ic

Electric driving type utility vehicle having regenerative brake force distribution control function, and regenerative brake force distribution control method thereof

An electric driving type utility vehicle having a regenerative brake force distribution control function, and a regenerative brake force distribution control method thereof are provided. The utility vehicle includes: a controller for controlling an output and a recovery of a motor; recovery sensing means for sensing a recovery braking state when the motor is driven; a power measurement unit for measuring the amount of recovery power generated in the recovery braking state; and a power switching unit for automatically switching a drive mode from a two-wheel drive mode to a four-wheel drive mode or vice versa according to the load condition. The present invention can switch the present mode to the four-wheel drive mode by operating the power switching unit according to the control of the controller when sensing the recovery brake through the recovery sensing means in the driving state.




ic

Method for hydraulically boosting an electric parking brake of a vehicle

A method for hydraulically boosting a vehicle electric parking brake having a hydraulic service brake and an electric parking brake. Application forces electically generated by the parking brake function is superimposed on the boosting brake force generated by a hydraulic boosting brake pressure provided by the service brake to the brake actuator. When the parking brake is actuated to generate a predetermined application force, the force generated by the brake actuator is detected as the actual value, if an actual value of the measured value is smaller than a first target value a boosting brake pressure value is applied to the brake actuator, and by means of the parking brake function an adjustment function for the tension of the brake actuator to which the hydraulic boosting brake pressure is applied is carried out to achieve the predetermined application force.




ic

Control device for a braking system of a vehicle, braking system for a vehicle, and method for operating a braking system of a vehicle

A control device for a braking system of a vehicle is provided, having a first receiving device which receives a provided brake activation intensity variable, a plunger control device which determines a setpoint fill level variable of a plunger, taking into account at least the received brake activation intensity variable, and a corresponding plunger control signal is outputtable so that a ratio of an actual volume and a maximum fillable volume of a storage volume of the plunger is settable corresponding to the determined setpoint fill level variable. For a brake activation intensity variable corresponding to a predefined non-activation intensity variable, the plunger control device determines a fill level variable different from an empty state as the setpoint fill level variable, and outputs a plunger control signal corresponding to the determined setpoint fill level variable to the plunger such that the plunger is at least partially filled.




ic

Brake control device

A brake control device for a brake system. The control device can perform both an interlocking brake control and an antilock brake control. The brake system includes a front-wheel hydraulic circuit, a front-wheel-side braking part; a rear-wheel hydraulic circuit, a rear-wheel-side braking part; and an electrically-operated pump which pressurizes the brake fluid. The brake control device includes a usual voltage mode where the interlocking brake control or the anti-lock brake control is performed when the supply voltage is a first voltage or more, and a low voltage mode where at least one of the interlocking brake control and the anti-lock brake control is performed in a limited manner when the supplied voltage is a second, lower voltage. An operation mode is changed from the usual voltage mode to the low voltage mode when it is determined that the supply voltage becomes lower than the first voltage.




ic

Control method of electronic parking brake system

Disclosed is a control method of an electronic parking brake system, which variably controls the duty of voltage applied to a motor upon release of the electronic parking brake system. The control method includes controlling voltage applied to a motor to a first duty ratio upon release of the electronic parking brake system, controlling the voltage applied to the motor to a second duty ratio greater than the first duty ratio if locking of the motor occurs and the motor is not operated, and controlling the voltage applied to the motor to the first duty ratio if locking of the motor is released and the motor begins to operate, after the control of voltage to the second duty ratio.




ic

Hydraulic block for a slip-controlled vehicle brake system

A flat, box-shaped hydraulic block for the mechanical fastening and hydraulic interconnection of solenoid valves, pump elements, etc. of a slip-controlled vehicle brake system connects connections of installation spaces for the pump elements to connectors for a brake master cylinder and connections of receptacles for pressure build-up valves which run past one another via flat chambers on longitudinal sides of the hydraulic block and short blind bores. As a result, the receptacles of the pressure build-up valves are connected to the connectors for the brake master cylinder. The chambers damp pressure pulses of the pump elements of a piston pump.




ic

Vehicle yaw stability control method and apparatus

A vehicle yaw stability control method and a vehicle yaw stability control apparatus are provided. The yaw rate {dot over (ψ)} of the vehicle is measured. A first reference yaw rate {dot over (ψ)}ref is set. A difference yaw rate Δ{dot over (ψ)} is set. Stabilizing braking intervention is triggered when a value of the difference yaw rate Δ{dot over (ψ)} exceeds limits defined by difference yaw rate threshold values Δ{dot over (ψ)}min, Δ{dot over (ψ)}max. Information regarding the shape of the road ahead of the vehicle is acquired. The reliability of the driver steering input δ is evaluated upon stabilizing braking intervention being triggered. In case the driver steering input δ is deemed unreliable a replacement reference yaw rate {dot over (ψ)}refroad is set based on the acquired road shape and a replacement difference yaw rate Δ{dot over (ψ)}road is set whereupon stabilizing braking intervention is performed based on the replacement difference yaw rate Δ{dot over (ψ)}road.




ic

Method and device for controlling an electric motor

A method and a device for controlling and/or regulating an electric motor. Such electric motors are used for example in motor vehicles in the form of pump motors. In general, the electric motor is supplied with electrical energy from a battery and/or using a generator. The controlling and regulation take place using a high-frequency pulse width modulation (PWM). When the electric motor is started, the PWM is used to continuously increase the motor current required for the operation of the electric motor, e.g. beginning from 0.




ic

Electric power tool

An electric power tool includes: a motor; a manipulation input receiving unit which receives a user manipulation input for rotating the motor; a mode changeover unit that has one manipulation portion which manipulated by the user; a rotation drive force transmitting unit that switches a transmission mechanism to one of the transmission mechanisms corresponding to the set position of the manipulation portion and transmits a drive force of the motor to a tool output shaft via the switched transmission mechanism; an electric signal output unit that outputs an electric signal corresponding to the set position of the manipulation portion; and a motor control unit that sets the control method of the motor to a control method preset for the electric signal, among a plurality of different types of control methods, based on the electric signal, and controls the motor by the set control method, based on manipulation by the user.




ic

Motor control device

A motor control device comprises: an acceleration upper limit estimating unit; a target acceleration setting unit; a motor control unit; and a deficit calculating unit, wherein the target acceleration setting unit corrects the target acceleration based on the acceleration profile by an amount corresponding to the acceleration deficit within a range in which the target acceleration does not exceed the acceleration upper limit on the basis of the acceleration deficit calculated by the deficit calculating unit to set the target acceleration at each time.




ic

Method and apparatus for applying a commutation advance automatically in a brushless DC motor

To achieve peak acoustic and power performance, the coil or applied current should be in phase or substantially aligned with the back electromotive force (back-EMF) voltage. However, there are generally phase differences between the applied current and back-EMF voltage that are induced by the impedance of the brushless DC motor (which can vary based on conditions, such as temperature and motor speed). Traditionally, compensation for these phase differences was provided manually and on an as-needed basis. Here, however, a system and method are provided that automatically perform a commutation advance by incrementally adjusting a drive signal over successive commutation cycles when the applied current and back-EMF voltage are misaligned.




ic

Electric motor, and device for generating a signal for controlling the same

An electric motor, having a stator (465), a rotor (470), and an apparatus for evaluating a signal provided for controlling said motor (110), comprises a receiving unit (430, 440) for receiving a control signal (PWM_mod), which is a pulse width modulated signal (PWM) onto which a data signal (DIR, DATA) is modulated. An evaluation unit (440) is provided for evaluating the modulated control signal (PWM_mod). The unit is configured to extract, from the modulated control signal (PWM_mod), data provided for operation of the motor (110). The control apparatus includes a signal generator (450) configured to generate, on the basis of the extracted or ascertained data provided for operation of the motor (110), at least one control signal for the motor (110), such as a commanded direction of rotation. Piggybacking other control data onto the PWM power level signal reduces hardware investment, by permitting omission of a signal lead which would otherwise be required in the motor structure.




ic

Automatic furniture flap type detection

Electromotive furniture-flap drive, characterized by an identification device for automatically identifying the type of furniture flap in the installed state of the furniture flap drive.




ic

Circuit and method for speed monitoring of an electric motor

A circuit for speed monitoring of an electric motor comprises a circuit for generating a time-frame signal, a circuit for receiving a first signal from a chopper driver circuit designed to drive the electric motor, a circuit for detecting chopper pulses in the first signal, a pulse counter, and a circuit for at least one of outputting and evaluating a state of the pulse counter, after the inactive state of the time-frame has been indicated. The time-frame signal indicates when a time-frame of predefined length changes from an inactive state to an active state and indicates when the time-frame changes back from the active state to the inactive state. The pulse counter is designed to count the detected chopper pulses while the active state is indicated by the circuit for generating the time-frame signal.




ic

Method and device for controlling an electric motor

A method and device for controlling an electric motor, in particular a machine tool drive, wherein during a sensorless open-loop control mode of operation of the electric motor the speed and the torque are determined from the motor current and the motor voltage, and the moment of inertia of the electric motor torque are determined from the determined motor current and the determined motor voltage, wherefrom then a control torque is determined, which is then associated with an open-loop torque control value and supplied as the torque setpoint value to a control element for setting the motor current and/or the motor voltage in the open-loop mode of operation. As long as the speed is below a minimum speed, the control element receives as input variable a control or pilot control torque generated from a predefined moment of inertia for a sensorless closed-loop control mode of operation of the electric motor.




ic

Dynamically modified fan speed table for cooling a computer

A computer-implemented fan control method includes measuring a temperature within a computer system and dynamically selecting a fan speed step in response to the temperature received, wherein the fan speed step is selected from a fan speed table defining a finite number of fan speed steps each having an associated fan speed. A fan is operated at the dynamically selected fan speed step, wherein the fan is positioned to drive air through the computer system where the temperature is being measured. The fan output variation is measured over a prescribed time interval and the fan speed table is automatically modified to change the fan speeds associated with each fan speed step, wherein the fan speeds are changed as a function of the measured fan output variation while continuing to drive the fan.




ic

Electric power tool

An electric power tool includes a motor that rotary drives an output shaft; an operation unit to input a drive command of the motor; a torque setting device that sets an upper limit value of a rotational torque of the output shaft in accordance with a torque setting command; and a control device that drives the motor in one of a forward direction and a reverse direction in accordance with the drive command, and stops driving of the motor when the rotational torque of the output shaft has reached the upper limit value set by the torque setting device during driving of the motor. The torque setting device is configured to set the upper limit value such that the upper limit value during driving of the motor in the forward direction and the upper limit value during driving of the motor in the reverse direction are different.




ic

Predictive pulse width modulation for an open delta H-bridge driven high efficiency ironless permanent magnet machine

Embodiments of the present method and system permit an effective method for determining the optimum selection of pulse width modulation polarity and type including determining machine parameters, inputting the machine parameters into a predicted duty cycle module, determining the optimum polarity of the pulse width modulation for a predicted duty cycle based on a pulse width modulation generation algorithm, and determining the optimum type of the pulse width modulation for a predicted duty cycle based on the pulse width modulation generation algorithm.




ic

Power supply system, vehicle including the same, control method for power supply system, and computer-readable recording medium recording program for causing computer to execute the control method

A lower limit value setting unit (52) variably sets a lower limit value (Vth) of a target voltage (Vh*) in a range of a voltage that is higher than the maximum value of voltages (Vb1, Vb2) of power storage devices and is not affected by a dead time provided for converters, based on temperatures (Tb1, Tb2) and required electric powers (Pb1*, Pb2*). A maximum value selection unit (53) sets the maximum value among the voltages (Vb1, Vb2) of the power storage devices and required voltages (Vm1*, Vm2*) of motor-generators, as the target voltage. A target voltage limiting unit (54) compares the target voltage with the lower limit value (Vth), and if the target voltage is lower than the lower limit value (Vth), the target voltage limiting unit (54) sets the lower limit value (Vth) as the target voltage (Vh*).




ic

Methods and apparatus for electric motor controller protection

A method for monitoring input power to an electronically commutated motor (ECM) is described. The method includes determining, with a processing device, an average input current to the motor, the average input current based on a voltage drop across a shunt resistor in series with the motor, measuring an average input voltage applied to the motor utilizing the processing device, multiplying the average input current by the average voltage to determine an approximate input power, and communicating the average input power to an external interface.




ic

Method and device for detecting rotor position in a permanent magnet synchronous motor-driven washing machine

A device and method to determine the stopping rotor position of a washing machine motor includes an inverter, a permanent magnet synchronous motor, and an electronic motor controller. The controller determines the stopped rotor position of the motor by measuring induced currents in the stator field coils of the motor. While the motor is de-energized and slowly rotating, the controller directs the inverter to connect all of the stator field coils of the motor together. The stator field coils may be connected to a common D.C. rail, output from an A.C.-D.C. converter of the washing machine. In an embodiment, the controller determines the rotor position based on the polarities of current induced in the stator field coils. In another embodiment, the controller determines the rotor position based on the phase angle and angular frequency of the three phase currents, transformed into a stationary reference frame.




ic

Electric motor assembly, method for operating an electric motor, and motor control device

The invention relates to an electric motor assembly, particularly for driving a fan for an engine cooling system and/or an air conditioner of a motor vehicle, comprising an electric motor and a motor control device for activating the electric motor. According to the invention, the motor control device can be adjusted according to a characteristic curve (1,2,3,4) of the electric motor and/or of the fan, and thereby the power and/or rotational speed of the electric motor can be adjusted.




ic

Electric tool

An electric tool comprises a removable battery pack 2 as a power supply, a motor M as a power source, a drive unit being driven by said motor, a switch SW as an operation input unit, and a control circuit CPU controlling the driving of said motor according to the operation of said switch. The electric tool further comprises a power supply connection unit that enables a plurality of battery pack types, which have different rated output voltages, to be selectively connected, and an identification means that identifies the type of said battery pack that has been connected. Said control circuit is configured to control an output of said motor based on identification information for the type of said battery pack that has been connected, provided by said identification means.




ic

Integrated circuit for controlling an electric motor

An integrated circuit for controlling an electric motor, which has a primary component with a coil and a permanently magnetic secondary component cooperatively connected via an air gap to the primary component, has a semiconductor substrate in which are integrated a microcontroller and/or a pre-amplifier for controlling the coil of the electric motor. For detecting the position of the permanently magnetic secondary component, at least two magnetic field sensors with their measurement axes aligned crosswise relative to each other are integrated in the semiconductor substrate.




ic

Method and device for detecting blocking or sluggishness of a DC motor

The invention relates to a method for detecting blocking or sluggishness (M1, M3) of a DC motor (2). The method comprises the following steps: applying a voltage pulse (Uv,t=Os) to the DC motor (2); monitoring a motor current (IMotor) flowing through the DC motor (2); detecting a maximum value of the motor current (IMotor) following the application of the voltage pulse; checking whether a change in the motor current (IMotor) after reaching the maximum value exceeds a specific amount; signalling the blocking or the sluggishness (M1, M3) of the DC motor (2) if the change in the motor current (IMotor) after reaching the maximum value exceeds the specific amount.




ic

Method and apparatus to convert a minimally controlled pulse stream into a proper mechatronic trajectory

An apparatus or method which accepts a burst of pulses at a frequency which may not be tightly controlled and converts this into a trajectory command that is a suitable motion profile for an incremental motor control application. The output of the invention can be a pulse stream that can be fed to an existing incremental pulse input motor drive or the invention can be embedded into a motor drive where its output is a numerical sequence that defines a physically realizable trajectory to be fed to the control circuits and software within the motor drive.




ic

Motor current detection apparatus, motor controller, and electric power tool

A motor current detection apparatus in the present invention includes: a current detection unit, a first filter, and a second filter. The detection unit detects a conduction current flowing from a battery to a brushless motor and outputs a conduction current signal corresponding to the detected conduction current. The first filter extracts a first current signal which is included in the conduction current signal outputted from the detection unit and is a signal component in a frequency band equal to or lower than a predetermined first cutoff frequency. The second filter extracts a second current signal which is included in the conduction current signal outputted from the detection unit and is a signal component in a predetermined frequency band within a frequency band equal to or lower than a predetermined second cutoff frequency higher than the first cutoff frequency and having the second cutoff frequency as a maximum value.




ic

Controller and method for improving motor driving efficiency

The present invention discloses a controller and a method for improving motor driving efficiency. According to the present invention, multiple control parameters are inputted to the controller so that the controller can adjust timings of PWM driving signals for driving the motor to advance or delay the turned-ON or turned-OFF points, whereby the motor is driven efficiently.




ic

Rechargeable electric tool and method for manufacturing rechargeable electric tool

The electric tool is powered by a secondary battery as a power source, and includes: an output section configured to be transmitted thereto a rotation of a motor directly or through a decelerator; a voltage measurement section that measures a battery voltage; a storage means that stores, as a reference voltage, a voltage value of the battery voltage measured preliminarily when a motor-lock is occurring; and a control means that controls a driving of the motor. The control means is configured to decide that the motor is being locked and then stop or decelerate the motor upon detecting that the battery voltage measured through the voltage measurement section is maintained lower than or equal to the reference voltage stored in the storage means for a predetermined period of time during the driving of the motor.




ic

Method for driving an electric motor

A circuit configuration for driving an electric motor includes a signal evaluation module, which stores a number of output patterns. An input pattern is specified, and as a function of the input pattern, one of the output patterns is output, by which the electric motor is driven.




ic

Wiper device

A wiper device that includes: a wiper motor that swings a wiper blade that is coupled to the wiper motor through a wiper arm to-and-fro over a window pane between an upper return position and a lower return position; and a drive component that gradually increases power supplied to the wiper motor until the rotation speed of the wiper motor reaches a specific speed when the wiper motor has been restarted from a stationary state of the wiper blade between the upper return position and the lower return position.




ic

Robot drive with magnetic spindle bearings

A drive section for a substrate transport arm including a frame, at least one stator mounted within the frame, the stator including a first motor section and at least one stator bearing section and a coaxial spindle magnetically supported substantially without contact by the at least one stator bearing section, where each drive shaft of the coaxial spindle includes a rotor, the rotor including a second motor section and at least one rotor bearing section configured to interface with the at least one stator bearing section, wherein the first motor section is configured to interface with the second motor section to effect rotation of the spindle about a predetermined axis and the at least one stator bearing section is configured to effect at least leveling of a substrate transport arm end effector connected to the coaxial spindle through an interaction with the at least one rotor bearing section.




ic

Substrate processing apparatus and method of manufacturing semiconductor device

Reduction in cooling rate of a substrate having a lower temperature is suppressed because the substrate having a lower temperature is not affected by radiant heat of a substrate having a higher temperature while cooling a plurality of substrates in a cooling chamber. The substrate processing apparatus includes a load lock chamber configured to accommodate stacked substrates; a first transfer mechanism having a first transfer arm provided with a first end effector, and configured to transfer the substrates into/from the load lock chamber at a first side of the load lock chamber; a second transfer mechanism having a second transfer arm provided with a second end effector, and configured to transfer the substrates into/from the load lock chamber at a second side of the load lock chamber; a barrier installed between the substrates to be spaced apart from the substrates supported by a substrate support provided in the load lock chamber; and an auxiliary barrier unit installed between the substrate support and the barrier, wherein the auxiliary barrier unit is installed at places other than standby spaces of the end effectors.




ic

Workpiece handling systems and related devices and methods

In some aspects, an unloading device for a pipe processing system includes a depositing carriage having a depositing surface for depositing a pipe during and/or after a pipe processing operation, the depositing carriage being configured to move in a longitudinal direction of the pipe, and a supporting carriage having a supporting member for the pipe, the supporting member having a wall for radially supporting the pipe, and the supporting carriage being configured to move in a longitudinal direction of the pipe, where the depositing surface of the depositing carriage and/or the supporting member of the supporting carriage is configured to move in at least one other direction in addition to the longitudinal direction of the pipe so that the depositing carriage and the supporting carriage can be at least partially moved past each other along the longitudinal direction of the pipe.




ic

Auto-reach method for a remote vehicle

The present teachings provide a method of controlling a remote vehicle having an end effector and an image sensing device. The method includes obtaining an image of an object with the image sensing device, determining a ray from a focal point of the image to the object based on the obtained image, positioning the end effector of the remote vehicle to align with the determined ray, and moving the end effector along the determined ray to approach the object.




ic

Method for moving and aligning heavy device

Method for laterally replacing a heavy component of a plant assembly, the method including disconnecting the heavy component from other components of the plant assembly and from a base plate to which the heavy component is fixed; lifting the heavy component above the base plate with a lifting system provided within the base plate; connecting at least a pair of rails to the base plate, under the lifted heavy component, such that the at least a pair of rails extends at substantially a right angle relative to a longitudinal axis of the heavy component; lowering the heavy component on crawling mechanisms disposed on the at least a pair of rails; and laterally replacing the heavy component from the base plate and the other components of the plant assembly by actuating the crawling mechanisms.




ic

Carrier system for electric scooters

A carrier system for transporting an electric scooter behind a vehicle with a hitch receiver having a base platform, an extension ramp removably attached to a side edge of the base platform at an angle with respect to the base platform via a first attachment means, a base support tube where the base platform is mounted atop of, a hitch tube adapted to be telescopically received in a hitch receiver of a vehicle, wherein when the hitch tube is engaged with the base support tube and the tubes are secured together via a pivot bolt, the base support tube can pivot between a storage position and an extended position.




ic

Boom drive apparatus, multi-arm robot apparatus, electronic device processing systems, and methods for transporting substrates in electronic device manufacturing systems with web extending from hub

Boom drive apparatus for substrate transport systems and methods are described. The boom drive apparatus is adapted to drive one or more multi-arm robots rotationally mounted to the boom to efficiently put or pick substrates. The boom drive apparatus has a boom including a hub, a web, a first pilot above the web, and a second pilot below the web, a first driving member rotationally mounted to the first pilot, a second driving member rotationally mounted to the second pilot, a first driven member rotationally mounted to the boom above the a web, a second driven member rotationally mounted to the boom below the a web, and a first and second transmission members coupling the driving members to driven members located outboard on the boom. Numerous other aspects are provided.




ic

Liquid crystal panel transportation device and support arm structure with rotatable ancillary arm sections

Source support arm of a liquid crystal panel transportation device is provided, which includes a primary arm section. The primary arm section includes a plurality of ancillary arm sections that are rotatable to open mounted thereon. A liquid crystal panel transportation device is also disclosed, which includes a support arm having a primary arm section and ancillary arm sections that are mounted to the primary arm section and are rotatable to open.




ic

Cardboard sheet batch division device, cardboard sheet counter ejector, and method for dividing cardboard sheet

The present invention is a cardboard sheet batch division device for dividing batches, disposed on the downstream side of a batch-forming device for separating loaded cardboard sheets and forming batches of a predetermined sheet count. The cardboard sheet batch division device for dividing batches comprises: a transfer conveyor for transferring batches formed by the batch-forming device in a predetermined transfer direction; and batch division means furnished with two separating members respectively contacting the leading edge portion and the trailing edge portion of a batch on the transfer conveyor, for dividing the batch into two sub-batches, upper and lower, by moving the two separating members relative to one another in a direction parallel to the predetermined transfer direction.




ic

Human-machine interface based on task-specific temporal postural synergies

A synergy-based human-machine interface that uses low-dimensional command signals to control a high dimensional virtual, robotic or paralyzed human hand is provided. Temporal postural synergies are extracted from angular velocities of finger joints of five healthy subjects when they perform hand movements that are similar to activities of daily living. Extracted Synergies are used in real-time brain control, where a virtual, robotic or paralyzed human hand is controlled to manipulate virtual or real world objects.




ic

Each pick

A warehousing system for storing and retrieving goods disposed in containers is provided. The system includes a multilevel storage array including an array of storage shelves for holding containers thereon, at least one substantially continuous lift for transporting containers to and from at least one level of the storage array, at least one transport vehicle located on the at least one level and configured to traverse a transport area transporting containers between the at least one continuous lift and container storage locations so that the at least one continuous lift communicates non-deterministically, via the transport vehicle, with storage locations of each of the storage shelves on the at least one level, an infeed transport system linked to the at least one continuous lift, and an order fulfillment station for generating order containers corresponding to customer orders where the order containers are entered onto the storage shelves of the storage array.




ic

Front loader with indicator rod

A front loader is provided with an indicator device. The indicator device is configured to indicate that the work implement is in an identical posture irrespective of a height position of the work implement, by aligning a rear end of the indicator rod with a rear end of the guide tube.




ic

Universal work tool connector device for skid steer loader

A connector device enables universal compatibility and interchangeability between any work tool accessory having a boom feature and any skid steer loader as well as controlled support of the work tool accessory. The connector device also prevents machine instability issues.




ic

Method and system for improved traffic signage

An improved traffic sign is discussed. The traffic sign includes road reflectors, which reflect available light towards a driver indicating road lane divisions. A sensor module coupled with a vehicle can convert the reflected light to a binary word. The sensor module can further convert the binary word into traffic information, wherein a vehicle-mounted display displays information selected from received traffic information based on priority, time of receipt, and relevance. The improved traffic sign can also include an RFID tag configured to transmit traffic information to a vehicle-mounted receiver.




ic

Devices, systems and methods for reinforcing a traffic control assembly

Reinforcement devices and systems for holding a traffic control assembly in compression are provided. The traffic control assembly includes a traffic signal disconnect hanger and/or a traffic signal and a first span wire positioned above the traffic control assembly. In some embodiments, the reinforcement device includes an upper support device connected to the first span wire where the upper support device has a length that is greater than a width of the traffic control assembly and the upper support device is configured to spread the load of the traffic signal assembly to the first span wire. The reinforcement device includes a lower support device operably connected to the traffic signal, a first vertical support member, and a second vertical support member where the first and second vertical members are tensioned when the upper support device, the lower support device and the first and second vertical support members are connected together.




ic

Method for locating a vehicle

A portable computing device can be used to locate a vehicle in a parking structure. In particular, the portable computing device can communicate with a parking system that manages the parking structure and/or with a vehicle in order to locate the vehicle. Communications between the portable computing device, parking system and vehicle can be based on one or more wireless connections, such as Bluetooth and/or Bluetooth LE connections.




ic

Method for making a parking arrangement equipped with an automatic vehicle detection system ready for operation, and parking arrangement for use of the method

Parking arrangement and method for making a parking arrangement equipped with an automatic vehicle detection system ready for operation, which parking arrangement comprises a central computer with a database and at least a number of parking places identifiable by a location code, which parking places are each provided with at least one wirelessly operating parking sensor module, which is connected with the central computer via a UHF radio link and which is provided with an identification code, which parking sensor module comprises at least one vehicle sensor which in operation provides measuring values representative of the presence or absence of a vehicle in the respective parking place, wherein use is made of parking sensor modules which have an RFID identification circuit in which the identification code is stored, which identification code is wirelessly readable.




ic

Method and a monitoring device for monitoring a cabin region, and also an aircraft cabin

Disclosed is a method for the monitoring of a cabin region of a transport system located outside a field of view, wherein at least one light beam is emitted, passing through the cabin region in the longitudinal direction, and in the event of a disturbance of the at least one light beam path a message is generated. A monitoring device is also provided, with at least one emitter unit for purposes of emitting at least one light beam, with at least one receiver unit for purposes of receiving the emitted light beam, and with at least one messaging unit for purposes of generating a message in the event of a disturbance of the at least one light beam path; also disclosed is an aircraft cabin with at least one such monitoring system.




ic

Method for controlling power usage of a reporting device

A system and method for controlling power usage of a reporting device associated with an asset is disclosed. According to one embodiment, a method determines whether the reporting device is in a sleep mode or an active mode and in response to determining the reporting device is in the sleep mode, the method maintains the sleep mode and in response to determining a state change associated with the reporting device, the method powers up the reporting device to the active mode.