rx

Predictions and algorithmic statistics for infinite sequence. (arXiv:2005.03467v1 [cs.IT])

Consider the following prediction problem. Assume that there is a block box that produces bits according to some unknown computable distribution on the binary tree. We know first $n$ bits $x_1 x_2 ldots x_n$. We want to know the probability of the event that that the next bit is equal to $1$. Solomonoff suggested to use universal semimeasure $m$ for solving this task. He proved that for every computable distribution $P$ and for every $b in {0,1}$ the following holds: $$sum_{n=1}^{infty}sum_{x: l(x)=n} P(x) (P(b | x) - m(b | x))^2 < infty .$$ However, Solomonoff's method has a negative aspect: Hutter and Muchnik proved that there are an universal semimeasure $m$, computable distribution $P$ and a random (in Martin-L{"o}f sense) sequence $x_1 x_2ldots$ such that $lim_{n o infty} P(x_{n+1} | x_1ldots x_n) - m(x_{n+1} | x_1ldots x_n) rightarrow 0$. We suggest a new way for prediction. For every finite string $x$ we predict the new bit according to the best (in some sence) distribution for $x$. We prove the similar result as Solomonoff theorem for our way of prediction. Also we show that our method of prediction has no that negative aspect as Solomonoff's method.




rx

High Performance Interference Suppression in Multi-User Massive MIMO Detector. (arXiv:2005.03466v1 [cs.OH])

In this paper, we propose a new nonlinear detector with improved interference suppression in Multi-User Multiple Input, Multiple Output (MU-MIMO) system. The proposed detector is a combination of the following parts: QR decomposition (QRD), low complexity users sorting before QRD, sorting-reduced (SR) K-best method and minimum mean square error (MMSE) pre-processing. Our method outperforms a linear interference rejection combining (IRC, i.e. MMSE naturally) method significantly in both strong interference and additive white noise scenarios with both ideal and real channel estimations. This result has wide application importance for scenarios with strong interference, i.e. when co-located users utilize the internet in stadium, highway, shopping center, etc. Simulation results are presented for the non-line of sight 3D-UMa model of 5G QuaDRiGa 2.0 channel for 16 highly correlated single-antenna users with QAM16 modulation in 64 antennas of Massive MIMO system. The performance was compared with MMSE and other detection approaches.




rx

How Can CNNs Use Image Position for Segmentation?. (arXiv:2005.03463v1 [eess.IV])

Convolution is an equivariant operation, and image position does not affect its result. A recent study shows that the zero-padding employed in convolutional layers of CNNs provides position information to the CNNs. The study further claims that the position information enables accurate inference for several tasks, such as object recognition, segmentation, etc. However, there is a technical issue with the design of the experiments of the study, and thus the correctness of the claim is yet to be verified. Moreover, the absolute image position may not be essential for the segmentation of natural images, in which target objects will appear at any image position. In this study, we investigate how positional information is and can be utilized for segmentation tasks. Toward this end, we consider {em positional encoding} (PE) that adds channels embedding image position to the input images and compare PE with several padding methods. Considering the above nature of natural images, we choose medical image segmentation tasks, in which the absolute position appears to be relatively important, as the same organs (of different patients) are captured in similar sizes and positions. We draw a mixed conclusion from the experimental results; the positional encoding certainly works in some cases, but the absolute image position may not be so important for segmentation tasks as we think.




rx

ExpDNN: Explainable Deep Neural Network. (arXiv:2005.03461v1 [cs.LG])

In recent years, deep neural networks have been applied to obtain high performance of prediction, classification, and pattern recognition. However, the weights in these deep neural networks are difficult to be explained. Although a linear regression method can provide explainable results, the method is not suitable in the case of input interaction. Therefore, an explainable deep neural network (ExpDNN) with explainable layers is proposed to obtain explainable results in the case of input interaction. Three cases were given to evaluate the proposed ExpDNN, and the results showed that the absolute value of weight in an explainable layer can be used to explain the weight of corresponding input for feature extraction.




rx

AIBench: Scenario-distilling AI Benchmarking. (arXiv:2005.03459v1 [cs.PF])

Real-world application scenarios like modern Internet services consist of diversity of AI and non-AI modules with very long and complex execution paths. Using component or micro AI benchmarks alone can lead to error-prone conclusions. This paper proposes a scenario-distilling AI benchmarking methodology. Instead of using real-world applications, we propose the permutations of essential AI and non-AI tasks as a scenario-distilling benchmark. We consider scenario-distilling benchmarks, component and micro benchmarks as three indispensable parts of a benchmark suite. Together with seventeen industry partners, we identify nine important real-world application scenarios. We design and implement a highly extensible, configurable, and flexible benchmark framework. On the basis of the framework, we propose the guideline for building scenario-distilling benchmarks, and present two Internet service AI ones. The preliminary evaluation shows the advantage of scenario-distilling AI benchmarking against using component or micro AI benchmarks alone. The specifications, source code, testbed, and results are publicly available from the web site url{this http URL}.




rx

NTIRE 2020 Challenge on NonHomogeneous Dehazing. (arXiv:2005.03457v1 [cs.CV])

This paper reviews the NTIRE 2020 Challenge on NonHomogeneous Dehazing of images (restoration of rich details in hazy image). We focus on the proposed solutions and their results evaluated on NH-Haze, a novel dataset consisting of 55 pairs of real haze free and nonhomogeneous hazy images recorded outdoor. NH-Haze is the first realistic nonhomogeneous haze dataset that provides ground truth images. The nonhomogeneous haze has been produced using a professional haze generator that imitates the real conditions of haze scenes. 168 participants registered in the challenge and 27 teams competed in the final testing phase. The proposed solutions gauge the state-of-the-art in image dehazing.




rx

Successfully Applying the Stabilized Lottery Ticket Hypothesis to the Transformer Architecture. (arXiv:2005.03454v1 [cs.LG])

Sparse models require less memory for storage and enable a faster inference by reducing the necessary number of FLOPs. This is relevant both for time-critical and on-device computations using neural networks. The stabilized lottery ticket hypothesis states that networks can be pruned after none or few training iterations, using a mask computed based on the unpruned converged model. On the transformer architecture and the WMT 2014 English-to-German and English-to-French tasks, we show that stabilized lottery ticket pruning performs similar to magnitude pruning for sparsity levels of up to 85%, and propose a new combination of pruning techniques that outperforms all other techniques for even higher levels of sparsity. Furthermore, we confirm that the parameter's initial sign and not its specific value is the primary factor for successful training, and show that magnitude pruning cannot be used to find winning lottery tickets.




rx

A combination of 'pooling' with a prediction model can reduce by 73% the number of COVID-19 (Corona-virus) tests. (arXiv:2005.03453v1 [cs.LG])

We show that combining a prediction model (based on neural networks), with a new method of test pooling (better than the original Dorfman method, and better than double-pooling) called 'Grid', we can reduce the number of Covid-19 tests by 73%.




rx

Lifted Regression/Reconstruction Networks. (arXiv:2005.03452v1 [cs.LG])

In this work we propose lifted regression/reconstruction networks (LRRNs), which combine lifted neural networks with a guaranteed Lipschitz continuity property for the output layer. Lifted neural networks explicitly optimize an energy model to infer the unit activations and therefore---in contrast to standard feed-forward neural networks---allow bidirectional feedback between layers. So far lifted neural networks have been modelled around standard feed-forward architectures. We propose to take further advantage of the feedback property by letting the layers simultaneously perform regression and reconstruction. The resulting lifted network architecture allows to control the desired amount of Lipschitz continuity, which is an important feature to obtain adversarially robust regression and classification methods. We analyse and numerically demonstrate applications for unsupervised and supervised learning.




rx

An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration. (arXiv:2005.03451v1 [cs.LG])

We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.




rx

Fine-Grained Analysis of Cross-Linguistic Syntactic Divergences. (arXiv:2005.03436v1 [cs.CL])

The patterns in which the syntax of different languages converges and diverges are often used to inform work on cross-lingual transfer. Nevertheless, little empirical work has been done on quantifying the prevalence of different syntactic divergences across language pairs. We propose a framework for extracting divergence patterns for any language pair from a parallel corpus, building on Universal Dependencies. We show that our framework provides a detailed picture of cross-language divergences, generalizes previous approaches, and lends itself to full automation. We further present a novel dataset, a manually word-aligned subset of the Parallel UD corpus in five languages, and use it to perform a detailed corpus study. We demonstrate the usefulness of the resulting analysis by showing that it can help account for performance patterns of a cross-lingual parser.




rx

Parametrized Universality Problems for One-Counter Nets. (arXiv:2005.03435v1 [cs.FL])

We study the language universality problem for One-Counter Nets, also known as 1-dimensional Vector Addition Systems with States (1-VASS), parameterized either with an initial counter value, or with an upper bound on the allowed counter value during runs. The language accepted by an OCN (defined by reaching a final control state) is monotone in both parameters. This yields two natural questions: 1) Does there exist an initial counter value that makes the language universal? 2) Does there exist a sufficiently high ceiling so that the bounded language is universal? Despite the fact that unparameterized universality is Ackermann-complete and that these problems seem to reduce to checking basic structural properties of the underlying automaton, we show that in fact both problems are undecidable. We also look into the complexities of the problems for several decidable subclasses, namely for unambiguous, and deterministic systems, and for those over a single-letter alphabet.




rx

Dirichlet spectral-Galerkin approximation method for the simply supported vibrating plate eigenvalues. (arXiv:2005.03433v1 [math.NA])

In this paper, we analyze and implement the Dirichlet spectral-Galerkin method for approximating simply supported vibrating plate eigenvalues with variable coefficients. This is a Galerkin approximation that uses the approximation space that is the span of finitely many Dirichlet eigenfunctions for the Laplacian. Convergence and error analysis for this method is presented for two and three dimensions. Here we will assume that the domain has either a smooth or Lipschitz boundary with no reentrant corners. An important component of the error analysis is Weyl's law for the Dirichlet eigenvalues. Numerical examples for computing the simply supported vibrating plate eigenvalues for the unit disk and square are presented. In order to test the accuracy of the approximation, we compare the spectral-Galerkin method to the separation of variables for the unit disk. Whereas for the unit square we will numerically test the convergence rate for a variable coefficient problem.




rx

The Perceptimatic English Benchmark for Speech Perception Models. (arXiv:2005.03418v1 [cs.CL])

We present the Perceptimatic English Benchmark, an open experimental benchmark for evaluating quantitative models of speech perception in English. The benchmark consists of ABX stimuli along with the responses of 91 American English-speaking listeners. The stimuli test discrimination of a large number of English and French phonemic contrasts. They are extracted directly from corpora of read speech, making them appropriate for evaluating statistical acoustic models (such as those used in automatic speech recognition) trained on typical speech data sets. We show that phone discrimination is correlated with several types of models, and give recommendations for researchers seeking easily calculated norms of acoustic distance on experimental stimuli. We show that DeepSpeech, a standard English speech recognizer, is more specialized on English phoneme discrimination than English listeners, and is poorly correlated with their behaviour, even though it yields a low error on the decision task given to humans.




rx

Kunster -- AR Art Video Maker -- Real time video neural style transfer on mobile devices. (arXiv:2005.03415v1 [cs.CV])

Neural style transfer is a well-known branch of deep learning research, with many interesting works and two major drawbacks. Most of the works in the field are hard to use by non-expert users and substantial hardware resources are required. In this work, we present a solution to both of these problems. We have applied neural style transfer to real-time video (over 25 frames per second), which is capable of running on mobile devices. We also investigate the works on achieving temporal coherence and present the idea of fine-tuning, already trained models, to achieve stable video. What is more, we also analyze the impact of the common deep neural network architecture on the performance of mobile devices with regard to number of layers and filters present. In the experiment section we present the results of our work with respect to the iOS devices and discuss the problems present in current Android devices as well as future possibilities. At the end we present the qualitative results of stylization and quantitative results of performance tested on the iPhone 11 Pro and iPhone 6s. The presented work is incorporated in Kunster - AR Art Video Maker application available in the Apple's App Store.




rx

NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image. (arXiv:2005.03412v1 [eess.IV])

This paper reviews the second challenge on spectral reconstruction from RGB images, i.e., the recovery of whole-scene hyperspectral (HS) information from a 3-channel RGB image. As in the previous challenge, two tracks were provided: (i) a "Clean" track where HS images are estimated from noise-free RGBs, the RGB images are themselves calculated numerically using the ground-truth HS images and supplied spectral sensitivity functions (ii) a "Real World" track, simulating capture by an uncalibrated and unknown camera, where the HS images are recovered from noisy JPEG-compressed RGB images. A new, larger-than-ever, natural hyperspectral image data set is presented, containing a total of 510 HS images. The Clean and Real World tracks had 103 and 78 registered participants respectively, with 14 teams competing in the final testing phase. A description of the proposed methods, alongside their challenge scores and an extensive evaluation of top performing methods is also provided. They gauge the state-of-the-art in spectral reconstruction from an RGB image.




rx

Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY])

Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm.




rx

AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue with Lightweight AI and Edge Computing. (arXiv:2005.03409v1 [cs.RO])

Rescue vessels are the main actors in maritime safety and rescue operations. At the same time, aerial drones bring a significant advantage into this scenario. This paper presents the research directions of the AutoSOS project, where we work in the development of an autonomous multi-robot search and rescue assistance platform capable of sensor fusion and object detection in embedded devices using novel lightweight AI models. The platform is meant to perform reconnaissance missions for initial assessment of the environment using novel adaptive deep learning algorithms that efficiently use the available sensors and computational resources on drones and rescue vessel. When drones find potential objects, they will send their sensor data to the vessel to verity the findings with increased accuracy. The actual rescue and treatment operation are left as the responsibility of the rescue personnel. The drones will autonomously reconfigure their spatial distribution to enable multi-hop communication, when a direct connection between a drone transmitting information and the vessel is unavailable.




rx

Joint Prediction and Time Estimation of COVID-19 Developing Severe Symptoms using Chest CT Scan. (arXiv:2005.03405v1 [eess.IV])

With the rapidly worldwide spread of Coronavirus disease (COVID-19), it is of great importance to conduct early diagnosis of COVID-19 and predict the time that patients might convert to the severe stage, for designing effective treatment plan and reducing the clinicians' workloads. In this study, we propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time, and if yes, predict the possible conversion time that the patient would spend to convert to the severe stage. To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification, and 2) the weight for each feature via a sparsity regularization term to remove the redundant features of high-dimensional data and learn the shared information across the classification task and the regression task. To our knowledge, this study is the first work to predict the disease progression and the conversion time, which could help clinicians to deal with the potential severe cases in time or even save the patients' lives. Experimental analysis was conducted on a real data set from two hospitals with 422 chest computed tomography (CT) scans, where 52 cases were converted to severe on average 5.64 days and 34 cases were severe at admission. Results show that our method achieves the best classification (e.g., 85.91% of accuracy) and regression (e.g., 0.462 of the correlation coefficient) performance, compared to all comparison methods. Moreover, our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time.




rx

A LiDAR-based real-time capable 3D Perception System for Automated Driving in Urban Domains. (arXiv:2005.03404v1 [cs.RO])

We present a LiDAR-based and real-time capable 3D perception system for automated driving in urban domains. The hierarchical system design is able to model stationary and movable parts of the environment simultaneously and under real-time conditions. Our approach extends the state of the art by innovative in-detail enhancements for perceiving road users and drivable corridors even in case of non-flat ground surfaces and overhanging or protruding elements. We describe a runtime-efficient pointcloud processing pipeline, consisting of adaptive ground surface estimation, 3D clustering and motion classification stages. Based on the pipeline's output, the stationary environment is represented in a multi-feature mapping and fusion approach. Movable elements are represented in an object tracking system capable of using multiple reference points to account for viewpoint changes. We further enhance the tracking system by explicit consideration of occlusion and ambiguity cases. Our system is evaluated using a subset of the TUBS Road User Dataset. We enhance common performance metrics by considering application-driven aspects of real-world traffic scenarios. The perception system shows impressive results and is able to cope with the addressed scenarios while still preserving real-time capability.




rx

Datom: A Deformable modular robot for building self-reconfigurable programmable matter. (arXiv:2005.03402v1 [cs.RO])

Moving a module in a modular robot is a very complex and error-prone process. Unlike in swarm, in the modular robots we are targeting, the moving module must keep the connection to, at least, one other module. In order to miniaturize each module to few millimeters, we have proposed a design which is using electrostatic actuator. However, this movement is composed of several attachment, detachment creating the movement and each small step can fail causing a module to break the connection. The idea developed in this paper consists in creating a new kind of deformable module allowing a movement which keeps the connection between the moving and the fixed modules. We detail the geometry and the practical constraints during the conception of this new module. We then validate the possibility of movement for a module in an existing configuration. This implies the cooperation of some of the modules placed along the path and we show in simulation that it exists a motion process to reach every free positions of the surface for a given configuration.




rx

Simultaneous topology and fastener layout optimization of assemblies considering joint failure. (arXiv:2005.03398v1 [cs.CE])

This paper provides a method for the simultaneous topology optimization of parts and their corresponding joint locations in an assembly. Therein, the joint locations are not discrete and predefined, but continuously movable. The underlying coupling equations allow for connecting dissimilar meshes and avoid the need for remeshing when joint locations change. The presented method models the force transfer at a joint location not only by using single spring elements but accounts for the size and type of the joints. When considering riveted or bolted joints, the local part geometry at the joint location consists of holes that are surrounded by material. For spot welds, the joint locations are filled with material and may be smaller than for bolts. The presented method incorporates these material and clearance zones into the simultaneously running topology optimization of the parts. Furthermore, failure of joints may be taken into account at the optimization stage, yielding assemblies connected in a fail-safe manner.




rx

Scheduling with a processing time oracle. (arXiv:2005.03394v1 [cs.DS])

In this paper we study a single machine scheduling problem on a set of independent jobs whose execution time is not known, but guaranteed to be either short or long, for two given processing times. At every time step, the scheduler has the possibility either to test a job, by querying a processing time oracle, which reveals its processing time, and occupies one time unit on the schedule. Or the scheduler can execute a job, might it be previously tested or not. The objective value is the total completion time over all jobs, and is compared with the objective value of an optimal schedule, which does not need to test. The resulting competitive ratio measures the price of hidden processing time.

Two models are studied in this paper. In the non-adaptive model, the algorithm needs to decide before hand which jobs to test, and which jobs to execute untested. However in the adaptive model, the algorithm can make these decisions adaptively to the outcomes of the job tests. In both models we provide optimal polynomial time two-phase algorithms, which consist of a first phase where jobs are tested, and a second phase where jobs are executed untested. Experiments give strong evidence that optimal algorithms have this structure. Proving this property is left as an open problem.




rx

Does Multi-Encoder Help? A Case Study on Context-Aware Neural Machine Translation. (arXiv:2005.03393v1 [cs.CL])

In encoder-decoder neural models, multiple encoders are in general used to represent the contextual information in addition to the individual sentence. In this paper, we investigate multi-encoder approaches in documentlevel neural machine translation (NMT). Surprisingly, we find that the context encoder does not only encode the surrounding sentences but also behaves as a noise generator. This makes us rethink the real benefits of multi-encoder in context-aware translation - some of the improvements come from robust training. We compare several methods that introduce noise and/or well-tuned dropout setup into the training of these encoders. Experimental results show that noisy training plays an important role in multi-encoder-based NMT, especially when the training data is small. Also, we establish a new state-of-the-art on IWSLT Fr-En task by careful use of noise generation and dropout methods.




rx

Semantic Signatures for Large-scale Visual Localization. (arXiv:2005.03388v1 [cs.CV])

Visual localization is a useful alternative to standard localization techniques. It works by utilizing cameras. In a typical scenario, features are extracted from captured images and compared with geo-referenced databases. Location information is then inferred from the matching results. Conventional schemes mainly use low-level visual features. These approaches offer good accuracy but suffer from scalability issues. In order to assist localization in large urban areas, this work explores a different path by utilizing high-level semantic information. It is found that object information in a street view can facilitate localization. A novel descriptor scheme called "semantic signature" is proposed to summarize this information. A semantic signature consists of type and angle information of visible objects at a spatial location. Several metrics and protocols are proposed for signature comparison and retrieval. They illustrate different trade-offs between accuracy and complexity. Extensive simulation results confirm the potential of the proposed scheme in large-scale applications. This paper is an extended version of a conference paper in CBMI'18. A more efficient retrieval protocol is presented with additional experiment results.




rx

WSMN: An optimized multipurpose blind watermarking in Shearlet domain using MLP and NSGA-II. (arXiv:2005.03382v1 [cs.CR])

Digital watermarking is a remarkable issue in the field of information security to avoid the misuse of images in multimedia networks. Although access to unauthorized persons can be prevented through cryptography, it cannot be simultaneously used for copyright protection or content authentication with the preservation of image integrity. Hence, this paper presents an optimized multipurpose blind watermarking in Shearlet domain with the help of smart algorithms including MLP and NSGA-II. In this method, four copies of the robust copyright logo are embedded in the approximate coefficients of Shearlet by using an effective quantization technique. Furthermore, an embedded random sequence as a semi-fragile authentication mark is effectively extracted from details by the neural network. Due to performing an effective optimization algorithm for selecting optimum embedding thresholds, and also distinguishing the texture of blocks, the imperceptibility and robustness have been preserved. The experimental results reveal the superiority of the scheme with regard to the quality of watermarked images and robustness against hybrid attacks over other state-of-the-art schemes. The average PSNR and SSIM of the dual watermarked images are 38 dB and 0.95, respectively; Besides, it can effectively extract the copyright logo and locates forgery regions under severe attacks with satisfactory accuracy.




rx

2kenize: Tying Subword Sequences for Chinese Script Conversion. (arXiv:2005.03375v1 [cs.CL])

Simplified Chinese to Traditional Chinese character conversion is a common preprocessing step in Chinese NLP. Despite this, current approaches have poor performance because they do not take into account that a simplified Chinese character can correspond to multiple traditional characters. Here, we propose a model that can disambiguate between mappings and convert between the two scripts. The model is based on subword segmentation, two language models, as well as a method for mapping between subword sequences. We further construct benchmark datasets for topic classification and script conversion. Our proposed method outperforms previous Chinese Character conversion approaches by 6 points in accuracy. These results are further confirmed in a downstream application, where 2kenize is used to convert pretraining dataset for topic classification. An error analysis reveals that our method's particular strengths are in dealing with code-mixing and named entities.




rx

Playing Minecraft with Behavioural Cloning. (arXiv:2005.03374v1 [cs.AI])

MineRL 2019 competition challenged participants to train sample-efficient agents to play Minecraft, by using a dataset of human gameplay and a limit number of steps the environment. We approached this task with behavioural cloning by predicting what actions human players would take, and reached fifth place in the final ranking. Despite being a simple algorithm, we observed the performance of such an approach can vary significantly, based on when the training is stopped. In this paper, we detail our submission to the competition, run further experiments to study how performance varied over training and study how different engineering decisions affected these results.




rx

Accessibility in 360-degree video players. (arXiv:2005.03373v1 [cs.MM])

Any media experience must be fully inclusive and accessible to all users regardless of their ability. With the current trend towards immersive experiences, such as Virtual Reality (VR) and 360-degree video, it becomes key that these environments are adapted to be fully accessible. However, until recently the focus has been mostly on adapting the existing techniques to fit immersive displays, rather than considering new approaches for accessibility designed specifically for these increasingly relevant media experiences. This paper surveys a wide range of 360-degree video players and examines the features they include for dealing with accessibility, such as Subtitles, Audio Description, Sign Language, User Interfaces, and other interaction features, like voice control and support for multi-screen scenarios. These features have been chosen based on guidelines from standardization contributions, like in the World Wide Web Consortium (W3C) and the International Communication Union (ITU), and from research contributions for making 360-degree video consumption experiences accessible. The in-depth analysis has been part of a research effort towards the development of a fully inclusive and accessible 360-degree video player. The paper concludes by discussing how the newly developed player has gone above and beyond the existing solutions and guidelines, by providing accessibility features that meet the expectations for a widely used immersive medium, like 360-degree video.




rx

Vid2Curve: Simultaneously Camera Motion Estimation and Thin Structure Reconstruction from an RGB Video. (arXiv:2005.03372v1 [cs.GR])

Thin structures, such as wire-frame sculptures, fences, cables, power lines, and tree branches, are common in the real world.

It is extremely challenging to acquire their 3D digital models using traditional image-based or depth-based reconstruction methods because thin structures often lack distinct point features and have severe self-occlusion.

We propose the first approach that simultaneously estimates camera motion and reconstructs the geometry of complex 3D thin structures in high quality from a color video captured by a handheld camera.

Specifically, we present a new curve-based approach to estimate accurate camera poses by establishing correspondences between featureless thin objects in the foreground in consecutive video frames, without requiring visual texture in the background scene to lock on.

Enabled by this effective curve-based camera pose estimation strategy, we develop an iterative optimization method with tailored measures on geometry, topology as well as self-occlusion handling for reconstructing 3D thin structures.

Extensive validations on a variety of thin structures show that our method achieves accurate camera pose estimation and faithful reconstruction of 3D thin structures with complex shape and topology at a level that has not been attained by other existing reconstruction methods.




rx

Energy-efficient topology to enhance the wireless sensor network lifetime using connectivity control. (arXiv:2005.03370v1 [cs.NI])

Wireless sensor networks have attracted much attention because of many applications in the fields of industry, military, medicine, agriculture, and education. In addition, the vast majority of researches has been done to expand its applications and improve its efficiency. However, there are still many challenges for increasing the efficiency in different parts of this network. One of the most important parts is to improve the network lifetime in the wireless sensor network. Since the sensor nodes are generally powered by batteries, the most important issue to consider in these types of networks is to reduce the power consumption of the nodes in such a way as to increase the network lifetime to an acceptable level. The contribution of this paper is using topology control, the threshold for the remaining energy in nodes, and two of the meta-algorithms include SA (Simulated annealing) and VNS (Variable Neighbourhood Search) to increase the energy remaining in the sensors. Moreover, using a low-cost spanning tree, an appropriate connectivity control among nodes is created in the network in order to increase the network lifetime. The results of simulations show that the proposed method improves the sensor lifetime and reduces the energy consumed.




rx

Scoring Root Necrosis in Cassava Using Semantic Segmentation. (arXiv:2005.03367v1 [eess.IV])

Cassava a major food crop in many parts of Africa, has majorly been affected by Cassava Brown Streak Disease (CBSD). The disease affects tuberous roots and presents symptoms that include a yellow/brown, dry, corky necrosis within the starch-bearing tissues. Cassava breeders currently depend on visual inspection to score necrosis in roots based on a qualitative score which is quite subjective. In this paper we present an approach to automate root necrosis scoring using deep convolutional neural networks with semantic segmentation. Our experiments show that the UNet model performs this task with high accuracy achieving a mean Intersection over Union (IoU) of 0.90 on the test set. This method provides a means to use a quantitative measure for necrosis scoring on root cross-sections. This is done by segmentation and classifying the necrotized and non-necrotized pixels of cassava root cross-sections without any additional feature engineering.




rx

Soft Interference Cancellation for Random Coding in Massive Gaussian Multiple-Access. (arXiv:2005.03364v1 [cs.IT])

We utilize recent results on the exact block error probability of Gaussian random codes in additive white Gaussian noise to analyze Gaussian random coding for massive multiple-access at finite message length. Soft iterative interference cancellation is found to closely approach the performance bounds recently found in [1]. The existence of two fundamentally different regimes in the trade-off between power and bandwidth efficiency reported in [2] is related to much older results in [3] on power optimization by linear programming. Furthermore, we tighten the achievability bounds of [1] in the low power regime and show that orthogonal constellations are very close to the theoretical limits for message lengths around 100 and above.




rx

Probabilistic Hyperproperties of Markov Decision Processes. (arXiv:2005.03362v1 [cs.LO])

We study the specification and verification of hyperproperties for probabilistic systems represented as Markov decision processes (MDPs). Hyperproperties are system properties that describe the correctness of a system as a relation between multiple executions. Hyperproperties generalize trace properties and include information-flow security requirements, like noninterference, as well as requirements like symmetry, partial observation, robustness, and fault tolerance. We introduce the temporal logic PHL, which extends classic probabilistic logics with quantification over schedulers and traces. PHL can express a wide range of hyperproperties for probabilistic systems, including both classical applications, such as differential privacy, and novel applications in areas such as robotics and planning. While the model checking problem for PHL is in general undecidable, we provide methods both for proving and for refuting a class of probabilistic hyperproperties for MDPs.




rx

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation. (arXiv:2005.03361v1 [cs.CL])

Neural machine translation (NMT) needs large parallel corpora for state-of-the-art translation quality. Low-resource NMT is typically addressed by transfer learning which leverages large monolingual or parallel corpora for pre-training. Monolingual pre-training approaches such as MASS (MAsked Sequence to Sequence) are extremely effective in boosting NMT quality for languages with small parallel corpora. However, they do not account for linguistic information obtained using syntactic analyzers which is known to be invaluable for several Natural Language Processing (NLP) tasks. To this end, we propose JASS, Japanese-specific Sequence to Sequence, as a novel pre-training alternative to MASS for NMT involving Japanese as the source or target language. JASS is joint BMASS (Bunsetsu MASS) and BRSS (Bunsetsu Reordering Sequence to Sequence) pre-training which focuses on Japanese linguistic units called bunsetsus. In our experiments on ASPEC Japanese--English and News Commentary Japanese--Russian translation we show that JASS can give results that are competitive with if not better than those given by MASS. Furthermore, we show for the first time that joint MASS and JASS pre-training gives results that significantly surpass the individual methods indicating their complementary nature. We will release our code, pre-trained models and bunsetsu annotated data as resources for researchers to use in their own NLP tasks.




rx

Self-Supervised Human Depth Estimation from Monocular Videos. (arXiv:2005.03358v1 [cs.CV])

Previous methods on estimating detailed human depth often require supervised training with `ground truth' depth data. This paper presents a self-supervised method that can be trained on YouTube videos without known depth, which makes training data collection simple and improves the generalization of the learned network. The self-supervised learning is achieved by minimizing a photo-consistency loss, which is evaluated between a video frame and its neighboring frames warped according to the estimated depth and the 3D non-rigid motion of the human body. To solve this non-rigid motion, we first estimate a rough SMPL model at each video frame and compute the non-rigid body motion accordingly, which enables self-supervised learning on estimating the shape details. Experiments demonstrate that our method enjoys better generalization and performs much better on data in the wild.




rx

Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques. (arXiv:2005.03357v1 [eess.SP])

Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous and a non-invasive BP measurement system is proposed using Photoplethysmogram (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo pre-processing and feature extraction steps. Time, frequency and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for Systolic BP (SBP) and Diastolic BP (DBP) estimation individually. Gaussian Process Regression (GPR) along with ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root-mean-square error (RMSE) of 6.74 and 3.59 respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes.




rx

DramaQA: Character-Centered Video Story Understanding with Hierarchical QA. (arXiv:2005.03356v1 [cs.CL])

Despite recent progress on computer vision and natural language processing, developing video understanding intelligence is still hard to achieve due to the intrinsic difficulty of story in video. Moreover, there is not a theoretical metric for evaluating the degree of video understanding. In this paper, we propose a novel video question answering (Video QA) task, DramaQA, for a comprehensive understanding of the video story. The DramaQA focused on two perspectives: 1) hierarchical QAs as an evaluation metric based on the cognitive developmental stages of human intelligence. 2) character-centered video annotations to model local coherence of the story. Our dataset is built upon the TV drama "Another Miss Oh" and it contains 16,191 QA pairs from 23,928 various length video clips, with each QA pair belonging to one of four difficulty levels. We provide 217,308 annotated images with rich character-centered annotations, including visual bounding boxes, behaviors, and emotions of main characters, and coreference resolved scripts. Additionally, we provide analyses of the dataset as well as Dual Matching Multistream model which effectively learns character-centered representations of video to answer questions about the video. We are planning to release our dataset and model publicly for research purposes and expect that our work will provide a new perspective on video story understanding research.




rx

Quantum correlation alignment for unsupervised domain adaptation. (arXiv:2005.03355v1 [quant-ph])

Correlation alignment (CORAL), a representative domain adaptation (DA) algorithm, decorrelates and aligns a labelled source domain dataset to an unlabelled target domain dataset to minimize the domain shift such that a classifier can be applied to predict the target domain labels. In this paper, we implement the CORAL on quantum devices by two different methods. One method utilizes quantum basic linear algebra subroutines (QBLAS) to implement the CORAL with exponential speedup in the number and dimension of the given data samples. The other method is achieved through a variational hybrid quantum-classical procedure. In addition, the numerical experiments of the CORAL with three different types of data sets, namely the synthetic data, the synthetic-Iris data, the handwritten digit data, are presented to evaluate the performance of our work. The simulation results prove that the variational quantum correlation alignment algorithm (VQCORAL) can achieve competitive performance compared with the classical CORAL.




rx

DMCP: Differentiable Markov Channel Pruning for Neural Networks. (arXiv:2005.03354v1 [cs.CV])

Recent works imply that the channel pruning can be regarded as searching optimal sub-structure from unpruned networks.

However, existing works based on this observation require training and evaluating a large number of structures, which limits their application.

In this paper, we propose a novel differentiable method for channel pruning, named Differentiable Markov Channel Pruning (DMCP), to efficiently search the optimal sub-structure.

Our method is differentiable and can be directly optimized by gradient descent with respect to standard task loss and budget regularization (e.g. FLOPs constraint).

In DMCP, we model the channel pruning as a Markov process, in which each state represents for retaining the corresponding channel during pruning, and transitions between states denote the pruning process.

In the end, our method is able to implicitly select the proper number of channels in each layer by the Markov process with optimized transitions. To validate the effectiveness of our method, we perform extensive experiments on Imagenet with ResNet and MobilenetV2.

Results show our method can achieve consistent improvement than state-of-the-art pruning methods in various FLOPs settings. The code is available at https://github.com/zx55/dmcp




rx

Pricing under a multinomial logit model with non linear network effects. (arXiv:2005.03352v1 [cs.GT])

We study the problem of pricing under a Multinomial Logit model where we incorporate network effects over the consumer's decisions. We analyse both cases, when sellers compete or collaborate. In particular, we pay special attention to the overall expected revenue and how the behaviour of the no purchase option is affected under variations of a network effect parameter. Where for example we prove that the market share for the no purchase option, is decreasing in terms of the value of the network effect, meaning that stronger communication among costumers increases the expected amount of sales. We also analyse how the customer's utility is altered when network effects are incorporated into the market, comparing the cases where both competitive and monopolistic prices are displayed. We use tools from stochastic approximation algorithms to prove that the probability of purchasing the available products converges to a unique stationary distribution. We model that the sellers can use this stationary distribution to establish their strategies. Finding that under those settings, a pure Nash Equilibrium represents the pricing strategies in the case of competition, and an optimal (that maximises the total revenue) fixed price characterise the case of collaboration.




rx

Error estimates for the Cahn--Hilliard equation with dynamic boundary conditions. (arXiv:2005.03349v1 [math.NA])

A proof of convergence is given for bulk--surface finite element semi-discretisation of the Cahn--Hilliard equation with Cahn--Hilliard-type dynamic boundary conditions in a smooth domain. The semi-discretisation is studied in the weak formulation as a second order system. Optimal-order uniform-in-time error estimates are shown in the $L^2$ and $H^1$ norms. The error estimates are based on a consistency and stability analysis. The proof of stability is performed in an abstract framework, based on energy estimates exploiting the anti-symmetric structure of the second order system. Numerical experiments illustrate the theoretical results.




rx

Regression Forest-Based Atlas Localization and Direction Specific Atlas Generation for Pancreas Segmentation. (arXiv:2005.03345v1 [cs.CV])

This paper proposes a fully automated atlas-based pancreas segmentation method from CT volumes utilizing atlas localization by regression forest and atlas generation using blood vessel information. Previous probabilistic atlas-based pancreas segmentation methods cannot deal with spatial variations that are commonly found in the pancreas well. Also, shape variations are not represented by an averaged atlas. We propose a fully automated pancreas segmentation method that deals with two types of variations mentioned above. The position and size of the pancreas is estimated using a regression forest technique. After localization, a patient-specific probabilistic atlas is generated based on a new image similarity that reflects the blood vessel position and direction information around the pancreas. We segment it using the EM algorithm with the atlas as prior followed by the graph-cut. In evaluation results using 147 CT volumes, the Jaccard index and the Dice overlap of the proposed method were 62.1% and 75.1%, respectively. Although we automated all of the segmentation processes, segmentation results were superior to the other state-of-the-art methods in the Dice overlap.




rx

Arranging Test Tubes in Racks Using Combined Task and Motion Planning. (arXiv:2005.03342v1 [cs.RO])

The paper develops a robotic manipulation system to treat the pressing needs for handling a large number of test tubes in clinical examination and replace or reduce human labor. It presents the technical details of the system, which separates and arranges test tubes in racks with the help of 3D vision and artificial intelligence (AI) reasoning/planning. The developed system only requires a person to put a rack with mixed and non-arranged tubes in front of a robot. The robot autonomously performs recognition, reasoning, planning, manipulation, etc., and returns a rack with separated and arranged tubes. The system is simple-to-use, and there are no requests for expert knowledge in robotics. We expect such a system to play an important role in helping managing public health and hope similar systems could be extended to other clinical manipulation like handling mixers and pipettes in the future.




rx

Scene Text Image Super-Resolution in the Wild. (arXiv:2005.03341v1 [cs.CV])

Low-resolution text images are often seen in natural scenes such as documents captured by mobile phones. Recognizing low-resolution text images is challenging because they lose detailed content information, leading to poor recognition accuracy. An intuitive solution is to introduce super-resolution (SR) techniques as pre-processing. However, previous single image super-resolution (SISR) methods are trained on synthetic low-resolution images (e.g.Bicubic down-sampling), which is simple and not suitable for real low-resolution text recognition. To this end, we pro-pose a real scene text SR dataset, termed TextZoom. It contains paired real low-resolution and high-resolution images which are captured by cameras with different focal length in the wild. It is more authentic and challenging than synthetic data, as shown in Fig. 1. We argue improv-ing the recognition accuracy is the ultimate goal for Scene Text SR. In this purpose, a new Text Super-Resolution Network termed TSRN, with three novel modules is developed. (1) A sequential residual block is proposed to extract the sequential information of the text images. (2) A boundary-aware loss is designed to sharpen the character boundaries. (3) A central alignment module is proposed to relieve the misalignment problem in TextZoom. Extensive experiments on TextZoom demonstrate that our TSRN largely improves the recognition accuracy by over 13%of CRNN, and by nearly 9.0% of ASTER and MORAN compared to synthetic SR data. Furthermore, our TSRN clearly outperforms 7 state-of-the-art SR methods in boosting the recognition accuracy of LR images in TextZoom. For example, it outperforms LapSRN by over 5% and 8%on the recognition accuracy of ASTER and CRNN. Our results suggest that low-resolution text recognition in the wild is far from being solved, thus more research effort is needed.




rx

Wavelet Integrated CNNs for Noise-Robust Image Classification. (arXiv:2005.03337v1 [cs.CV])

Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress the noise effect to the final predication, we enhance CNNs by replacing max-pooling, strided-convolution, and average-pooling with Discrete Wavelet Transform (DWT). We present general DWT and Inverse DWT (IDWT) layers applicable to various wavelets like Haar, Daubechies, and Cohen, etc., and design wavelet integrated CNNs (WaveCNets) using these layers for image classification. In WaveCNets, feature maps are decomposed into the low-frequency and high-frequency components during the down-sampling. The low-frequency component stores main information including the basic object structures, which is transmitted into the subsequent layers to extract robust high-level features. The high-frequency components, containing most of the data noise, are dropped during inference to improve the noise-robustness of the WaveCNets. Our experimental results on ImageNet and ImageNet-C (the noisy version of ImageNet) show that WaveCNets, the wavelet integrated versions of VGG, ResNets, and DenseNet, achieve higher accuracy and better noise-robustness than their vanilla versions.




rx

Causal Paths in Temporal Networks of Face-to-Face Human Interactions. (arXiv:2005.03333v1 [cs.SI])

In a temporal network causal paths are characterized by the fact that links from a source to a target must respect the chronological order. In this article we study the causal paths structure in temporal networks of human face to face interactions in different social contexts. In a static network paths are transitive i.e. the existence of a link from $a$ to $b$ and from $b$ to $c$ implies the existence of a path from $a$ to $c$ via $b$. In a temporal network the chronological constraint introduces time correlations that affects transitivity. A probabilistic model based on higher order Markov chains shows that correlations that can invalidate transitivity are present only when the time gap between consecutive events is larger than the average value and are negligible below such a value. The comparison between the densities of the temporal and static accessibility matrices shows that the static representation can be used with good approximation. Moreover, we quantify the extent of the causally connected region of the networks over time.




rx

Crop Aggregating for short utterances speaker verification using raw waveforms. (arXiv:2005.03329v1 [eess.AS])

Most studies on speaker verification systems focus on long-duration utterances, which are composed of sufficient phonetic information. However, the performances of these systems are known to degrade when short-duration utterances are inputted due to the lack of phonetic information as compared to the long utterances. In this paper, we propose a method that compensates for the performance degradation of speaker verification for short utterances, referred to as "crop aggregating". The proposed method adopts an ensemble-based design to improve the stability and accuracy of speaker verification systems. The proposed method segments an input utterance into several short utterances and then aggregates the segment embeddings extracted from the segmented inputs to compose a speaker embedding. Then, this method simultaneously trains the segment embeddings and the aggregated speaker embedding. In addition, we also modified the teacher-student learning method for the proposed method. Experimental results on different input duration using the VoxCeleb1 test set demonstrate that the proposed technique improves speaker verification performance by about 45.37% relatively compared to the baseline system with 1-second test utterance condition.




rx

Bitvector-aware Query Optimization for Decision Support Queries (extended version). (arXiv:2005.03328v1 [cs.DB])

Bitvector filtering is an important query processing technique that can significantly reduce the cost of execution, especially for complex decision support queries with multiple joins. Despite its wide application, however, its implication to query optimization is not well understood.

In this work, we study how bitvector filters impact query optimization. We show that incorporating bitvector filters into query optimization straightforwardly can increase the plan space complexity by an exponential factor in the number of relations in the query. We analyze the plans with bitvector filters for star and snowflake queries in the plan space of right deep trees without cross products. Surprisingly, with some simplifying assumptions, we prove that, the plan of the minimal cost with bitvector filters can be found from a linear number of plans in the number of relations in the query. This greatly reduces the plan space complexity for such queries from exponential to linear.

Motivated by our analysis, we propose an algorithm that accounts for the impact of bitvector filters in query optimization. Our algorithm optimizes the join order for an arbitrary decision support query by choosing from a linear number of candidate plans in the number of relations in the query. We implement our algorithm in Microsoft SQL Server as a transformation rule. Our evaluation on both industry standard benchmarks and customer workload shows that, compared with the original Microsoft SQL Server, our technique reduces the total CPU execution time by 22%-64% for the workloads, with up to two orders of magnitude reduction in CPU execution time for individual queries.




rx

Global Distribution of Google Scholar Citations: A Size-independent Institution-based Analysis. (arXiv:2005.03324v1 [cs.DL])

Most currently available schemes for performance based ranking of Universities or Research organizations, such as, Quacarelli Symonds (QS), Times Higher Education (THE), Shanghai University based All Research of World Universities (ARWU) use a variety of criteria that include productivity, citations, awards, reputation, etc., while Leiden and Scimago use only bibliometric indicators. The research performance evaluation in the aforesaid cases is based on bibliometric data from Web of Science or Scopus, which are commercially available priced databases. The coverage includes peer reviewed journals and conference proceedings. Google Scholar (GS) on the other hand, provides a free and open alternative to obtaining citations of papers available on the net, (though it is not clear exactly which journals are covered.) Citations are collected automatically from the net and also added to self created individual author profiles under Google Scholar Citations (GSC). This data was used by Webometrics Lab, Spain to create a ranked list of 4000+ institutions in 2016, based on citations from only the top 10 individual GSC profiles in each organization. (GSC excludes the top paper for reasons explained in the text; the simple selection procedure makes the ranked list size-independent as claimed by the Cybermetrics Lab). Using this data (Transparent Ranking TR, 2016), we find the regional and country wise distribution of GS-TR Citations. The size independent ranked list is subdivided into deciles of 400 institutions each and the number of institutions and citations of each country obtained for each decile. We test for correlation between institutional ranks between GS TR and the other ranking schemes for the top 20 institutions.