liza

New coronavirus hospitalizations down to lowest number since the lockdown began in New York

There were 572 new hospitalizations due to coronavirus reported in New York on Friday, Gov. Andrew Cuomo said Saturday. This is the lowest number since the lockdown on March 20.




liza

Recruiter Eliza Kirkby lists the three biggest mistakes job candidates make on social media

An Australian recruiter has listed the three biggest mistakes job candidates make on social media that could cost them a career.




liza

Elizabeth Day: 'I hate background music. Do you hear me?'

While I was undergoing a life MOT, I realised there was one area I had overlooked - my hearing




liza

Elizabeth Day: 'Staying friends with your ex… discuss' 

My boyfriend J can't understand why I keep in touch with former lovers when he isn't in touch with any of his. It's become something of a joke between us...




liza

Elizabeth Day: Meghan's just doing what comes naturally 

I'm in Los Angeles at the moment. I advise you to look away now if the casual smugness of that opening sentence was too much to bear




liza

Shane Warne admits he's 'quite sad' about splitting from ex-fiancée Elizabeth Hurley

He enjoyed a PDA-filled romance with UK actress Elizabeth Hurley between 2010 and 2013. 




liza

In VE Day address, Queen Elizabeth praises Britian's response to coronavirus pandemic




liza

The XML serialization of HTML5, aka ‘XHTML5’

A while ago, I was wondering how exactly one triggers HTML5’s XML mode — let’s call it XHTML5 from now on. You know, just out of curiosity. I’ll always prefer HTML over XHTML because it’s much less verbose and I like to keep things simple.




liza

Co-morbidity, late hospitalization ailing Gujarat: AIIMS chief | Ahmedabad News - Times of India

Co-morbidity, late hospitalization ailing Gujarat: AIIMS chief | Ahmedabad News - Times of India




liza

'Co-morbidity, late hospitalization ailing Guj'

Director of All India Institute of Medical Sciences, Delhi (AIIMS-D), Dr Randeep Guleria on Saturday said that late hospitalization of Covid-19 patients due to fear of stigma and higher prevalence of co-morbid conditions like diabetes, hypertension, heart and kidney disease were key reasons behind the high number of Civid-19 deaths in Gujarat.




liza

Device for source position stabilization and beam parameter monitoring at inverse Compton X-ray sources

Compact X-ray sources based on inverse Compton scattering provide brilliant and partially coherent X-rays in a laboratory environment. The cross section for inverse Compton scattering is very small, requiring high-power laser systems as well as small laser and electron beam sizes at the interaction point to generate sufficient flux. Therefore, these systems are very sensitive to distortions which change the overlap between the two beams. In order to monitor X-ray source position, size and flux in parallel to experiments, the beam-position monitor proposed here comprises a small knife edge whose image is acquired with an X-ray camera specifically designed to intercept only a very small fraction of the X-ray beam. Based on the source position drift recorded with the monitor, a closed-loop feedback stabilizes the X-ray source position by adjusting the laser beam trajectory. A decrease of long-term source position drifts by more than one order of magnitude is demonstrated with this device. Consequently, such a closed-loop feedback system which enables stabilization of source position drifts and flux of inverse Compton sources in parallel to experiments has a significant impact on the performance of these sources.




liza

Visualization Bench for the screening of crystallization assays and the automation of in situ experiments




liza

Redetermination of the crystal structure of BaTeO3(H2O), including the localization of the hydrogen atoms

The redetermination of the crystal structure of barium oxidotellurate(IV) monohydrate allowed the localization of the hydrogen atoms that were not determined in the previous study [Nielsen, Hazell & Rasmussen (1971). Acta Chem. Scand. 25, 3037–3042], thus making an unambiguous assignment of the hydrogen-bonding scheme possible. The crystal structure shows a layered arrangement parallel to (001), consisting of edge-sharing [BaO6(H2O)] polyhedra and flanked by isolated [TeO3] trigonal pyramids on the top and bottom. O—H⋯O hydrogen bonds of medium strength link adjacent layers along [001].




liza

Zn and Ni complexes of pyridine-2,6-di­carboxyl­ates: crystal field stabilization matters!

Six reaction products of ZnII and NiII with pyridine-2,6-di­carb­oxy­lic acid (H2Lig1), 4-chloro­pyridine-2,6-di­carb­oxy­lic acid (H2Lig2) and 4-hy­droxy­pyridine-2,6-di­carb­oxy­lic acid (H2Lig3) are used to pinpoint the structural consequences of crystal field stabilization by an incomplete d shell. The pseudo-octa­hedral ZnII coordination sphere in bis­(6-carb­oxy­picolinato)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O or [Zn(HLig1)2]·3H2O, (1), is significantly less regular than that about NiII in the isostructural compound bis­(6-carb­oxy­picolinato)nickel(II) trihydrate, [Ni(C7H4NO4)2]·3H2O or [Ni(HLig1)2]·3H2O, (2). The ZnII complexes poly[(4-chloro­pyridine-2,6-di­carboxyl­ato)zinc(II)], [Zn(C7H2ClNO4)]n or [Zn(Lig2)]n, (3), and poly[[(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)zinc(II)] monohydrate], {[Zn(C7H3NO5)]·H2O}n or {[Zn(Lig3)]·H2O}n, (4), represent two-dimensional coordination polymers with chelating and bridging pyridine-2,6-di­carboxyl­ate ligands in which the coordination polyhedra about the central cations cannot be associated with any regular shape; their coordination environments range between trigonal–bipyramidal and square-pyramidal geometries. In contrast, the corresponding adducts of the diprotonated ligands to NiII, namely tri­aqua­(4-chloro­pyridine-2,6-di­carboxyl­ato)nickel(II), [Ni(C7H2ClNO4)(H2O)3] or [NiLig2(OH2)3)], (5), and tri­aqua­(4-hy­droxy­pyridine-2,6-di­carboxyl­ato)nickel(II) 1.7-hydrate, [Ni(C7H3NO5)(H2O)3]·1.7H2O or [NiLig3(OH2)3)]·1.7H2O, (6), feature rather regular octa­hedral coordination spheres about the transition-metal cations, thus precluding the formation of analogous extended structures.




liza

Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185.




liza

SVAT4: a computer program for visualization and analysis of crystal structures

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures, including chemical bonds and magnetic moments. A wide range of functions, e.g. revealing atomic layers and polyhedral clusters, are available for further structural analysis. Atomic sizes, colors, appearance, view directions and view modes (orthographic or perspective views) are adjustable. Customized work for the visualization and analysis can be saved and then reloaded. SVAT4 provides a template to simplify the process of preparation of a new data file. SVAT4 can generate high-quality images for publication and animations for presentations. The usability of SVAT4 is broadened by a software suite for simulation and analysis of electron diffraction patterns.




liza

Optimization of crystallization of biological macromolecules using dialysis combined with temperature control

A rational way to find the appropriate conditions to grow crystal samples for bio-crystallography is to determine the crystallization phase diagram, which allows precise control of the parameters affecting the crystal growth process. First, the nucleation is induced at supersaturated conditions close to the solubility boundary between the nucleation and metastable regions. Then, crystal growth is further achieved in the metastable zone – which is the optimal location for slow and ordered crystal expansion – by modulation of specific physical parameters. Recently, a prototype of an integrated apparatus for the rational optimization of crystal growth by mapping and manipulating temperature–precipitant–concentration phase diagrams has been constructed. Here, it is demonstrated that a thorough knowledge of the phase diagram is vital in any crystallization experiment. The relevance of the selection of the starting position and the kinetic pathway undertaken in controlling most of the final properties of the synthesized crystals is shown. The rational crystallization optimization strategies developed and presented here allow tailoring of crystal size and diffraction quality, significantly reducing the time, effort and amount of expensive protein material required for structure determination.




liza

On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies

Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, `naked' crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds.




liza

Mutagenesis facilitated crystallization of GLP-1R

The class B family of G-protein-coupled receptors (GPCRs) has long been a paradigm for peptide hormone recognition and signal transduction. One class B GPCR, the glucagon-like peptide-1 receptor (GLP-1R), has been considered as an anti-diabetes drug target and there are several peptidic drugs available for the treatment of this overwhelming disease. The previously determined structures of inactive GLP-1R in complex with two negative allosteric modulators include ten thermal-stabilizing mutations that were selected from a total of 98 designed mutations. Here we systematically summarize all 98 mutations we have tested and the results suggest that the mutagenesis strategy that strengthens inter-helical hydro­phobic interactions shows the highest success rate. We further investigate four back mutations by thermal-shift assay, crystallization and molecular dynamic simulations, and conclude that mutation I1962.66bF increases thermal stability intrinsically and that mutation S2714.47bA decreases crystal packing entropy extrinsically, while mutations S1932.63bC and M2333.36bC may be dispensable since these two cysteines are not di­sulfide-linked. Our results indicate intrinsic connections between different regions of GPCR transmembrane helices and the current data suggest a general mutagenesis principle for structural determination of GPCRs and other membrane proteins.




liza

Small-angle neutron scattering studies suggest the mechanism of BinAB protein internalization

Small-angle neutron scattering (SANS) is one of the most widely used neutron-based approaches to study the solution structure of biological macromolecular systems. The selective deuterium labelling of different protein components of a complex provides a means to probe conformational changes in multiprotein complexes. The Lysinibacillus sphaericus mosquito-larvicidal BinAB proteins exert toxicity through interaction with the receptor Cqm1 protein; however, the nature of the complex is not known. Rationally engineered deuterated BinB (dBinB) protein from the L. sphaericus ISPC-8 species was synthesized using an Escherichia coli-based protein-expression system in M9 medium in D2O for `contrast-matched' SANS experiments. SANS data were independently analysed by ab initio indirect Fourier transform-based modelling and using crystal structures. These studies confirm the dimeric status of Cqm1 in 100% D2O with a longest intramolecular vector (Dmax) of ∼94 Å and a radius of gyration (Rg) of ∼31 Å. Notably, BinB binds to Cqm1, forming a heterodimeric complex (Dmax of ∼129 Å and Rg of ∼40 Å) and alters its oligomeric status from a dimer to a monomer, as confirmed by matched-out Cqm1–dBinB (Dmax of ∼70 Å and Rg of ∼22 Å). The present study thus provides the first insight into the events involved in the internalization of larvicidal proteins, likely by raft-dependent endocytosis.




liza

Scanning electron microscopy as a method for sample visualization in protein X-ray crystallography

Developing methods to determine high-resolution structures from micrometre- or even submicrometre-sized protein crystals has become increasingly important in recent years. This applies to both large protein complexes and membrane proteins, where protein production and the subsequent growth of large homogeneous crystals is often challenging, and to samples which yield only micro- or nanocrystals such as amyloid or viral polyhedrin proteins. The versatile macromolecular crystallography microfocus (VMXm) beamline at Diamond Light Source specializes in X-ray diffraction measurements from micro- and nanocrystals. Because of the possibility of measuring data from crystalline samples that approach the resolution limit of visible-light microscopy, the beamline design includes a scanning electron microscope (SEM) to visualize, locate and accurately centre crystals for X-ray diffraction experiments. To ensure that scanning electron microscopy is an appropriate method for sample visualization, tests were carried out to assess the effect of SEM radiation on diffraction quality. Cytoplasmic polyhedrosis virus polyhedrin protein crystals cryocooled on electron-microscopy grids were exposed to SEM radiation before X-ray diffraction data were collected. After processing the data with DIALS, no statistically significant difference in data quality was found between datasets collected from crystals exposed and not exposed to SEM radiation. This study supports the use of an SEM as a tool for the visualization of protein crystals and as an integrated visualization tool on the VMXm beamline.




liza

Visualization of protein crystals by high-energy phase-contrast X-ray imaging

For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallo­graphy beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources.




liza

Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments

Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.




liza

Solid/liquid-interface-dependent synthesis and immobilization of copper-based particles nucleated by X-ray-radiolysis-induced photochemical reaction




liza

ClickX: a visualization-based program for preprocessing of serial crystallography data

Serial crystallography is a powerful technique in structure determination using many small crystals at X-ray free-electron laser or synchrotron radiation facilities. The large diffraction data volumes require high-throughput software to preprocess the raw images for subsequent analysis. ClickX is a program designated for serial crystallography data preprocessing, capable of rapid data sorting for online feedback and peak-finding refinement by parameter optimization. The graphical user interface (GUI) provides convenient access to various operations such as pattern visualization, statistics plotting and parameter tuning. A batch job module is implemented to facilitate large-data-volume processing. A two-step geometry calibration for single-panel detectors is also integrated into the GUI, where the beam center and detector tilting angles are optimized using an ellipse center shifting method first, then all six parameters, including the photon energy and detector distance, are refined together using a residual minimization method. Implemented in Python, ClickX has good portability and extensibility, so that it can be installed, configured and used on any computing platform that provides a Python interface or common data file format. ClickX has been tested in online analysis at the Pohang Accelerator Laboratory X-ray Free-Electron Laser, Korea, and the Linac Coherent Light Source, USA. It has also been applied in post-experimental data analysis. The source code is available via https://github.com/LiuLab-CSRC/ClickX under a GNU General Public License.




liza

Correlative vibrational spectroscopy and 2D X-ray diffraction to probe the mineralization of bone in phosphate-deficient mice

Bone crystallite chemistry and structure change during bone maturation. However, these properties of bone can also be affected by limited uptake of the chemical constituents of the mineral by the animal. This makes probing the effect of bone-mineralization-related diseases a complicated task. Here it is shown that the combination of vibrational spectroscopy with two-dimensional X-ray diffraction can provide unparalleled information on the changes in bone chemistry and structure associated with different bone pathologies (phosphate deficiency) and/or health conditions (pregnancy, lactation). Using a synergistic analytical approach, it was possible to trace the effect that changes in the remodelling regime have on the bone mineral chemistry and structure in normal and mineral-deficient (hypophosphatemic) mice. The results indicate that hypophosphatemic mice have increased bone remodelling, increased carbonate content and decreased crystallinity of the bone mineral, as well as increased misalignment of crystallites within the bone tissue. Pregnant and lactating mice that are normal and hypophosphatemic showed changes in the chemistry and misalignment of the apatite crystals that can be related to changes in remodelling rates associated with different calcium demand during pregnancy and lactation.




liza

Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers. Corrigendum

Errors in the article by Opara, Martiel, Arnold, Braun, Stahlberg, Makita, David & Padeste [J. Appl. Cryst. (2017), 50, 909–918] are corrected.




liza

Mercury 4.0: from visualization to analysis, design and prediction

The program Mercury, developed at the Cambridge Crystallographic Data Centre, was originally designed primarily as a crystal structure visualization tool. Over the years the fields and scientific communities of chemical crystallography and crystal engineering have developed to require more advanced structural analysis software. Mercury has evolved alongside these scientific communities and is now a powerful analysis, design and prediction platform which goes a lot further than simple structure visualization.




liza

Visualization of texture components using MTEX

Knowledge of the appearance of texture components and fibres in pole figures, in inverse pole figures and in Euler space is fundamental for texture analysis. For cubic crystal systems, such as steels, an extensive literature exists and, for example, the book by Matthies, Vinel & Helming [Standard Distributions in Texture Analysis: Maps for the Case of Cubic Orthorhomic Symmetry, (1987), Akademie-Verlag Berlin] provides an atlas to identify texture components. For lower crystal symmetries, however, equivalent comprehensive overviews that can serve as guidance for the interpretation of experimental textures do not exist. This paper closes this gap by providing a set of scripts for the MTEX package [Bachmann, Hielscher & Schaeben (2010). Solid State Phenom. 160, 63–68] that allow the texture practitioner to compile such an atlas for a given material system, thus aiding orientation distribution function analysis also for non-cubic systems.




liza

The competition between cocrystallization and separated crystallization based on crystallization from solution

Because researchers do not understand the formation mechanism of cocrystals, the preparation of cocrystals is mostly done by trial and error. This study focuses on the cocrystal formation mechanism to improve the efficiency of cocrystal preparation.




liza

Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185.

Book review




liza

Optimization of crystallization of biological macromolecules using dialysis combined with temperature control

This article describes rational strategies for the optimization of crystal growth using precise in situ control of the temperature and chemical composition of the crystallization solution through dialysis, to generate crystals of the specific sizes required for different downstream structure determination approaches.




liza

SVAT4: a computer program for visualization and analysis of crystal structures

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures. A wide range of functions are available for structural analysis.




liza

Crystallization of chiral molecular compounds: what can be learned from the Cambridge Structural Database?

A detailed study on chiral compound structures found in the Cambridge Structural Database (CSD) is presented. Solvates, salts and co-crystals have intentionally been excluded, in order to focus on the most basic structures of single enantiomers, scalemates and racemates. Similarity between the latter and structures of achiral monomolecular compounds has been established and utilized to arrive at important conclusions about crystallization of chiral compounds. For example, the fundamental phenomenon of conglomerate formation and, in particular, their frequency of occurrence is addressed. In addition, rarely occurring kryptoracemates and scalemic compounds (anomalous racemates) are discussed. Finally, an extended search of enantiomer solid solutions in the CSD is performed to show that there are up to 1800 instances most probably hiding among the deposited crystal structures, while only a couple of dozen have been previously known and studied.




liza

Crystallization of chiral molecular compounds: what can be learned from the Cambridge Structural Database?

A study on chiral monomolecular compound structures found in the Cambridge Structural Database is presented.




liza

Structure of the dihydrolipoamide succinyltransferase catalytic domain from Escherichia coli in a novel crystal form: a tale of a common protein crystallization contaminant

The crystallization of amidase, the ultimate enzyme in the Trp-dependent auxin-biosynthesis pathway, from Arabidopsis thaliana was attempted using protein samples with at least 95% purity. Cube-shaped crystals that were assumed to be amidase crystals that belonged to space group I4 (unit-cell parameters a = b = 128.6, c = 249.7 Å) were obtained and diffracted to 3.0 Å resolution. Molecular replacement using structures from the PDB containing the amidase signature fold as search models was unsuccessful in yielding a convincing solution. Using the Sequence-Independent Molecular replacement Based on Available Databases (SIMBAD) program, it was discovered that the structure corresponded to dihydrolipoamide succinyltransferase from Escherichia coli (PDB entry 1c4t), which is considered to be a common crystallization contaminant protein. The structure was refined to an Rwork of 23.0% and an Rfree of 27.2% at 3.0 Å resolution. The structure was compared with others of the same protein deposited in the PDB. This is the first report of the structure of dihydrolipo­amide succinyltransferase isolated without an expression tag and in this novel crystal form.




liza

An extracellular domain of the EsaA membrane component of the type VIIb secretion system: expression, purification and crystallization

The membrane protein EsaA is a conserved component of the type VIIb secretion system. Limited proteolysis of purified EsaA from Staphylococcus aureus USA300 identified a stable 48 kDa fragment, which was mapped by fingerprint mass spectrometry to an uncharacterized extracellular segment of EsaA. Analysis by circular dichroism spectroscopy showed that this fragment folds into a single stable domain made of mostly α-helices with a melting point of 34.5°C. Size-exclusion chromatography combined with multi-angle light scattering indicated the formation of a dimer of the purified extracellular domain. Octahedral crystals were grown in 0.2 M ammonium citrate tribasic pH 7.0, 16% PEG 3350 using the hanging-drop vapor-diffusion method. Diffraction data were analyzed to 4.0 Å resolution, showing that the crystals belonged to the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = 197.5, b = 197.5, c = 368.3 Å, α = β = γ = 90°.




liza

Engineering the Fab fragment of the anti-IgE omalizumab to prevent Fab crystallization and permit IgE-Fc complex crystallization

Immunoglobulin E (IgE) plays a central role in the allergic response, in which cross-linking of allergen by Fc∊RI-bound IgE triggers mast cell and basophil degranulation and the release of inflammatory mediators. The high-affinity interaction between IgE and Fc∊RI is a long-standing target for therapeutic intervention in allergic disease. Omalizumab is a clinically approved anti-IgE monoclonal antibody that binds to free IgE, also with high affinity, preventing its interaction with Fc∊RI. All attempts to crystallize the pre-formed complex between the omalizumab Fab and the Fc region of IgE (IgE-Fc), to understand the structural basis for its mechanism of action, surprisingly failed. Instead, the Fab alone selectively crystallized in different crystal forms, but their structures revealed intermolecular Fab/Fab interactions that were clearly strong enough to disrupt the Fab/IgE-Fc complexes. Some of these interactions were common to other Fab crystal structures. Mutations were therefore designed to disrupt two recurring packing interactions observed in the omalizumab Fab crystal structures without interfering with the ability of the omalizumab Fab to recognize IgE-Fc; this led to the successful crystallization and subsequent structure determination of the Fab/IgE-Fc complex. The mutagenesis strategy adopted to achieve this result is applicable to other intractable Fab/antigen complexes or systems in which Fabs are used as crystallization chaperones.




liza

Rv0100, a proposed acyl carrier protein in Mycobacterium tuberculosis: expression, purification and crystallization. Corrigendum

The true identity of the protein found in the crystals reported by Bondoc et al. [(2019), Acta Cryst. F75, 646–651] is given.




liza

Open-access and free articles in Acta Crystallographica Section F: Structural Biology and Crystallization Communications




liza

Cyprus: Crossroads of Civilizations

For a thousand years, Cyprus was divided into at least 10 autonomous states. The inhabitants spoke three languages: Greek, Phoenician, and Eteocypriot, the original language […]

The post Cyprus: Crossroads of Civilizations appeared first on Smithsonian Insider.




liza

Evidence of asteroid mining in our galaxy may lead to the discovery of extraterrestrial civilizations

If intelligent and more advanced civilizations exist on other planets then its a good bet that some of these civilizations turned to asteroid mining long ago. If so, the hallmarks of their mining activities, such as unusual dirty halos of cast-off dust and debris around large asteroids, might be detectable from earth.

The post Evidence of asteroid mining in our galaxy may lead to the discovery of extraterrestrial civilizations appeared first on Smithsonian Insider.




liza

City lights could reveal E.T. civilization

In a new paper, Avi Loeb, of the Harvard-Smithsonian Center for Astrophysics, and Edwin Turner, Princeton University, suggest a new technique for finding aliens: look for their city lights.

The post City lights could reveal E.T. civilization appeared first on Smithsonian Insider.




liza

First Eld’s deer born from in vitro fertilization with help of Smithsonian Conservation Biology Institute scientists

Nearly 20 years after the Smithsonian Conservation Biology Institute became the first to produce an Eld’s deer fawn through artificial insemination, SCBI scientists have now contributed to the birth of the first Eld’s deer via in vitro fertilization.

The post First Eld’s deer born from in vitro fertilization with help of Smithsonian Conservation Biology Institute scientists appeared first on Smithsonian Insider.




liza

Trapped in Amber: Ancient fossils reveal remarkable stability of Caribbean lizard communities

Tiny Anolis lizards preserved since the Miocene in amber are giving scientists a true appreciation of the meaning of community stability. Dating back some 15 […]

The post Trapped in Amber: Ancient fossils reveal remarkable stability of Caribbean lizard communities appeared first on Smithsonian Insider.




liza

Warming may shrink ancient range of heat loving desert lizard

The Mojave Desert and Death Valley are among the hottest, driest places in North America. So how might climate change impact a resilient reptile that […]

The post Warming may shrink ancient range of heat loving desert lizard appeared first on Smithsonian Insider.




liza

Smithsonian-Cornell Partnership produces First Domestic Puppies by In Vitro Fertilization

After decades of attempts, Smithsonian Conservation Biology Institute (SCBI) scientists and researchers at Cornell University have become the first to successfully use in vitro fertilization […]

The post Smithsonian-Cornell Partnership produces First Domestic Puppies by In Vitro Fertilization appeared first on Smithsonian Insider.




liza

Globular Clusters Could Nurture Interstellar Civilizations

Globular star clusters are extraordinary in almost every way. They’re densely packed, holding a million stars in a ball only about 100 light-years across on […]

The post Globular Clusters Could Nurture Interstellar Civilizations appeared first on Smithsonian Insider.




liza

EML4-ALK V3 oncogenic fusion proteins promote microtubule stabilization and accelerated migration through NEK9 and NEK7 [RESEARCH ARTICLE]

Laura O'Regan, Giancarlo Barone, Rozita Adib, Chang Gok Woo, Hui Jeong Jeong, Emily L. Richardson, Mark W. Richards, Patricia A.J. Muller, Spencer J. Collis, Dean A. Fennell, Jene Choi, Richard Bayliss, and Andrew M. Fry

EML4-ALK is an oncogenic fusion present in ~5% non-small cell lung cancers. However, alternative breakpoints in the EML4 gene lead to distinct variants with different patient outcomes. Here, we show in cell models that EML4-ALK variant 3 (V3), which is linked to accelerated metastatic spread, causes microtubule stabilization, formation of extended cytoplasmic protrusions and increased cell migration. It also recruits the NEK9 and NEK7 kinase to microtubules via the N-terminal EML4 microtubule-binding region. Overexpression of wild-type EML4 as well as constitutive activation of NEK9 also perturb cell morphology and accelerate migration in a microtubule-dependent manner that requires the downstream kinase NEK7 but not ALK activity. Strikingly, elevated NEK9 expression is associated with reduced progression-free survival in EML4-ALK patients. Hence, we propose that EML4-ALK V3 promotes microtubule stabilization through NEK9 and NEK7 leading to increased cell migration. This represents a novel actionable pathway that could drive metastatic disease progression in EML4-ALK lung cancer.




liza

Compartmentalization of adenosine metabolism in cancer cells and its modulation during acute hypoxia [RESEARCH ARTICLE]

Karolina Losenkova, Mariachiara Zuccarini, Marika Karikoski, Juha Laurila, Detlev Boison, Sirpa Jalkanen, and Gennady G. Yegutkin

Extracellular adenosine mediates diverse anti-inflammatory, angiogenic and vasoactive effects and becomes an important therapeutic target for cancer, which has been translated into clinical trials. This study was designed to comprehensively assess adenosine metabolism in prostate and breast cancer cells. We identified cellular adenosine turnover as a complex cascade, comprised of (a) the ectoenzymatic breakdown of ATP via sequential nucleotide pyrophosphatase/phosphodiesterase-1, ecto-5’-nucleotidase/CD73 and adenosine deaminase reactions, and ATP re-synthesis through counteracting adenylate kinase and nucleoside diphosphokinase; (b) the uptake of nucleotide-derived adenosine via equilibrative nucleoside transporters; and (c) the intracellular adenosine phosphorylation into ATP by adenosine kinase and other nucleotide kinases. The exposure of cancer cells to 1% O2 for 24 hours triggered ~2-fold up-regulation of CD73, without affecting nucleoside transporters, adenosine kinase activity and cellular ATP content. The ability of adenosine to inhibit the tumor-initiating potential of breast cancer cells via receptor-independent mechanism was confirmed in vivo using a xenograft mouse model. The existence of redundant pathways controlling extracellular and intracellular adenosine provides a sufficient justification for reexamination of the current concepts of cellular purine homeostasis and signaling in cancer.