chemical

Chemically amplified resist composition and patterning process

A chemically amplified resist composition comprising a base polymer and an amine quencher in the form of a β-alanine, γ-aminobutyric acid, 5-aminovaleric acid, 6-aminocaproic acid, 7-aminoheptanoic acid. 8-aminooctanoic acid or 9-aminononanoic acid derivative having an unsubstituted carboxyl group has a high contrast of alkaline dissolution in rate before and after exposure and forms a pattern of good profile at a high resolution, minimal roughness and wide DOF.




chemical

Agrochemical formulations comprising 1-vinyl-2-pyrrolidinone co-polymers

The present invention comprises formulations comprising at least one pesticide and at least one co-polymer comprising a) 1-vinyl-2-pyrrolidinone as comonomer a); and b) 60-99 wt % at least one comonomer b) chosen from the group of laurylacrylate and vinyl ester of neodecanoic acid in polymerized form, methods of combating harmful insects and/or phytopathogenic fungi, a method of controlling undesired vegetation and methods of improving the health of plants based on the afore-mentioned formulations.




chemical

Agrochemical formulations of microcapsules for compounds containing carboxamide groups

The present invention is directed towards microcapsules, uses and methods of microencapsulation with improved properties regarding agglomeration, bleeding and control of the reaction. The invention is especially suitable for chemical compounds with at least one carboxamide group, preferably for microencapsulation of those compounds wherein the carbonyl group is attached to a nitrogen atom or nitrogenated heterocycle and wherein the microencapsulation reaction may be too vigorous. The microcapsules are characterized by a mixed glycoluril-polyurea polymer wall, wherein the polyurea groups come from a urea-formaldehyde resin and not from isocyanate monomers or prepolymers. The process of making such microcapsules a dispersant in the oil phase of the type of block copolymer of vinylpyrrolidone/vinylalkene and/or vinylpyrrolidone/vinyl acetate and the microencapsulation reaction may be carried out without the presence of any polyamine/polyol acting as a catalyst.




chemical

Pesticidal composition comprising sulphur, an insecticide and an agrochemical excipient

The present invention relates to an pesticidal composition comprising an effective amount of a sulphur; an effective amount of at least one insecticide selected from the group consisting of cartap fipronil, pirimicarb, buprofezine, thiachloprid, acetamiprid, clothianidin, diafenthiuron, novaluron, flubendiamide, spirotetramat, thiamethoxam, imidacloprid or salts thereof, and at least one agrochemically acceptable excipient.




chemical

Meso-sized capsules useful for the delivery of agricultural chemicals

Disclosed herein are mesocapsules that include agriculturally active ingredients. These mesocapsules are comprised of a polyurea shell and include hydrophilic groups on their surfaces and have a volume-average diameter of about 500 nm or less and some of them have a volume-average diameter on the order of about 300 nm or less. These mesocapsules are suited for delivering active ingredients that are not very soluble in water. Methods for making these mesocapsules include interfacial polycondensation reactions carried out in the presence of surfactants and other methods in which all or most of the surfactant is replaced by adding amino acids to the aqueous phase of the interfacial reaction mixture before forming the final emulsion.




chemical

Bioactive acid agrichemical compositions and use thereof

Bioactive agrichemical concentrates and compositions having improved bioactivity comprising combinations of acid solutions and conventional bioactive agrichemical actives or formulations.




chemical

Device for the collection and processing of information relating to the exposure of one or more persons to one or more products of chemical or biological origin and method for the use of such a device

A device for the collection and processing of information relating to the exposure of one or more persons to one or more products of chemical or biological origin has: at least one coded sensor for automatic or semi-automatic identification of a person likely to be exposed to at least one product,at least one coded sensor for the collection of information relating to the handling of at least one product by the person likely to be exposed to the product,at least one sensor for validating the information collected by the identification and collection sensors,at least one module for reading at least one coded sensor, anda module for processing information collected by the sensors.




chemical

Using chemical vapor deposited films to control domain orientation in block copolymer thin films

Vacuum deposited thin films of material are described to create an interface that non-preferentially interacts with different domains of an underlying block copolymer film. The non-preferential interface prevents formation of a wetting layer and influences the orientation of domains in the block copolymer. The purpose of the deposited polymer is to produce nanostructured features in a block copolymer film that can serve as lithographic patterns.




chemical

Apparatus and method for solid fuel chemical looping combustion

The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn3O4, or Co3O4, or utilized with a CO/H2 reducing oxygen carrier such as Fe2O3.




chemical

Chemically amplified positive photoresist composition

A photoresist composition. The composition has the following: (a) one or more resin binders that include one or more acid sensitive groups and that are substantially free of phenolic groups protected by acetal or ketal groups; (b) one or more photo acid generators, that, upon exposure to a source of high energy, decompose and generate a photoacid strong enough to remove the one or more acid sensitive groups; (c) one or more ionic non-photosensitive additives including an iminium salt; and (d) one or more solvents. There is also a process for patterning relief structures on a substrate employing the photoresist composition.




chemical

Abrasive tool for use as a chemical mechanical planarization pad conditioner

An abrasive tool including a CMP pad conditioner having a substrate including a first major surface, a second major surface opposite the first major surface, and a side surface extending between the first major surface and the second major, wherein a first layer of abrasive grains is attached to the first major surface and a second layer of abrasive grains is attached to the second major surface. The conditioner further includes a first sealing member extending in a peripheral direction along a portion of the side surface of the substrate.




chemical

Friction and wear management using solvent partitioning of hydrophilic-surface-interactive chemicals contained in boundary layer-targeted emulsions

Lubrication additives of the current invention require formation of emulsions in base lubricants, created with an aqueous salt solution plus a single-phase compound such that partitioning within the resulting emulsion provides thermodynamically targeted compounds for boundary layer organization thus establishing anti-friction and/or anti-wear. The single-phase compound is termed “boundary layer organizer”, abbreviated BLO. These emulsion-contained compounds energetically favor association with tribologic surfaces in accord with the Second Law of Thermodynamics, and will organize boundary layers on those surfaces in ways specific to the chemistry of the salt and BLO additives. In this way friction modifications may be provided by BLOs targeted to boundary layers via emulsions within lubricating fluids, wherein those lubricating fluids may be water-based or oil-based.




chemical

Chemical reactor with a plate heat exchanger

A steam cooled chemical reactor (1) comprising a vertical vessel (2), a plate heat exchanger embedded in a catalytic bed, to cool the catalytic bed by evaporation of a cooling water flow, wherein a water inlet and a steam outlet are located underneath the heat exchanger, and the plates and related piping are arranged so that the path of the cooling flow comprises a first ascending path from bottom to top of the catalytic bed, and a second descending path from top to the bottom of catalytic bed, and wherein internal evaporation channels of the plates provide the second descending or the first ascending path, and water upcomers or respectively steam downcomers provide the other of said first and second path.




chemical

Catalysts for petrochemical catalysis

Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.




chemical

Electrochemical coupling of metallic biomaterial implants for biological effect

The invention discloses a novel method of controlling the open circuit potential (OCP) of a medical implant by coupling it with small amounts of metals having a lower OCP than the implant. Coupling of Mg to less than 1% of the surface area of a titanium implant is shown to induce cathodic polarization of the titanium that inhibits cell proliferation at the surface of the implant. Mg—Ti coupling in medical devices promises to attenuate or eliminate potential complications of surgery such as peri-implantitis and bacterial infections at the site of implantation.




chemical

Universal linker compositions for the release or transfer of chemical agents from a polynucleotide

A universal linker structure is provided, in which a functional group and activating leaving group are placed on a tether, allowing the placement of an electrophile at the end of any nucleic acid sequence. The electrophile on the tether can react with a second nucleic acid carrying a nucleophile when the two nucleic acids are hybridized near one another, resulting in release of the leaving group, and creation of a functional change. The linker can be designed to destabilize the ligation product without slowing the rate of reaction. This lowers product inhibition, and the target DNA or RNA can become a catalyst for isothermally generating multiple signals for detection. This enhanced signal is demonstrated in solution experiments and in solid supported assays. The universal linkers of the present invention are simple and inexpensive to prepare, and can be appended to any polynucleotide in automated steps on a standard DNA synthesizer.




chemical

Pyrochemical reprocessing method for spent nuclear fuel and induction heating system to be used in pyrochemical reprocessing method

This invention is provided for improvement of corrosion-resistant property of a crucible and for promotion of safety in a pyrochemical reprocessing method for the spent nuclear fuel. The spent nuclear fuel is dissolved in a molten salt placed in the crucible. In a pyrochemical reprocessing method, the nuclear fuel is deposited, and the crucible (2) is heated by induction heating. Cooling media (5, 6) are supplied to cool down, and a molten salt layer (7) is maintained by keeping balance between the heating and the cooling, and a solidified salt layer (8) is formed on inner wall surface of the crucible.




chemical

Method of chemical decontamination and system therefor

In a chemical decontamination method of chemically decontaminating radioactive nuclides from a metallic material, oxalic acid and hydrazine are injected as a reductive decontaminating agent into water that is in contact with the metallic material. Injection of the hydrazine is stopped after a cation resin arranged in a circulation line connected to the metallic material breaks, and at least the oxalic acid and the hydrazine in the reductive decontaminating agent are decomposed using a decomposing catalyst.




chemical

System and method for chemical decontamination of radioactive material

A method for chemically decontaminating radioactive material. The method includes reducing-dissolving step for setting surface of radioactive material in contact with reducing decontamination liquid including mono-carboxylic acid and di-carboxylic acid as dissolvent; and oxidizing-dissolving step for setting the surface of the radioactive material in contact with oxidizing decontamination liquid including oxidizer. The method may include repeated pairs of steps, each pair including the reducing-dissolving step and the oxidizing-dissolving step. The mono-carboxylic acid may include formic acid, and the di-carboxylic acid includes oxalic acid. The oxidizer may be ozone, permanganic acid or permanganate.




chemical

Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries

Electrode protection in electrochemical cells, and more specifically, electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries, are presented. In one embodiment, an electrochemical cell includes an anode comprising lithium and a multi-layered structure positioned between the anode and an electrolyte of the cell. A multi-layered structure can include at least a first single-ion conductive material layer, and at least a first polymeric layer positioned between the anode and the single-ion conductive material. The invention also can provide an electrode stabilization layer positioned within the electrode to control depletion and re-plating of electrode material upon charge and discharge of a battery. Advantageously, electrochemical cells comprising combinations of structures described herein are not only compatible with environments that are typically unsuitable for lithium, but the cells may be also capable of displaying long cycle life, high lithium cycling efficiency, and high energy density.




chemical

Application of force in electrochemical cells

The present invention relates to the application of a force to enhance the performance of an electrochemical cell. The force may comprise, in some instances, an anisotropic force with a component normal to an active surface of the anode of the electrochemical cell. In the embodiments described herein, electrochemical cells (e.g., rechargeable batteries) may undergo a charge/discharge cycle involving deposition of metal (e.g., lithium metal) on a surface of the anode upon charging and reaction of the metal on the anode surface, wherein the metal diffuses from the anode surface, upon discharging. The uniformity with which the metal is deposited on the anode may affect cell performance. For example, when lithium metal is redeposited on an anode, it may, in some cases, deposit unevenly forming a rough surface. The roughened surface may increase the amount of lithium metal available for undesired chemical reactions which may result in decreased cycling lifetime and/or poor cell performance. The application of force to the electrochemical cell has been found, in accordance with the invention, to reduce such behavior and to improve the cycling lifetime and/or performance of the cell.




chemical

Electrochemical cell packaging material

Provided is a packaging material for electrochemical cells which has an identification mark that can be recognized from the outside and that is difficult to forge. The packaging material comprises a multilayer film which has a structure formed by laminating a base layer (11), an adhesive layer (13), a metal foil layer (12), an acid-modified polyolefin layer (14), and a heat-sealable layer (15) in this order, wherein the base layer (11) comprises both a oriented polyester film (11b) and a oriented nylon film (11e) with a printed layer (11c) provided on the surface of the oriented polyester film (11b) that faces the oriented nylon film (11e).




chemical

Chemical process and plant

A chemical plant for performing a chemical reaction between particles of a material such as lithium metal, and a reagent such as butyl chloride in solution in hexane, in which one reaction product is a solid material, includes a reaction vessel (12). Several ultrasonic transducers (16) are attached to a wall of the vessel (12) so as to irradiate ultrasonic waves into the vessel, the vessel being large enough that each transducer irradiates into fluid at least 0.1 m thick, each transducer irradiating no more than 3 W/cm2, and the transducers being sufficiently close to each other and the number of transducers being sufficiently high that the power dissipation within the vessel is at least 10 W/liter but no more than 200 W/liter. The high intensity of ultrasound ensures that lithium chloride is cleaned off the surface of lithium metal particles throughout the vessel (12).




chemical

Chemically-modified peptides, compositions, and methods of production and use

Compositions and methods for inhibiting and controlling the growth of microbes are disclosed. The composition comprises at least one chemically-modified peptide with antimicrobial activity and at least one carrier. The method comprises of administering an amount, effective for the prevention, inhibition and termination of microbial growth for industrial, pharmaceutical, household and personal care use.




chemical

Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films

Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula (I), wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.




chemical

Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films

Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.




chemical

Strontium precursor for use in chemical vapor deposition, atomic layer deposition and rapid vapor deposition

A method of depositing a crystalline strontium titanate film on a substrate is provided, comprising carrying out an atomic layer deposition (ALD) process with strontium and titanium precursors, wherein the strontium precursor is bis(n-propyltetramethylcyclopentadienyl)strontium.




chemical

Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films

Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.




chemical

Chemical liquid injector and CT apparatus

Chemical liquid injector 100 includes two piston driving mechanisms 130 each moving a piston of a syringe forward, main injection condition determining section 171 determining injection conditions for a chemical liquid in main injection, test injection condition determining section 172 determining injection conditions for the chemical liquid in test injection performed prior to the main injection to inject a smaller injection amount of the chemical liquid than that in the main injection, and control section 161 creating an injection protocol in accordance with the injection conditions determined by test injection condition determining section 171 and main injection condition determining section 172 such that the chemical liquid is injected in a series of operations in which the test injection is performed, then a preset injection suspension time is present, and subsequently the main injection is performed, and further controlling operation of piston driving mechanisms 130 in accordance with the injection protocol.




chemical

Apparatus and method for decontaminating and sterilizing chemical and biological agent

Disclosed are apparatus and method for decontaminating and sterilizing chemical and biological agents, which can efficiently decontaminate and sterilize high precision electronic devices, communication devices, computers or inside of vehicles and air planes contaminated with chemical and biological agent by using mixture of non-thermal atmospheric pressure air plasma and oxidizing peroxide vapor. The apparatus according to the present invention comprises a decontamination and sterilization chamber 10; a first fluid supplying line L1 and a second fluid supplying line L2, which are installed in the form of closed circuit between the inlet 11 and outlet 12 of the decontamination and sterilization chamber 10; a peroxide vapor supplier which is installed on the first fluid supplying line; and a non-thermal atmospheric pressure air plasma reactor 70 which is installed on the second fluid supplying line L2.




chemical

Electrochemical test sensor

An electrochemical test sensor for detecting the concentration of an analyte in a fluid sample. The electrochemical test sensor includes a housing that has a first end and a second opposing end. The housing includes an opening at the first end to receive a fluid test sample. An electrode assembly includes a substrate, a working electrode, a counter electrode and a reagent. The substrate has a first surface and an opposing second surface. The working electrode is disposed on the first surface of the substrate, and the counter electrode is disposed on the second surface of the substrate. The electrode assembly is positioned within the housing to define a reaction channel. The electrochemical test sensor may be used with a removable lancet mechanism or integrated within a lancet mechanism to form one integral unit.




chemical

Chemically resistant glass composition for the manufacture of glass reinforcing strands

The present invention relates to a chemically resistant glass composition for the production of reinforcing strands which comprises the following constituents within the limits defined below, expressed in mol %: SiO2 67-72%; ZrO2 5-9.5%, preferably ≧7.5%; R2O (R=Na, K and Li) 11-17%; Li2O 0-5.5%; K2O 0-5.5%; Na2O




chemical

Chemical delivery system

Embodiments of chemical delivery systems disclosed herein may include an enclosure; a first compartment disposed within the enclosure and having a plurality of first conduits to carry a first set of chemical species, the first compartment further having a first draw opening and a first exhaust opening to facilitate flow of a purge gas through the first compartment; and a second compartment disposed within the enclosure and having a plurality of second conduits to carry a second set of chemical species, the second compartment further having a second draw opening and a second exhaust opening to facilitate flow of the purge gas through the second compartment, wherein the first set of chemical species is different than the second set of chemical species, and wherein a draw velocity of the purge gas through the second compartment is higher than the draw velocity of the purge gas through the first compartment.




chemical

Calibration of a chemical dispense system

In one implementation, a method for providing a fluid at a target pressure may include providing a fluid at a velocity to a supply line through a dispenser, measuring a pressure of the fluid flowing through the supply line, comparing the measured pressure with the target pressure, and adjusting the velocity based on the results of the comparison.




chemical

Process for the conversion of biomass to liquid fuels and specialty chemicals

A process is disclosed for converting biomass to fuels and/or valuable chemicals. The process comprises the steps of a) activating biomass to make it more susceptible to conversion; c) partially converting the biomass to a solubilized material; and d) subjecting the unconverted biomass to a second conversion step. The process optionally comprises a step b) of adding a solvent to the activated biomass. In a preferred embodiment the solubilized biomass obtained in step c) is removed before the unconverted biomass is subjected to step d).




chemical

Method and a reactor for mixing one or more chemicals into a process liquid flow

A method for mixing a chemical into a process liquid including: injecting the chemical into the process liquid flowing through a flow pipe; forming reaction products by a reaction involving the chemical occurring in the process flow; applying an electric field or magnetic field to a region of the flow pipe adjacent to the reaction occurring in the process flow, and suppressing the precipitation of the chemical or the reaction products on the surfaces of the pipe due to the electric or magnetic field.




chemical

High rate, long cycle life electrochemical energy storage devices

An electrochemical energy storage device includes a cathode, an anode, and an electrolyte disposed between the cathode and the anode. The anode includes a capacitive material as a majority component, and further includes an electrochemically active material as a minority component, such that an operating potential of the anode is configured according to a reaction potential of the electrochemically active material.




chemical

Plate heat exchanger for isothermal chemical reactors

A radial-flow plate heat exchanger (5) embedded in the catalytic bed of an isothermal chemical reactor (1) has heat exchange plates (10) comprising fluid passages (13) between a first metal sheet (20) and a second metal sheet (21) joined by perimeter weld seams (23) on a first surface (A) of the plate, a feeding channel (14) and a collecting channel (15) for the heat exchange fluid are formed with suitable metal sheets which are seam welded (25) directly to the opposite surface (B) of the plate, this structure allows the manufacturing of the plate (10) with an automated seam welding process, such as laser beam welding.




chemical

Temporary adhesion of chemically similar substrates

A temporary adhesive for reversibly bonding a silicon wafer to a silicon support contains a crosslinkable organopolysiloxanes composition and a fatty acid or salt thereof or fatty acid ester as a release regulator having a density different from the crosslinkable organopolysiloxanes composition of at least 0.1 g/cm3, which upon parting of the wafer from the substrate, the adhesive remains substantially adhered to the substrate.




chemical

Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.




chemical

Granular controlled release agrochemical compositions and process for the preparation thereof

A granular agrochemical composition is disclosed including a granular core material having a water soluble portion with a first coating layer applied on the surface of the core material and a second coating layer applied on the surface of the first coating layer. The first coating layer includes a wax composition having a biologically active ingredient incorporated therein and the second coating layer includes a polymeric composition. The granular agrochemical composition exhibits a controlled rate of release of the biologically active ingredient therefrom over a period greater than about 30 days from the date of initial exposure of the granular composition to moisture whereby essentially all of the biologically active ingredient incorporated in the wax material of the first coating layer is released from the granular composition before the water soluble portion of the granular core material is released from the granular composition.




chemical

Receptors useful for gas phase chemical sensing

The invention provides for a receptor, capable of binding to a target molecule, linked to a hygroscopic polymer or hydrogel; and the use of this receptor in a device for detecting the target molecule in a gaseous and/or liquid phase. The invention also provides for a method for detecting the presence of a target molecule in the gas phase using the device. In particular, the receptor can be a peptide capable of binding a 2,4,6-trinitrotoluene (TNT) or 2,4,-dinitrotoluene (DNT).




chemical

CATALYST COMPOSITION FOR ALKALINE ELECTROCHEMICAL ENERGY CONVERSION REACTION AND USE THEREOF

A catalyst composition and a use thereof are provided. The catalyst composition includes a support and at least one RuXMY alloy attached to the surface of the support, wherein M is a transition metal and X≧Y. The catalyst composition is used in an alkaline electrochemical energy conversion reaction, and can improve the energy conversion efficiency for an electrochemical energy conversion device and significantly reduce material costs.




chemical

METHODS AND APPARATUS FOR MICROWAVE PLASMA ASSISTED CHEMICAL VAPOR DEPOSITION REACTORS

The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated tuning and process control methods that enable the microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond. Related methods enable the control of the microwave discharge position, size and shape, and enable efficient matching of the incident microwave power into the reactor prior to and during component deposition. Pre-deposition tuning processes provide a well matched reactor exhibiting a high plasma reactor coupling efficiency over a wide range of operating conditions, thus allowing operational input parameters to be modified during deposition while simultaneously maintaining the reactor in a well-matched state. Additional processes are directed to realtime process control during deposition, in particular based on identified independent process variables which can effectively control desired dependent process variables during deposition while still maintaining a well-matched power coupling reactor state.




chemical

Chemically-modified mixed fuels, methods of production and uses thereof

A chemically-modified mixed fuel includes methane gas from at least two methane-production sources and can be utilized in any process that incorporates a Kellogg Primary Reformer. A method for producing the chemically-modified mixed fuel described herein includes providing a first methane-containing gas from a first methane-production source, providing a second methane-containing gas from a second methane-production source and blending the first methane-containing gas with the second methane-containing gas at a suitable pressure to form a chemically-modified mixed fuel. In some cases, at least one additional methane-containing gas can be provided from at least one additional methane-production source and blended with the chemically-modified fuel.




chemical

Various methods and apparatuses for an ultra-high heat flux chemical reactor

Various processes and apparatus are discussed for an ultra-high heat flux chemical reactor. A thermal receiver and the reactor tubes are aligned to 1) absorb and re-emit radiant energy, 2) highly reflect radiant energy, and 3) any combination of these, to maintain an operational temperature of the enclosed ultra-high heat flux chemical reactor. Particles of biomass are gasified in the presence of a steam carrier gas and methane in a simultaneous steam reformation and steam biomass gasification reaction to produce reaction products that include hydrogen and carbon monoxide gas using the ultra-high heat flux thermal energy radiated from the inner wall and then into the multiple reactor tubes. The multiple reactor tubes and cavity walls of the receiver transfer energy primarily by radiation absorption and re-radiation, rather than by convection or conduction, to the reactants in the chemical reaction to drive the endothermic chemical reaction flowing in the reactor tubes.




chemical

Low defect chemical mechanical polishing composition

A low defect chemical mechanical polishing composition for polishing silicon oxide containing substrates is provided comprising, as initial components: water, a colloidal silica abrasive; and, an additive according to formula I.




chemical

Method of manufacturing grooved chemical mechanical polishing layers

A method of manufacturing grooved polishing layers for use in chemical mechanical polishing pads is provided, wherein the formation of defects in the polishing layers are minimized.




chemical

MAGNETICALLY ENHANCED LOW TEMPERATURE-HIGH DENSITY PLASMA-CHEMICAL VAPOR DEPOSITION PLASMA SOURCE FOR DEPOSITING DIAMOND AND DIAMOND LIKE FILMS

A magnetically enhanced low temperature high density plasma chemical vapor deposition (LT-HDP-CVD) source has a hollow cathode target and an anode, which form a gap. A cathode target magnet assembly forms magnetic field lines substantially perpendicular to the cathode surface. A gap magnet assembly forms a magnetic field in the gap that is coupled with the cathode target magnetic field. The magnetic field lines cross the pole piece electrode positioned in the gap. The pole piece is isolated from ground and can be connected to a voltage power supply. The pole piece can have negative, positive, floating, or RF electrical potentials. By controlling the duration, value, and sign of the electric potential on the pole piece, plasma ionization can be controlled. Feed gas flows through the gap between the hollow cathode and anode. The cathode can be connected to a pulse power or RF power supply, or cathode can be connected to both power supplies. The cathode target and substrate can be inductively grounded.




chemical

MAGNETICALLY ENHANCED HIGH DENSITY PLASMA-CHEMICAL VAPOR DEPOSITION PLASMA SOURCE FOR DEPOSITING DIAMOND AND DIAMOND-LIKE FILMS

A magnetically enhanced HDP-CVD plasma source includes a hollow cathode target and an anode. The anode and cathode form a gap. A cathode target magnet assembly forms magnetic field lines that are substantially perpendicular to a cathode target surface. The gap magnet assembly forms a cusp magnetic field in the gap that is coupled with the cathode target magnetic field. The magnetic field lines cross a pole piece electrode positioned in the gap. This pole piece is isolated from ground and can be connected with a voltage power supply. The pole piece can have a negative, positive, or floating electric potential. The plasma source can be configured to generate volume discharge. The gap size prohibits generation of plasma discharge in the gap. By controlling the duration, value and a sign of the electric potential on the pole piece, the plasma ionization can be controlled. The magnetically enhanced HDP-CVD source can also be used for chemically enhanced ionized physical vapor deposition (CE-IPVD). Gas flows through the gap between hollow cathode and anode. The cathode target is inductively grounded, and the substrate is periodically inductively grounded.