinetics of this transformation can be described using the Avrami model with an effective Avrami index value associated with homogeneous nucleation and three-dimensional growth of a new phase.




oni

Research collection of pollen grains given to Smithsonian Tropical Research Institute

The Smithsonian Tropical Research Institute in Panama was recently given a collection of more than 25,000 different pollen grains and spores, each mounted on a microscope slide and labeled according to the plant that produced it. “The collection is worldwide in coverage with an emphasis on plants of the Americas,” explains collection donor Alan Graham, professor emeritus at Kent State University and curator at the Missouri Botanical Garden.

The post Research collection of pollen grains given to Smithsonian Tropical Research Institute appeared first on Smithsonian Insider.




oni

Baby Boom of Endangered Species at Smithsonian’s National Zoo’s Conservation and Research Center

It was an exciting and busy 24 hours at the National Zoo’s Conservation and Research Center in Front Royal, Va., last week as three births took place just hours apart. On the evening of July 9, a clouded leopard cub was born, followed by a Przewalski’s horse foal and a red panda cub.

The post Baby Boom of Endangered Species at Smithsonian’s National Zoo’s Conservation and Research Center appeared first on Smithsonian Insider.




oni

Astrophysical Observatory scientists are monitoring the mysterious movements of glaciers

In southeastern Greenland, two rivers of ice named Helheim and Kangerdlugssuaq flow in spurts and starts toward the coast. They are much like any other […]

The post Astrophysical Observatory scientists are monitoring the mysterious movements of glaciers appeared first on Smithsonian Insider.




oni

Smithsonian Scientist Discovers Two New Bat Species Hiding in Museum Collections for More Than 150 Years

While studying bats recently at the Academy of Natural Sciences in Philadelphia, Smithsonian mammalogist Kristofer Helgen discovered a new species of flying fox bat from […]

The post Smithsonian Scientist Discovers Two New Bat Species Hiding in Museum Collections for More Than 150 Years appeared first on Smithsonian Insider.




oni

Fossils of tiny cupuladriid colonies reveal extinction can lag more than one million years after its cause

A new Smithsonian study that examines 10 million years of the evolution of tiny coral-like organisms called cupuladriid bryzoans has revealed that some species of this organism lingered on earth for more than one million years after the event that ultimately caused their extinction: the rising of the Isthmus of Panama.

The post Fossils of tiny cupuladriid colonies reveal extinction can lag more than one million years after its cause appeared first on Smithsonian Insider.




oni

Smithsonian Names Eva Pell as Under Secretary for Science

Today the Smithsonian Institution announced Eva J. Pell, Senior Vice President for Research and Dean of the Graduate School at Pennsylvania State University, will be the new Under Secretary for Science at the Institution.

The post Smithsonian Names Eva Pell as Under Secretary for Science appeared first on Smithsonian Insider.




oni

Smithsonian to host online Climate Change conference Sept. 29-Oct. 1

The Smithsonian Center for Education and Museum Studies is hosting “Climate Change,” a three-day, free, education online conference Tuesday, Sept. 29 through Thursday, Oct. 1. This […]

The post Smithsonian to host online Climate Change conference Sept. 29-Oct. 1 appeared first on Smithsonian Insider.




oni

Smithsonian receives giant squid caught in the Gulf of Mexico

The giant squid was collected during a 60-day scientific study in which NOAA scientists were studying the availability and diversity of sperm whale prey. The squid was caught in a trawl net pulled behind a research vessel at a depth of more than 1,500 feet.

The post Smithsonian receives giant squid caught in the Gulf of Mexico appeared first on Smithsonian Insider.




oni

Roads kill rainforests. Stop them now, say Smithsonian biologists

Determining the locations of future highways and roads in countries with tropical rainforests will be the greatest single factor in influencing future forest loss, fragmentation and degradation. In broad terms, roads can be thought of as the enemies of rainforests. By spreading people out across the forest, roads inherently promote rapid and widespread deforestation.

The post Roads kill rainforests. Stop them now, say Smithsonian biologists appeared first on Smithsonian Insider.




oni

The Smithsonian’s National Air and Space Museum opens new Public Observatory on the Mall in Washington, D.C.

The Smithsonian’s National Air and Space Museum has opened a new Public Observatory that contains a 16-inch, 3,000-pound Boller and Chivens telescope, on loan from the Smithsonian Astrophysical Observatory. Through this powerful telescope, museum visitors can now observe the sun (with a special filter), the moon and the brighter stars and planets, such as Venus, Jupiter and Saturn, during daylight hours. Funding for the project was provided by the National Science Foundation.

The post The Smithsonian’s National Air and Space Museum opens new Public Observatory on the Mall in Washington, D.C. appeared first on Smithsonian Insider.




oni

Video: Common birds in Washington, D.C. are helping Smithsonian scientists track intensity of the West Nile Virus

Scientists from the Smithsonian Migratory Bird Center at the National Zoo have taken blood samples from thousands of birds and mosquitoes in an effort to track the progress of the West Nile Virus in the eastern United States. Come along in this video as Smithsonian scientists net birds living in downtown Washington, D.C., extract small amounts of blood, and then release them back into the "wild."

The post Video: Common birds in Washington, D.C. are helping Smithsonian scientists track intensity of the West Nile Virus appeared first on Smithsonian Insider.




oni

Hall of Human Origins to open at Smithsonian’s Natural History Museum, March 17, 2010

A major new exhibition hall dedicated to the discovery and understanding of human origins will open next year at the Smithsonian's National Museum of Natural History: The David H. Koch Hall of Human Origins

The post Hall of Human Origins to open at Smithsonian’s Natural History Museum, March 17, 2010 appeared first on Smithsonian Insider.




oni

Smithsonian to lead study on degradation of nearshore coastal habitats of the Chesapeake

Invasive species, contaminants, excessive nutrient's and sediment are just some of the many factors threatening sensitive wetlands and seagrass beds.

The post Smithsonian to lead study on degradation of nearshore coastal habitats of the Chesapeake appeared first on Smithsonian Insider.





oni

Smithsonian scientists give giant pandas a helping hand at reproduction

Timing was critical because female giant pandas ovulate only once a year. A short period of two to three days around ovulation is the only time she is able to conceive. Gestation typically lasts from 90 to 185 days.

The post Smithsonian scientists give giant pandas a helping hand at reproduction appeared first on Smithsonian Insider.




oni

Meteorite that fell in Lorton, Va., identified by Smithsonian scientists

A meteorite that crashed through the roof of a Lorton, Va., doctors’ office on Monday, Jan. 18, 2010 was recently identified by scientists in the […]

The post Meteorite that fell in Lorton, Va., identified by Smithsonian scientists appeared first on Smithsonian Insider.




oni

From the Bay of Bengal, a dinoflagellate makes its way to the Smithsonian

It’s not an exaggeration to say Hedrick was ecstatic when she peered into her inverted phase contrast microscope and found "Amphisolenia quadrispina" floating in her sample. “For 20 years I’ve been hoping to see something like this,” she says.

The post From the Bay of Bengal, a dinoflagellate makes its way to the Smithsonian appeared first on Smithsonian Insider.




oni

Smithsonian ecologists discover forests are growing at a faster rate

A new study published in the Feb. 2 issue of the Proceedings of the National Academy of Sciences indicates that forests in the Eastern United […]

The post Smithsonian ecologists discover forests are growing at a faster rate appeared first on Smithsonian Insider.




oni

Remains of William Taylor White (1837-1852) donated to Smithsonian with his coffin and clothing

White, who was a student at Columbian College from Accomack County, Va., died of pneumonia and complications from a mitral heart defect. When his coffin was unearthed, his identity was a deep mystery.

The post Remains of William Taylor White (1837-1852) donated to Smithsonian with his coffin and clothing appeared first on Smithsonian Insider.




oni

Clay vessels by Native American potter Jeri Redcorn added to Smithsonian collections

The Caddo people of Arkansas, Louisiana, Texas and Oklahoma have maintained many of their traditional ways and actively work to preserve their unique tribal cultural today. One example is the pottery of Jeri Redcorn.

The post Clay vessels by Native American potter Jeri Redcorn added to Smithsonian collections appeared first on Smithsonian Insider.




oni

Scientists find ultrasonic calls of bats also serve a social function

The new study suggests that echolocation calls also serve a social function--bats listen to the ultrasonic calls of other bats to identify roost mates, bats of the same species, members of the opposite sex and intruders to their territory.

The post Scientists find ultrasonic calls of bats also serve a social function appeared first on Smithsonian Insider.




oni

Maryland Blue Crab Science at the Smithsonian

Take to the water with this behind-the-scenes video about Maryland blue crab research at the Smithsonian's Environmental Research Center. Fisheries Ecologist Eric Johnson takes viewers on a journey along the Rhode River to show how scientists tag and monitor Maryland blue crabs in the Chesapeake Bay watershed.

The post Maryland Blue Crab Science at the Smithsonian appeared first on Smithsonian Insider.





oni

Study reveals road salt may promote health and well-being of roadside ant colonies

To understand the effects of road salting on ants, Michael Kaspari of the Smithsonian Tropical Research Institute and the University of Oklahoma led a team that looked at how ant colonies are affected by these conditions; their research is published in a recent issue of the journal Ecological Entomology.

The post Study reveals road salt may promote health and well-being of roadside ant colonies appeared first on Smithsonian Insider.




oni

Smithsonian ecologists to examine “dead zones” in Chesapeake Bay with $1.4 million NOAA grant

Breitburg and her team want to determine just how much stress they cause. Over the next five years they will conduct a series of lab and field experiments that examine how diel-cycling hypoxia and the associated acidification affects the growth and disease rates in striped bass, the eastern oyster and other ecologically and economically important Chesapeake Bay species. They will also study the animals’ behavioral responses to these changes.

The post Smithsonian ecologists to examine “dead zones” in Chesapeake Bay with $1.4 million NOAA grant appeared first on Smithsonian Insider.




oni

Kepler spacecraft used by Smithsonian astronomers to find other earths

The Kepler spacecraft was launched in March of 2009 to study extrasolar planets. One of its major goals is the detection of terrestrial planets in habitable zones.

The post Kepler spacecraft used by Smithsonian astronomers to find other earths appeared first on Smithsonian Insider.




oni

Smithsonian bat expert Kristofer Helgen answers common questions about bats

To celebrate a cool Halloween creature--bats--we teamed up with the Smithsonian’s Kristofer Helgen, curator of mammals at the National Museum of Natural History. Here, he answers three commonly asked questions about these winged mammals.

The post Smithsonian bat expert Kristofer Helgen answers common questions about bats appeared first on Smithsonian Insider.




oni

Harvard-Smithsonian astrophysicist discovers new method to weigh some distant stars

New research by astrophysicist David Kipping has revealed that in some special cases, a star can be weighed directly. Such a star must have a planet orbiting it with a moon orbiting the planet.

The post Harvard-Smithsonian astrophysicist discovers new method to weigh some distant stars appeared first on Smithsonian Insider.




oni

Smithsonian instrument reveals Sun’s innermost corona

An instrument on board NASA's Solar Dynamics Observatory, developed by Smithsonian scientists, is giving unprecedented views of the Sun's innermost corona 24 hours a day, 7 days a week.

The post Smithsonian instrument reveals Sun’s innermost corona appeared first on Smithsonian Insider.




oni

Invasive oriental shrimp found in Chesapeake Bay by Smithsonian scientists

Twenty years ago scientists at the Marine Invasions Lab of the Smithsonian Environmental Research Center in Edgewater, Md., began studying the interactions between native grass […]

The post Invasive oriental shrimp found in Chesapeake Bay by Smithsonian scientists appeared first on Smithsonian Insider.




oni

Free, online course in physics offered by the Harvard-Smithsonian Center for Astrophysics

"Physics for the 21st Century," a free, on-line course developed at the Harvard-Smithsonian Center for Astrophysics about current research in physics is now available.

The post Free, online course in physics offered by the Harvard-Smithsonian Center for Astrophysics appeared first on Smithsonian Insider.




oni

Smithsonian signs new giant panda agreement with China

The new agreement, effective immediately through Dec. 5, 2015, stipulates that the Smithsonian's National Zoological Park will conduct research in the areas of giant panda breeding and cub behavior.

The post Smithsonian signs new giant panda agreement with China appeared first on Smithsonian Insider.




oni

New interactive World Wide Telescope tour chronicles career of Harvard-Smithsonian astronomer John Huchra

To honor Harvard-Smithsonian astronomer John Huchra, who passed away in October 2010, his friends and colleagues at the Harvard-Smithsonian Center for Astrophysics have created a […]

The post New interactive World Wide Telescope tour chronicles career of Harvard-Smithsonian astronomer John Huchra appeared first on Smithsonian Insider.




oni

“Billy club” leaf beetle has been hiding in Smithsonian collections since 1959

A new species of Brazilian leaf beetle named Cachiporra extremaglobosa, (which translated means the “extremely globular billy club leaf beetle,”) was recently discovered by scientists at the Smithsonian’s National Museum of Natural History.

The post “Billy club” leaf beetle has been hiding in Smithsonian collections since 1959 appeared first on Smithsonian Insider.




oni

Six orbiting planets sets record for Sun-like stars say Kepler, Smithsonian astronmers

Last week, the Kepler team and CfA astronomers announced the discovery of a system of six transiting planets around one Sun-like star. The previous record holder for the number of transiting planets was three.

The post Six orbiting planets sets record for Sun-like stars say Kepler, Smithsonian astronmers appeared first on Smithsonian Insider.




oni

Smithsonian scientists discover seven new species of blenny fish

Using modern genetic analysis, combined with traditional morphology, scientists from the Smithsonian’s National Museum of Natural History and the Ocean Science Foundation have discovered seven […]

The post Smithsonian scientists discover seven new species of blenny fish appeared first on Smithsonian Insider.