rx Reducing Communication in Graph Neural Network Training. (arXiv:2005.03300v1 [cs.LG]) By arxiv.org Published On :: Graph Neural Networks (GNNs) are powerful and flexible neural networks that use the naturally sparse connectivity information of the data. GNNs represent this connectivity as sparse matrices, which have lower arithmetic intensity and thus higher communication costs compared to dense matrices, making GNNs harder to scale to high concurrencies than convolutional or fully-connected neural networks. We present a family of parallel algorithms for training GNNs. These algorithms are based on their counterparts in dense and sparse linear algebra, but they had not been previously applied to GNN training. We show that they can asymptotically reduce communication compared to existing parallel GNN training methods. We implement a promising and practical version that is based on 2D sparse-dense matrix multiplication using torch.distributed. Our implementation parallelizes over GPU-equipped clusters. We train GNNs on up to a hundred GPUs on datasets that include a protein network with over a billion edges. Full Article
rx CARL: Controllable Agent with Reinforcement Learning for Quadruped Locomotion. (arXiv:2005.03288v1 [cs.LG]) By arxiv.org Published On :: Motion synthesis in a dynamic environment has been a long-standing problem for character animation. Methods using motion capture data tend to scale poorly in complex environments because of their larger capturing and labeling requirement. Physics-based controllers are effective in this regard, albeit less controllable. In this paper, we present CARL, a quadruped agent that can be controlled with high-level directives and react naturally to dynamic environments. Starting with an agent that can imitate individual animation clips, we use Generative Adversarial Networks to adapt high-level controls, such as speed and heading, to action distributions that correspond to the original animations. Further fine-tuning through the deep reinforcement learning enables the agent to recover from unseen external perturbations while producing smooth transitions. It then becomes straightforward to create autonomous agents in dynamic environments by adding navigation modules over the entire process. We evaluate our approach by measuring the agent's ability to follow user control and provide a visual analysis of the generated motion to show its effectiveness. Full Article
rx An Empirical Study of Incremental Learning in Neural Network with Noisy Training Set. (arXiv:2005.03266v1 [cs.LG]) By arxiv.org Published On :: The notion of incremental learning is to train an ANN algorithm in stages, as and when newer training data arrives. Incremental learning is becoming widespread in recent times with the advent of deep learning. Noise in the training data reduces the accuracy of the algorithm. In this paper, we make an empirical study of the effect of noise in the training phase. We numerically show that the accuracy of the algorithm is dependent more on the location of the error than the percentage of error. Using Perceptron, Feed Forward Neural Network and Radial Basis Function Neural Network, we show that for the same percentage of error, the accuracy of the algorithm significantly varies with the location of error. Furthermore, our results show that the dependence of the accuracy with the location of error is independent of the algorithm. However, the slope of the degradation curve decreases with more sophisticated algorithms Full Article
rx On a computationally-scalable sparse formulation of the multidimensional and non-stationary maximum entropy principle. (arXiv:2005.03253v1 [stat.CO]) By arxiv.org Published On :: Data-driven modelling and computational predictions based on maximum entropy principle (MaxEnt-principle) aim at finding as-simple-as-possible - but not simpler then necessary - models that allow to avoid the data overfitting problem. We derive a multivariate non-parametric and non-stationary formulation of the MaxEnt-principle and show that its solution can be approximated through a numerical maximisation of the sparse constrained optimization problem with regularization. Application of the resulting algorithm to popular financial benchmarks reveals memoryless models allowing for simple and qualitative descriptions of the major stock market indexes data. We compare the obtained MaxEnt-models to the heteroschedastic models from the computational econometrics (GARCH, GARCH-GJR, MS-GARCH, GARCH-PML4) in terms of the model fit, complexity and prediction quality. We compare the resulting model log-likelihoods, the values of the Bayesian Information Criterion, posterior model probabilities, the quality of the data autocorrelation function fits as well as the Value-at-Risk prediction quality. We show that all of the considered seven major financial benchmark time series (DJI, SPX, FTSE, STOXX, SMI, HSI and N225) are better described by conditionally memoryless MaxEnt-models with nonstationary regime-switching than by the common econometric models with finite memory. This analysis also reveals a sparse network of statistically-significant temporal relations for the positive and negative latent variance changes among different markets. The code is provided for open access. Full Article
rx Training and Classification using a Restricted Boltzmann Machine on the D-Wave 2000Q. (arXiv:2005.03247v1 [cs.LG]) By arxiv.org Published On :: Restricted Boltzmann Machine (RBM) is an energy based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate exact gradient of log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), which is much faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results are compared with CD. The classification accuracy results indicate similar performance of both methods. Image reconstruction as well as log-likelihood calculations are used to compare the performance of quantum and classical algorithms for RBM training. It is shown that the samples obtained from quantum annealer can be used to train a RBM on a 64-bit `bars and stripes' data set with classification performance similar to a RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer eliminates computationally expensive MCMC steps of CD. Full Article
rx Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. (arXiv:2005.03246v1 [cs.DS]) By arxiv.org Published On :: This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ data points. Therefore, a direct evaluation of ECDFs at $N$ evaluation points requires a quadratic $mathcal{O}(N^2)$ operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a $mathcal{O}(N{log}N)$ complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a $mathcal{O}(Nlog(N)^{(d-1){vee}1})$ complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general $d$-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods. Full Article
rx Classification of pediatric pneumonia using chest X-rays by functional regression. (arXiv:2005.03243v1 [stat.AP]) By arxiv.org Published On :: An accurate and prompt diagnosis of pediatric pneumonia is imperative for successful treatment intervention. One approach to diagnose pneumonia cases is using radiographic data. In this article, we propose a novel parsimonious scalar-on-image classification model adopting the ideas of functional data analysis. Our main idea is to treat images as functional measurements and exploit underlying covariance structures to select basis functions; these bases are then used in approximating both image profiles and corresponding regression coefficient. We re-express the regression model into a standard generalized linear model where the functional principal component scores are treated as covariates. We apply the method to (1) classify pneumonia against healthy and viral against bacterial pneumonia patients, and (2) test the null effect about the association between images and responses. Extensive simulation studies show excellent numerical performance in terms of classification, hypothesis testing, and efficient computation. Full Article
rx Multi-Label Sampling based on Local Label Imbalance. (arXiv:2005.03240v1 [cs.LG]) By arxiv.org Published On :: Class imbalance is an inherent characteristic of multi-label data that hinders most multi-label learning methods. One efficient and flexible strategy to deal with this problem is to employ sampling techniques before training a multi-label learning model. Although existing multi-label sampling approaches alleviate the global imbalance of multi-label datasets, it is actually the imbalance level within the local neighbourhood of minority class examples that plays a key role in performance degradation. To address this issue, we propose a novel measure to assess the local label imbalance of multi-label datasets, as well as two multi-label sampling approaches based on the local label imbalance, namely MLSOL and MLUL. By considering all informative labels, MLSOL creates more diverse and better labeled synthetic instances for difficult examples, while MLUL eliminates instances that are harmful to their local region. Experimental results on 13 multi-label datasets demonstrate the effectiveness of the proposed measure and sampling approaches for a variety of evaluation metrics, particularly in the case of an ensemble of classifiers trained on repeated samples of the original data. Full Article
rx Subdomain Adaptation with Manifolds Discrepancy Alignment. (arXiv:2005.03229v1 [cs.LG]) By arxiv.org Published On :: Reducing domain divergence is a key step in transfer learning problems. Existing works focus on the minimization of global domain divergence. However, two domains may consist of several shared subdomains, and differ from each other in each subdomain. In this paper, we take the local divergence of subdomains into account in transfer. Specifically, we propose to use low-dimensional manifold to represent subdomain, and align the local data distribution discrepancy in each manifold across domains. A Manifold Maximum Mean Discrepancy (M3D) is developed to measure the local distribution discrepancy in each manifold. We then propose a general framework, called Transfer with Manifolds Discrepancy Alignment (TMDA), to couple the discovery of data manifolds with the minimization of M3D. We instantiate TMDA in the subspace learning case considering both the linear and nonlinear mappings. We also instantiate TMDA in the deep learning framework. Extensive experimental studies demonstrate that TMDA is a promising method for various transfer learning tasks. Full Article
rx Collective Loss Function for Positive and Unlabeled Learning. (arXiv:2005.03228v1 [cs.LG]) By arxiv.org Published On :: People learn to discriminate between classes without explicit exposure to negative examples. On the contrary, traditional machine learning algorithms often rely on negative examples, otherwise the model would be prone to collapse and always-true predictions. Therefore, it is crucial to design the learning objective which leads the model to converge and to perform predictions unbiasedly without explicit negative signals. In this paper, we propose a Collectively loss function to learn from only Positive and Unlabeled data (cPU). We theoretically elicit the loss function from the setting of PU learning. We perform intensive experiments on the benchmark and real-world datasets. The results show that cPU consistently outperforms the current state-of-the-art PU learning methods. Full Article
rx Detecting Latent Communities in Network Formation Models. (arXiv:2005.03226v1 [econ.EM]) By arxiv.org Published On :: This paper proposes a logistic undirected network formation model which allows for assortative matching on observed individual characteristics and the presence of edge-wise fixed effects. We model the coefficients of observed characteristics to have a latent community structure and the edge-wise fixed effects to be of low rank. We propose a multi-step estimation procedure involving nuclear norm regularization, sample splitting, iterative logistic regression and spectral clustering to detect the latent communities. We show that the latent communities can be exactly recovered when the expected degree of the network is of order log n or higher, where n is the number of nodes in the network. The finite sample performance of the new estimation and inference methods is illustrated through both simulated and real datasets. Full Article
rx Learning on dynamic statistical manifolds. (arXiv:2005.03223v1 [math.ST]) By arxiv.org Published On :: Hyperbolic balance laws with uncertain (random) parameters and inputs are ubiquitous in science and engineering. Quantification of uncertainty in predictions derived from such laws, and reduction of predictive uncertainty via data assimilation, remain an open challenge. That is due to nonlinearity of governing equations, whose solutions are highly non-Gaussian and often discontinuous. To ameliorate these issues in a computationally efficient way, we use the method of distributions, which here takes the form of a deterministic equation for spatiotemporal evolution of the cumulative distribution function (CDF) of the random system state, as a means of forward uncertainty propagation. Uncertainty reduction is achieved by recasting the standard loss function, i.e., discrepancy between observations and model predictions, in distributional terms. This step exploits the equivalence between minimization of the square error discrepancy and the Kullback-Leibler divergence. The loss function is regularized by adding a Lagrangian constraint enforcing fulfillment of the CDF equation. Minimization is performed sequentially, progressively updating the parameters of the CDF equation as more measurements are assimilated. Full Article
rx Deep Learning Framework for Detecting Ground Deformation in the Built Environment using Satellite InSAR data. (arXiv:2005.03221v1 [cs.CV]) By arxiv.org Published On :: The large volumes of Sentinel-1 data produced over Europe are being used to develop pan-national ground motion services. However, simple analysis techniques like thresholding cannot detect and classify complex deformation signals reliably making providing usable information to a broad range of non-expert stakeholders a challenge. Here we explore the applicability of deep learning approaches by adapting a pre-trained convolutional neural network (CNN) to detect deformation in a national-scale velocity field. For our proof-of-concept, we focus on the UK where previously identified deformation is associated with coal-mining, ground water withdrawal, landslides and tunnelling. The sparsity of measurement points and the presence of spike noise make this a challenging application for deep learning networks, which involve calculations of the spatial convolution between images. Moreover, insufficient ground truth data exists to construct a balanced training data set, and the deformation signals are slower and more localised than in previous applications. We propose three enhancement methods to tackle these problems: i) spatial interpolation with modified matrix completion, ii) a synthetic training dataset based on the characteristics of real UK velocity map, and iii) enhanced over-wrapping techniques. Using velocity maps spanning 2015-2019, our framework detects several areas of coal mining subsidence, uplift due to dewatering, slate quarries, landslides and tunnel engineering works. The results demonstrate the potential applicability of the proposed framework to the development of automated ground motion analysis systems. Full Article
rx Fractional ridge regression: a fast, interpretable reparameterization of ridge regression. (arXiv:2005.03220v1 [stat.ME]) By arxiv.org Published On :: Ridge regression (RR) is a regularization technique that penalizes the L2-norm of the coefficients in linear regression. One of the challenges of using RR is the need to set a hyperparameter ($alpha$) that controls the amount of regularization. Cross-validation is typically used to select the best $alpha$ from a set of candidates. However, efficient and appropriate selection of $alpha$ can be challenging, particularly where large amounts of data are analyzed. Because the selected $alpha$ depends on the scale of the data and predictors, it is not straightforwardly interpretable. Here, we propose to reparameterize RR in terms of the ratio $gamma$ between the L2-norms of the regularized and unregularized coefficients. This approach, called fractional RR (FRR), has several benefits: the solutions obtained for different $gamma$ are guaranteed to vary, guarding against wasted calculations, and automatically span the relevant range of regularization, avoiding the need for arduous manual exploration. We provide an algorithm to solve FRR, as well as open-source software implementations in Python and MATLAB (https://github.com/nrdg/fracridge). We show that the proposed method is fast and scalable for large-scale data problems, and delivers results that are straightforward to interpret and compare across models and datasets. Full Article
rx Efficient Characterization of Dynamic Response Variation Using Multi-Fidelity Data Fusion through Composite Neural Network. (arXiv:2005.03213v1 [stat.ML]) By arxiv.org Published On :: Uncertainties in a structure is inevitable, which generally lead to variation in dynamic response predictions. For a complex structure, brute force Monte Carlo simulation for response variation analysis is infeasible since one single run may already be computationally costly. Data driven meta-modeling approaches have thus been explored to facilitate efficient emulation and statistical inference. The performance of a meta-model hinges upon both the quality and quantity of training dataset. In actual practice, however, high-fidelity data acquired from high-dimensional finite element simulation or experiment are generally scarce, which poses significant challenge to meta-model establishment. In this research, we take advantage of the multi-level response prediction opportunity in structural dynamic analysis, i.e., acquiring rapidly a large amount of low-fidelity data from reduced-order modeling, and acquiring accurately a small amount of high-fidelity data from full-scale finite element analysis. Specifically, we formulate a composite neural network fusion approach that can fully utilize the multi-level, heterogeneous datasets obtained. It implicitly identifies the correlation of the low- and high-fidelity datasets, which yields improved accuracy when compared with the state-of-the-art. Comprehensive investigations using frequency response variation characterization as case example are carried out to demonstrate the performance. Full Article
rx Fair Algorithms for Hierarchical Agglomerative Clustering. (arXiv:2005.03197v1 [cs.LG]) By arxiv.org Published On :: Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science and machine learning, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples themselves. HAC algorithms are employed in a number of applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair-- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not be discriminatory against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. Therefore, in this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. To the best of our knowledge, this is the first work that studies fairness for HAC algorithms. We also propose an algorithm with lower asymptotic time complexity than HAC algorithms that can rectify existing HAC outputs and make them subsequently fair as a result. Moreover, we carry out extensive experiments on multiple real-world UCI datasets to demonstrate the working of our algorithms. Full Article
rx Active Learning with Multiple Kernels. (arXiv:2005.03188v1 [cs.LG]) By arxiv.org Published On :: Online multiple kernel learning (OMKL) has provided an attractive performance in nonlinear function learning tasks. Leveraging a random feature approximation, the major drawback of OMKL, known as the curse of dimensionality, has been recently alleviated. In this paper, we introduce a new research problem, termed (stream-based) active multiple kernel learning (AMKL), in which a learner is allowed to label selected data from an oracle according to a selection criterion. This is necessary in many real-world applications as acquiring true labels is costly or time-consuming. We prove that AMKL achieves an optimal sublinear regret, implying that the proposed selection criterion indeed avoids unuseful label-requests. Furthermore, we propose AMKL with an adaptive kernel selection (AMKL-AKS) in which irrelevant kernels can be excluded from a kernel dictionary 'on the fly'. This approach can improve the efficiency of active learning as well as the accuracy of a function approximation. Via numerical tests with various real datasets, it is demonstrated that AMKL-AKS yields a similar or better performance than the best-known OMKL, with a smaller number of labeled data. Full Article
rx Convergence and inference for mixed Poisson random sums. (arXiv:2005.03187v1 [math.PR]) By arxiv.org Published On :: In this paper we obtain the limit distribution for partial sums with a random number of terms following a class of mixed Poisson distributions. The resulting weak limit is a mixing between a normal distribution and an exponential family, which we call by normal exponential family (NEF) laws. A new stability concept is introduced and a relationship between {alpha}-stable distributions and NEF laws is established. We propose estimation of the parameters of the NEF models through the method of moments and also by the maximum likelihood method, which is performed via an Expectation-Maximization algorithm. Monte Carlo simulation studies are addressed to check the performance of the proposed estimators and an empirical illustration on financial market is presented. Full Article
rx Model Reduction and Neural Networks for Parametric PDEs. (arXiv:2005.03180v1 [math.NA]) By arxiv.org Published On :: We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature. Full Article
rx MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation. (arXiv:2005.03161v1 [stat.ML]) By arxiv.org Published On :: Model Stealing (MS) attacks allow an adversary with black-box access to a Machine Learning model to replicate its functionality, compromising the confidentiality of the model. Such attacks train a clone model by using the predictions of the target model for different inputs. The effectiveness of such attacks relies heavily on the availability of data necessary to query the target model. Existing attacks either assume partial access to the dataset of the target model or availability of an alternate dataset with semantic similarities. This paper proposes MAZE -- a data-free model stealing attack using zeroth-order gradient estimation. In contrast to prior works, MAZE does not require any data and instead creates synthetic data using a generative model. Inspired by recent works in data-free Knowledge Distillation (KD), we train the generative model using a disagreement objective to produce inputs that maximize disagreement between the clone and the target model. However, unlike the white-box setting of KD, where the gradient information is available, training a generator for model stealing requires performing black-box optimization, as it involves accessing the target model under attack. MAZE relies on zeroth-order gradient estimation to perform this optimization and enables a highly accurate MS attack. Our evaluation with four datasets shows that MAZE provides a normalized clone accuracy in the range of 0.91x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy (0.97x to 1.0x) and reduces the query required for the attack by 2x-24x. Full Article
rx On the Optimality of Randomization in Experimental Design: How to Randomize for Minimax Variance and Design-Based Inference. (arXiv:2005.03151v1 [stat.ME]) By arxiv.org Published On :: I study the minimax-optimal design for a two-arm controlled experiment where conditional mean outcomes may vary in a given set. When this set is permutation symmetric, the optimal design is complete randomization, and using a single partition (i.e., the design that only randomizes the treatment labels for each side of the partition) has minimax risk larger by a factor of $n-1$. More generally, the optimal design is shown to be the mixed-strategy optimal design (MSOD) of Kallus (2018). Notably, even when the set of conditional mean outcomes has structure (i.e., is not permutation symmetric), being minimax-optimal for variance still requires randomization beyond a single partition. Nonetheless, since this targets precision, it may still not ensure sufficient uniformity in randomization to enable randomization (i.e., design-based) inference by Fisher's exact test to appropriately detect violations of null. I therefore propose the inference-constrained MSOD, which is minimax-optimal among all designs subject to such uniformity constraints. On the way, I discuss Johansson et al. (2020) who recently compared rerandomization of Morgan and Rubin (2012) and the pure-strategy optimal design (PSOD) of Kallus (2018). I point out some errors therein and set straight that randomization is minimax-optimal and that the "no free lunch" theorem and example in Kallus (2018) are correct. Full Article
rx Towards Frequency-Based Explanation for Robust CNN. (arXiv:2005.03141v1 [cs.LG]) By arxiv.org Published On :: Current explanation techniques towards a transparent Convolutional Neural Network (CNN) mainly focuses on building connections between the human-understandable input features with models' prediction, overlooking an alternative representation of the input, the frequency components decomposition. In this work, we present an analysis of the connection between the distribution of frequency components in the input dataset and the reasoning process the model learns from the data. We further provide quantification analysis about the contribution of different frequency components toward the model's prediction. We show that the vulnerability of the model against tiny distortions is a result of the model is relying on the high-frequency features, the target features of the adversarial (black and white-box) attackers, to make the prediction. We further show that if the model develops stronger association between the low-frequency component with true labels, the model is more robust, which is the explanation of why adversarially trained models are more robust against tiny distortions. Full Article
rx Joint Multi-Dimensional Model for Global and Time-Series Annotations. (arXiv:2005.03117v1 [cs.LG]) By arxiv.org Published On :: Crowdsourcing is a popular approach to collect annotations for unlabeled data instances. It involves collecting a large number of annotations from several, often naive untrained annotators for each data instance which are then combined to estimate the ground truth. Further, annotations for constructs such as affect are often multi-dimensional with annotators rating multiple dimensions, such as valence and arousal, for each instance. Most annotation fusion schemes however ignore this aspect and model each dimension separately. In this work we address this by proposing a generative model for multi-dimensional annotation fusion, which models the dimensions jointly leading to more accurate ground truth estimates. The model we propose is applicable to both global and time series annotation fusion problems and treats the ground truth as a latent variable distorted by the annotators. The model parameters are estimated using the Expectation-Maximization algorithm and we evaluate its performance using synthetic data and real emotion corpora as well as on an artificial task with human annotations Full Article
rx A comparison of group testing architectures for COVID-19 testing. (arXiv:2005.03051v1 [stat.ME]) By arxiv.org Published On :: An important component of every country's COVID-19 response is fast and efficient testing -- to identify and isolate cases, as well as for early detection of local hotspots. For many countries, producing a sufficient number of tests has been a serious limiting factor in their efforts to control COVID-19 infections. Group testing is a well-established mathematical tool, which can provide a serious and rapid improvement to this situation. In this note, we compare several well-established group testing schemes in the context of qPCR testing for COVID-19. We include example calculations, where we indicate which testing architectures yield the greatest efficiency gains in various settings. We find that for identification of individuals with COVID-19, array testing is usually the best choice, while for estimation of COVID-19 prevalence rates in the total population, Gibbs-Gower testing usually provides the most accurate estimates given a fixed and relatively small number of tests. This note is intended as a helpful handbook for labs implementing group testing methods. Full Article
rx Adaptive Invariance for Molecule Property Prediction. (arXiv:2005.03004v1 [q-bio.QM]) By arxiv.org Published On :: Effective property prediction methods can help accelerate the search for COVID-19 antivirals either through accurate in-silico screens or by effectively guiding on-going at-scale experimental efforts. However, existing prediction tools have limited ability to accommodate scarce or fragmented training data currently available. In this paper, we introduce a novel approach to learn predictors that can generalize or extrapolate beyond the heterogeneous data. Our method builds on and extends recently proposed invariant risk minimization, adaptively forcing the predictor to avoid nuisance variation. We achieve this by continually exercising and manipulating latent representations of molecules to highlight undesirable variation to the predictor. To test the method we use a combination of three data sources: SARS-CoV-2 antiviral screening data, molecular fragments that bind to SARS-CoV-2 main protease and large screening data for SARS-CoV-1. Our predictor outperforms state-of-the-art transfer learning methods by significant margin. We also report the top 20 predictions of our model on Broad drug repurposing hub. Full Article
rx Sony Cyber-shot DSC-RX100 VII By www.pcmag.com Published On :: The Sony Cyber-shot DSC-RX100 VII point-and-shoot is a modest update to the RX100 VI, offering better autofocus and video stabilization for a bit more money. Full Article
rx Sony RX100 Buying Guide: Which High-End Compact Camera Is Right for You? By www.pcmag.com Published On :: Sony reinvented the premium point-and-shoot camera in 2012 with the RX100. It's continued to build out the series, but has also kept older models on sale. We're here to help you find the right one to suit your needs. Full Article
rx Evaluation of the effect of contezolid (MRX-I) on the corrected QTc interval: a randomized, double-blind, placebo- and positive-controlled crossover study in healthy Chinese volunteers [Clinical Therapeutics] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Contezolid (MRX-I), a new oxazolidinone, is an antibiotic in development for treating complicated skin and soft tissue infections (cSSTI) caused by resistant Gram-positive bacteria. This was a thorough QT study conducted in 52 healthy subjects who were administered oral contezolid at a therapeutic (800 mg) dose, a supratherapeutic (1600 mg) dose, placebo, and oral moxifloxacin 400 mg in 4 separate treatment periods. The pharmacokinetic profile of contezolid was also evaluated. Time-point analysis indicated that the upper bounds of the two-sided 90% confidence interval (CI) for placebo-corrected change-from-baseline QTc (QTc) were <10 ms for the contezolid therapeutic dose at each time point. The upper bound of the 90% CI for QTc were slightly more than 10 ms with the contezolid supratherapeutic dose at 3 and 4 hours postdose, and the prolongation effect on the QT/QTc interval was less than that of the positive control, moxifloxacin 400 mg. At 3 and 4 h after the moxifloxacin dose, the moxifloxacin group met the assay sensitivity criteria outlined in ICH Guidance E14 with having a lower confidence bound ≥5 ms. The results of a linear exposure-response model which were similar to that of a time point analysis demonstrated a slightly positive relationship between contezolid plasma levels and QTcF interval with a slope of 0.227 ms per mg/L (90% CI: 0.188 to 0.266). In summary, contezolid did not prolong the QT interval at a therapeutic dose and may have a slight effect on QT interval prolongation at a supratherapeutic dose. Full Article
rx Juniper SRX Critical Denial Of Service By packetstormsecurity.com Published On :: Thu, 01 Apr 2010 23:28:06 GMT The Juniper SRX suffers from a dual-homed swapfile overflow error that can cause denial of service conditions. Full Article
rx New Ionic 5 Angular 8 Display, Update and Delete Records with RxJS By feedproxy.google.com Published On :: Tue, 10 Mar 2020 20:41:27 PDT This post is about displaying the API records with delete and update actions using new Ionic and Angular reactive programming. This is a continuation of Ionic Angular series and it explains to you how to distribute the data between the components using RxJS method like BehaviorSubject. All of the feed API responses/records storing in a reactive object, This help the application DOM works seamlessly with update and delete operations. Implement this to your side project and enrich your applications. Full Article android angular API ionic ios javascript Mobile RESTful
rx Seagate Provides the RX to Improve Hard Drive Manufacturing By blogs.nvidia.com Published On :: Thu, 30 Apr 2020 17:25:58 GMT Seagate Technology ships tens of millions of hard disk drives every quarter. Ensuring the quality of each one is a top priority, but not easy. The disk drive manufacturing process is incredibly complex. For example, it takes 1,400 steps just to manufacture the drive head. Even the smallest errors can lead to product flaws. “Mistakes Read article > The post Seagate Provides the RX to Improve Hard Drive Manufacturing appeared first on The Official NVIDIA Blog. Full Article
rx IPO Update: TRX Insurance Proposes IPO Terms By seekingalpha.com Published On :: Tue, 28 Apr 2020 15:54:44 -0400 Full Article TIRX Donovan Jones
rx Torex Gold Resources Inc. (TORXF) CEO Fred Stanford on Q1 2020 Results - Earnings Call Transcript By seekingalpha.com Published On :: Sat, 09 May 2020 11:00:13 -0400 Full Article TORXF SA Transcripts
rx Torex Gold Resources Inc. (TORXF) CEO Fred Stanford on Q1 2020 Results - Earnings Call Transcript By seekingalpha.com Published On :: Sat, 09 May 2020 11:00:13 -0400 Full Article TORXF SA Transcripts
rx JBL Professional Announces New Entertainment IRX Series Portable PA Loudspeakers at the 2020 NAMM Show By news.harman.com Published On :: Tue, 07 Jan 2020 13:00:00 GMT NORTHRIDGE, Calif.—HARMAN Professional Solutions, the global leader in audio, video, lighting and control systems, including networked AV, today announced new JBL IRX Series portable PA loudspeakers at the 2020 NAMM show in Anaheim, California. At NAMM,... Full Article
rx Social media's newest stars: Dr. Birx's scarves By feeds.reuters.com Published On :: Thu, 30 Apr 2020 16:17:25 -0400 U.S. coronavirus task force coordinator Dr. Deborah Birx is best-known for her calm, authoritative briefings at the daily White House press conferences. But she has also become a pop culture phenomenon for her scarves. Full Article
rx FDA OKs Farxiga for Heart Failure With Reduced Ejection Fraction By www.medicinenet.com Published On :: Thu, 7 May 2020 00:00:00 PDT Title: FDA OKs Farxiga for Heart Failure With Reduced Ejection FractionCategory: Health NewsCreated: 5/6/2020 12:00:00 AMLast Editorial Review: 5/7/2020 12:00:00 AM Full Article
rx White House's Birx to take key role in coronavirus drug distribution By feeds.reuters.com Published On :: Fri, 08 May 2020 21:17:03 -0400 U.S. coronavirus task force response coordinator Dr. Deborah Birx will have a leading role in how the first drug to demonstrate a benefit in treating COVID-19 patients will be distributed to hospitals, the White House said on Friday. Full Article domesticNews
rx White House's Dr Deborah Birx dazzles internet with range of scarves as Instagram account set up in honour By www.standard.co.uk Published On :: 2020-04-30T09:28:00Z She's perhaps best known to the internet as the woman who wore a face of mild disbelief when US President Donald Trump discussed disinfectant as a possible treatment for coronavirus. Full Article
rx US OK's AZ' Farxiga for heart failure with reduced ejection fraction By www.pharmatimes.com Published On :: Wed, 06 May 2020 12:13:58 +0100 Farxiga is the first sodium glucose co-transporter 2 inhibitor cleared by the FDA to treat heart failure with reduced ejection fraction Full Article
rx AZ's Farxiga becomes first FDA-approved SGLT2 inhibitor for heart failure with reduced ejection fraction By www.pharmafile.com Published On :: Wed, 06 May 2020 11:28:32 +0000 The FDA has moved to approve an oral tablet formulation of AstraZeneca’s Farxiga (dapagliflozin) to reduce the risk of cardiovascular death and hospitalisation in adult patients with New York Heart Association’s functional class II-IV heart failure with reduced ejection fraction. Full Article AstraZeneca farxiga FDA heart failure Research and Development Sales and Marketing
rx AstraZeneca and Saint Luke’s Mid America Heart Institute initiate Phase III DARE-19 trial with Farxiga in COVID-19 patients By www.pharmanews.eu Published On :: Fri, 24 Apr 2020 10:00:00 +0200 AstraZeneca and Saint Luke's Mid America Heart Institute have initiated a randomised, global Phase III trial to assess the potential of Farxiga (dapagliflozin) as a treatment in patients hospitalised with COVID-19 who are at risk of developing serious complications, such as organ failure. Full Article Featured AstraZeneca Business
rx FDA approval for Farxiga in new indication in heart failure patients By www.thepharmaletter.com Published On :: Wed, 06 May 2020 14:59:00 +0100 Farxiga (dapagliflozin) has been approved in the US to reduce the risk of cardiovascular (CV) death and… Full Article AstraZeneca/Cardio-vascular/Diabetes/Farxiga/Focus On/Glucosides/Pharmaceutical/Regulation/SGLT2 inhibitors/UK/US FDA/USA
rx AstraZeneca's Farxiga scores landmark FDA nod in heart failure patients with or without diabetes By www.fiercepharma.com Published On :: Wed, 06 May 2020 14:42:58 +0000 AstraZeneca has watched superstar SGLT2 diabetes med Farxiga nail trial after trial in highly coveted kidney and heart failure indications, with the FDA expediting reviews to back them up. The one thing AstraZeneca was missing? The agency taking Farxiga across the finish line. Full Article
rx CVS Subsidiary, RxAmerica, Reaches $5 Million Settlement with US for Allegedly Submitting False Pricing Relating to the Company’s Medicare Part D Plan By www.justice.gov Published On :: Mon, 15 Oct 2012 15:36:49 EDT In one of the first False Claims Act settlements involving Medicare’s Prescription Drug Program, known as Part D, RxAmerica LLC. has entered into a civil settlement agreement with the United States in which it has agreed to pay the government $5.25 million to resolve allegations that it made false submissions to the Centers for Medicare & Medicaid Services (CMS), the Justice Department announced today. RxAmerica, a wholly-owned subsidiary of CVS Caremark Corporation, provides prescription drug benefits to Medicare beneficiaries pursuant to a prescription drug plan. Full Article OPA Press Releases
rx Birx to help lead remdesivir distribution effort as hospitals struggle to access drug By www.nbcnews.com Published On :: Fri, 08 May 2020 20:37:00 GMT Since the drug was granted emergency use authorization, doctors have been left with no clear path to get it. Full Article
rx At IIDEX: Shaw Exoworx Cradle-to-Cradle Carpet By www.treehugger.com Published On :: Wed, 01 Oct 2008 09:00:22 -0400 "We are working on the design of communities and begin with what we call the Essay of Clues. We look at things like the sun, the wind, the water, the biological history and the culture of the site. Then we imagine that we are birds that evolved for that Full Article Design