ic

Method of adjusting the electrical supply voltage for the operation of at least one electrically powered vehicle

A vehicle is supplied by a first electrical energy storage unit on board the vehicle, and a ground electrical network providing an energy supply by application of a supply voltage through electrical distribution. The first energy storage unit is controllable under a generator regime or a receiver regime. The supply voltage is adjusted, in the generator regime, by applying an algebraically additive supply voltage originating from the first electrical storage unit to the distribution, to maintain a supply voltage above a minimum threshold. In the receiver regime, if a surplus of supply voltage originating at least partially from a second storage unit in the generator regime is detected above the minimum threshold, this surplus is channeled energetically to the first energy storage unit of the vehicle if it is required for operating the vehicle and enables maintaining the supply voltage below a maximum threshold and above the minimum threshold.




ic

Switch device and power supply control system

The switch device includes a control switch that turns on/off an electrical connection between an apparatus and the power supply, a condition judging circuit that judges conditions of driving the control switch, an electric wave reception circuit that receives an electric wave, and a power supply circuit that generates power from the electric wave received by the electric wave reception circuit. An electric wave transmission device that transmits an electric wave for making the switch device operate is arranged in a space, whereby the electric wave can be received by the electric wave reception device in the specific space. The switch device controls the control switch to be turned off/on when the electric wave is received. Alternatively, when the electric wave is not received, the switch device turns on/off the control switch.




ic

Mounting apparatus for display device

A mounting apparatus includes a supporting board, a first adjusting member including a rotating board and a fixing plate, a second adjusting member to install a display device. The rotating board includes a tab, is mounted on the supporting board, and is rotatable about an axis perpendicular to the supporting board. The second adjusting member is mounted to the fixing plate and is rotatable about an axis perpendicular to the fixing plate. A first sliding block is slidably mounted to the supporting board. A second sliding block is slidably mounted to the rotating plate. The first and second sliding blocks each define a slanted groove. A pin protrudes from each of the tab and the second adjusting member to be slidably received in the slanted grooves. The first sliding block is slid to rotate the first adjusting member, the second sliding blocks is slid to rotate the second adjusting members.




ic

Monitor fixing mechanism for fixing a monitor and display device therewith

A monitor fixing mechanism for fixing a monitor is disclosed. The monitor fixing structure includes a pivot plate and a support member. The pivot plate is detachably connected to the support plate so as to pivot the monitor relative to a stand. The support member includes a plate, at least one lateral guiding structure disposed on the plate for laterally constraining movement of the pivot plate as the pivot plate is sliding into the plate in a first direction, and at least one stopping structure disposed on the plate for stopping an end of the pivot plate as the pivot plate has slid into the plate in the first direction completely. The monitor fixing mechanism further includes a fastening module for fastening the pivot plate on the support member as the pivot plate has slid into the plate in the first direction completely.




ic

Electronic device with mounting apparatus for solid state disk

A mounting apparatus for a solid state disk includes a bracket and a latching module. The bracket includes a connecting pole and a supporting member mounted to the connecting pole. The latching module is installed to the supporting member, and comprises a latching member. The supporting member includes a position pole mounted to the connecting pole and a supporting bar perpendicularly extending out from the position pole. The position pole defines a latching slot facing the supporting bar for positioning an end of the solid state disk. The supporting bar defines a guiding slot facing the latching slot for receiving a side of the solid state disk. The latching member is to latch onto the solid state disk.




ic

Two-phase electronic component cooling arrangement

An electronic component assembly includes a housing that provides a cavity filled with a cooling fluid that has a liquid phase and a vapor phase. An electronic element is arranged in the cavity and is configured to generate heat. A wicking material is arranged in the cavity between the housing and the electronic device. The cavity provides a gap adjacent to the wicking material. The wicking material is configured to absorb the liquid phase, and the vapor phase is provided in the gap.




ic

Electric power conversion apparatus

An electric power conversion apparatus includes a channel case in which a cooling water channel is formed; a double side cooling semiconductor module that has an upper and lower arms series circuit of an inverter circuit; a capacitor module; a direct current connector; and an alternate current connector. The semiconductor module includes first and second heat dissipation metals whose outer surfaces are heat dissipation surfaces, the upper and lower arms series circuit is disposed tightly between the first heat dissipation metal and the second heat dissipation metal, and the semiconductor module further includes a direct current positive terminal, a direct current negative terminal, and an alternate current terminal which protrude to outside. The channel case is provided with the cooling water channel which extends from a cooling water inlet to a cooling water outlet, and a first opening which opens into the cooling water channel.




ic

Waterproof controller used for electric power steering

A waterproof controller used for electric power steering includes a shell, a chamber, at least one sealing block, a circuit board, at least one cable, and at least one board mounting accessory. The chamber is formed in the shell. The sealing block is disposed on the shell, and includes at least one hole. The circuit board is accommodated in the chamber. The cable includes a first terminal and a second terminal opposite to the first terminal. The first terminal passes through the hole of the sealing block. The board mounting accessory covers the second terminal, in which the board mounting accessory and the second terminal insert into the circuit board together.




ic

Power semiconductor module with asymmetrical lead spacing

A power semiconductor has power terminals arranged in a row at one side of the housing, with control terminals arranged in a row at the other side of the housing. The spacing between adjacent power terminals is greater than the spacing between adjacent control terminals.




ic

Portable electronic device and electronic module fixing structure thereof

A portable electronic device includes an electronic module and an electronic module fixing structure. The electronic module fixing structure includes a main body, a sliding component, a rod and an elastic component connected between the main body and the sliding component. The main body has a track with a positioning portion. The sliding component is slidably disposed on the main body. The rod is rotatably connected with the sliding component. An end of the rod is adapted to move along the track. When the end is located at the positioning portion, the end and the positioning portion are interfered with each other to position the sliding component. When the electronic module pushes the sliding component, the rod is rotated to drive the end to move away from the positioning portion, and the sliding component pushes the electronic module away from the main body through elastic force of the elastic component.




ic

Electronic devices with printed circuit boards having padded openings

An electronic device may be provided with a printed circuit board having padded through-holes. The padded through-holes may be formed from openings in a printed circuit board substrate and elastomeric members in the openings. The elastomeric members may be conductive elastomeric members such as electrically or thermally conductive elastomeric members. The printed circuit board may be secured within a housing for the electronic device using engagement members that extend through padded through-holes. The engagement members may engage with the housing or with additional engagement members that are attached to the housing. The electronic device may include a cowling structure formed over electronic components on a surface of the printed circuit board. The cowling structure may be secured to the printed circuit board using attachment members that engage with the engagement members in the padded through-holes.




ic

Thin film type chip device and method for manufacturing the same

Disclosed herein is a thin film type chip device, including: a plurality of unit circuit structures laminated on a substrate; and an adhesive layer adhering the unit circuit structures to each other.




ic

Display device and electronic apparatus

Disclosed herein is a display device including a main board part configured to have a display area including drive wiring and have a display panel disposed in the display area; and an auxiliary board part configured to be monolithic with the main board part and have extraction wiring from the drive wiring.




ic

Display device

In a display device (100), a row of protruding electrodes (115) and a row of protruding electrodes (116) are formed on the connecting surface of a terminal section (112), the row of the protruding electrodes (116) is disposed between the row of the protruding electrodes (115) and a display section (111), one end of a flexible printed board (150) is connected to the row of the protruding electrodes (115), one end of a flexible printed board (160) is connected to the row of the protruding electrodes (116), the row of the protruding electrodes (115) is adjacent to the row of the protruding electrodes (116), and the one end of the flexible printed board (150) and the one end of the flexible printed board (160) are opposed to each other.




ic

Mounting structure of flexible printed circuit board and sliding-type electronic device

A mounting structure of a flexible printed circuit board and a sliding-type electronic device is provided by which a too large increase in thickness of devices can be avoided and a pair of housings can be slid relatively in a bending and slanting direction. In the mounting structure, an upper housing 12 and a lower housing 22 coupled in a freely slidable manner are electrically connected to each other by a flexible printed circuit board folded back to be routed between slide facing surfaces 12b and 22a of both the housings and the height of a side wall surface 12c and 22c of the upper housing and lower housing changes in a bending manner along the direction of freely sliding and, in the slide facing surfaces of the upper housing and lower housing, concave space portions 15 and 25 to accommodate the change in curvature and in position of a folding-back portion 31a caused by sliding motion between the upper housing and lower housing are disposed.




ic

Electronic component

An electronic component includes an interposer, and a multilayer ceramic capacitor. The interposer includes a substrate including front and back surfaces that are parallel or substantially parallel to each other. Two first mounting electrodes and two second mounting electrodes are located on the front surface of the substrate, on opposite end portions in the longitudinal direction. Recesses are located in the longitudinal side surface of the insulating substrate. Connecting conductors are each provided in the side wall surface of each of the recesses. The connecting conductors connect a first external connection electrode and a second external connection electrode that are located on the back surface of the substrate, and first mounting electrodes and second mounting electrodes.




ic

Stacked semiconductor packages

An apparatus includes a first substrate having a first land and a second substrate having a second land. A first molding compound is disposed between the first substrate and the second substrate. A first semiconductor chip is disposed on the first substrate and in contact with the first molding portion. A first connector contacts the first land and a second connector contacts the second land. The second connector is disposed on the first connector. A volume of the second connector is greater than a volume of the first connector. A surface of the first semiconductor chip is exposed. The first molding compound is in contact with the second connector, and at least a portion of the second connector is surrounded by the first molding compound.




ic

Semiconductor device

A semiconductor device effectively suppress the problem of mutual interaction occurring between an inductor element and wires positioned above the inductor element formed over the same chip. A semiconductor device includes a semiconductor substrate and a multi-wiring layer formed overlying that semiconductor substrate, and in which the multi-wiring layer includes: the inductor element and three successive wires and a fourth wire formed above the inductor element; and two shielded conductors at a fixed voltage potential and covering the inductor element as seen from a flat view, and formed between the inductor element and three successive wires and a fourth wire formed above the inductor element.




ic

Television receiver and electronic apparatus

According to one embodiment, a television receiver includes: a housing; a circuit board arranged in the housing; an electronic component mounted on the circuit board; a reinforcing member comprising a first surface in contact with the circuit board, and a second surface located on an opposite side of the first surface and exposed to an inside of the housing; a component contained in the housing, the component comprising a first supported area located at a distance from a surface of the circuit board; and a support member configured to support the component, the support member comprising a first end portion fixed to the first supported area of the component, and a second end portion fixed to the second surface of the reinforcing member.




ic

Lightweight electronic device for automotive applications and method

A lightweight radio/CD player for vehicular application is virtually “fastenerless” and includes a case and frontal interface formed of polymer based material that is molded to provide details to accept audio devices such as playback mechanisms (if desired) and radio receivers, as well as the circuit boards required for electrical control and display. The case and frontal interface are of composite structure, including an insert molded electrically conductive wire mesh screen that has been pre-formed to contour with the molding operation. The wire mesh provides EMC, RFI, BCI and ESD shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. The major components and subassemblies self-interconnect by integral guide and connection features effecting “slide lock” and “snap lock” self-interconnection. The major components and subassemblies self-ground by establishing an interference fit with exposed, resilient, embossed portions of wire mesh.




ic

Grounded lid for micro-electronic assemblies

An apparatus for reducing EMI at the micro-electronic-component level includes a substrate having a ground conductor integrated therein. A micro-electronic component such as an integrated circuit is mounted to the substrate. An electrically conductive lid is mounted to the substrate, thereby forming a physical interface with the substrate. The electrically conductive lid substantially covers the micro-electronic component. A conductive link is provided to create an electrical connection between the electrically conductive lid and the ground conductor at the physical interface.




ic

Power inverter including a power semiconductor module

A power inverter includes a power semiconductor module that includes a power semiconductor device, a control circuit board that outputs a control signal used for controlling the power semiconductor device, a driver circuit board that outputs a driving signal used for driving the power semiconductor device, a conductive metal base plate arranged in a space between the driver circuit board and the control circuit board in which a fine and long opening portion is formed, wiring that connects the driver circuit board and the control circuit board through the opening portion and delivers the control signal to the driver circuit board, and an AC busbar that is arranged on a side opposite to the metal base plate through the driver circuit board and delivers an AC current output from the power semiconductor module to a drive motor. At least a portion of the AC busbar that faces the opening portion extends in a direction directly running in a longitudinal direction of the fine and long opening portion.




ic

Housing for an electric circuit for a fuel pump

A housing for an electronic circuit for a fuel pump includes a base and a cover which is connected to the base, a printed circuit board and, disposed on one side of the latter, electric and/or electronic components. Disposed on either side of the printed circuit board in each case is a cover in such a way that each component is arranged in a region covered by a cover.




ic

Chip-type ceramic electronic component and producing method thereof

The electronic component has a resin electrode which constitutes an external electrode on a face of a ceramic base body. At least a tip portion of a resin electrode region extended around another face of the body is bonded to the ceramic base body, and further a relationship between Rz1 and Rz2 satisfies the following requirement: Rz1>Rz2, Rz1>3.3 μm, and Rz2




ic

Portable USB mass storage device

A new type of portable USB mass storage gadget is disclosed which provides the user with upgradeable high speed mass storage and processing for use with portable computer appliances such as smart phones and tablets as well as standard desk top computers and laptops. Various modifications to the embodiment referred to as a UDRIVE are disclosed including a battery option, wireless connectivity, security, and additional internal electronics and external interfaces that allow processing of the data stored or sent to the portable gadget.




ic

Protective device with automated self test

The present invention is directed to a circuit interrupting device including an actuator that provides an actuator stimulus upon the occurrence of the fault actuation signal. A circuit interrupter is positioned to electrically disconnect the first, second and third electrical conductors from each other upon the occurrence of the actuator stimulus. An automated test circuit is coupled to the circuit interrupting assembly. The automated test circuit is configured to automatically produce the simulated fault condition during a predetermined portion of an AC line cycle to determine whether the fault detection assembly is operational such that the fault detection assembly provides a fault detection signal without the circuit interrupter electrically disconnecting the first, second and third electrical conductors from each other. The automated test circuit is further configured to provide a device failure mode signal such that a plurality of the first, second or third electrical conductors are disconnected from each other if the fault detection signal is not detected within a predetermined time frame.




ic

Mounting structure of circuit board having multi-layered ceramic capacitor thereon

Disclosed herein is a mounting structure of a circuit board having a multi-layered ceramic capacitor thereon. The mounting structure of a circuit board having a multi-layered ceramic capacitor thereon, in which a dielectric layer on which inner electrodes are disposed is stacked and external electrode terminals connecting the inner electrodes in parallel are disposed on both ends thereof, wherein the inner electrodes of the multi-layered ceramic capacitor and the circuit board are disposed so as to be a horizontal direction to connect the external electrode terminals with a land on the circuit board by a conductive material and a ratio of a bonding area ASOLEDER of the conductive material to the area AMLCC of the external electrode terminals AMLCC is set to be less than 1.4, thereby remarkably reducing the vibration noise.




ic

Electronic component

An electronic component, preferably in the form of a laminated ceramic capacitor, which suppresses the growth of whiskers and has excellent solderability, includes an electronic component element in the shape of, for example, a rectangular parallelepiped. External electrodes of terminal electrodes are located on first and second end surfaces of the electronic component element. First plated films including plated Ni are located on the surfaces of the external electrodes. Second plated films are located on the surfaces of the first plated films. The second plated films have stacked structures including first plated layers and second plated layers. The second plated layers have lower degrees of densification than the first plated layers.




ic

Relay valve control arrangement to provide variable response timing on full applications

A brake system and related components including a metering device are configured to regulate a control signal received from a brake control device such that a control valve delays the supply of a level of requested braking pressure for a prescribed amount of time. The metering device can be an inversion valve and orificed check valve in a control circuit adapted to allow relatively unrestricted flow until a threshold pressure is reached, after which pressure the inversion valve closes and the flow is metered through an orifice. This has the effect of allowing rapid brake actuation to a first level, and then slowing further application of the brake until full requested braking is achieved. An electronic control unit can also be configured to regulate a control signal to delay development of the requested brake pressure.




ic

Hydraulic brake system

Two pressure chambers of the master cylinder and brake cylinders provided respectively for front left and right wheels are respectively connected directly to each other by master passages. Provided respectively in the master passages are master cut-off valves each as a normally-closed electromagnetic open/close valve. As a result, when the brake pedal is not operated and when no current is supplied to solenoids of the respective master cut-off valves, the pressure chambers and the brake cylinders are respectively disconnected to each other, preventing an outflow of the working fluid from the pressure chambers, i.e., fluid chambers of a master reservoir to the brake cylinders.




ic

Dual pressure control for a rotor brake actuator for vertical lift aircraft

In some aspects, a master cylinder assembly for vertical lift aircraft is configured to move pressurized fluid through a conduit in response to applied movement of an input lever. A low pressure relief valve can be connected to a first conduit to limit pressure to a low level. An isolation valve can be connected to the first conduit and configured to isolate the low pressure relief valve from the conduit when engaged. A high pressure relief valve can be connected to a second fluid conduit to limit pressure to a high level. In some aspects, a rotor brake actuator is fluidly connected to the first conduit and the second conduit and configured to engage a rotor brake in response to hydraulic fluid pressure.




ic

Method for operating a hydraulic brake system of a motor vehicle and a hydraulic braking system

A method for operating a hydraulic brake system of a motor vehicle, comprising a pressure generating device used to build up additional brake pressure in a master brake cylinder or in addition to a master brake cylinder and in opposition to further pedal actuation wherein the additional pressure is a function of the pedal actuation travel distance. A method that reduces the limitations of a braking system's physical parameters on the build-up of additional braking pressure.




ic

Brake control system for motor vehicles

A brake control system for motor vehicles includes a stability system for stabilizing the vehicle from the standpoint of driving dynamics during braking, a triggering unit for the automatic output of a braking demand as a function of the traffic situation, a braking unit which converts the braking demand into a braking action, and a control unit for modifying the braking demand prior to its implementation as a function of the state of the stability system.




ic

Brake device

A brake device can prevent deterioration of braking force by applying a predetermined pressure in the drive hydraulic pressure chamber even when an electric system failure occurs. The brake device includes a stroke simulator portion, regulator, a first passage connecting the accumulator and the high pressure port of the regulator, a second passage connecting the reservoir tank and the low pressure port of the regulator, a third passage connecting the stroke simulator portion and the pilot pressure input port of the regulator, a fourth passage connecting the drive hydraulic pressure chamber and the output port of the regulator and a fifth passage connecting the accumulator and the drive hydraulic pressure chamber bypassing the high pressure port. The normally open type pressure decrease control valve is provided in the second passage or in the fourth passage whereas the normally closed pressure increase control valve is provided in the fifth passage.




ic

Brake fade determination device, brake fade determination method and braking system

A brake fade determination device determines whether a fade state of a brake device that brakes a wheel of a vehicle is occurring on the basis of the deceleration of the vehicle and the slip amount of the wheel. A braking system includes: the brake device that is able to adjust a braking force that acts on the wheel of the vehicle; and a controller that controls the braking force to control the slip condition of the wheel. The controller determines whether a fade state of the brake device is occurring on the basis of the deceleration of the vehicle and the slip amount of the wheel, and adjusts the amount of increase or decrease in braking force on the basis of whether the fade state is occurring.




ic

Saddle-riding type vehicle

An antilock brake control unit in a saddle-riding type vehicle includes a storage box disposed behind a head pipe and above an engine unit with a fuel tank disposed behind the storage box and obliquely above and behind the engine unit. A riding seat is disposed above the fuel tank. A seat supporting frame extends rearwardly and upwardly from rear parts of a pair of left and right main frames and crosses a front part of a fuel tank provided between the pair of left and right main frames with an upper end of the seat supporting frame supporting a front part of a riding seat. An antilock brake control unit is disposed at a position covered with the seat supporting frame from above.




ic

Vehicle brake system

A vehicle brake system comprises a master brake cylinder having an input piston and master piston and connected to a wheel brake device, a reaction force generating device for generating a reaction force pressure corresponding to a displacement amount of the input piston, a change over valve provided in an open passage branched from a hydraulic conduit connecting the reaction force generating device to the reaction force chamber defined by the input piston and the change over valve connected to a reservoir, a brake force boosting device for applying an assisting pressure to a master piston, an assisting pressure limit judging portion for judging whether the assisting pressure has reached to an assisting limit pressure, and a change over controlling portion for changing over the change over valve to an open state when the assisting pressure limit judging portion judges that the assisting pressure has reached the assisting limit pressure.




ic

Braking apparatus for vehicle

An electronic control unit inputs from temperature sensors a temperature of the heating side of a thermoelectric conversion section assembled to each of brake units provided for left and right rear wheels. When the temperature of the heating side is equal to or lower than a predetermined temperature, the electronic control unit drives and controls a brake hydraulic pressure control section so as to operate the brake units preferentially over brake units provided for left and right front wheels. With this operation, each of the brake units generates friction heat, and heats the heating side of the corresponding thermoelectric conversion section, whereby the thermoelectric conversion section efficiently collects thermal energy and generates electrical power. Meanwhile, when the heating side temperature is higher than the predetermined temperature, the electronic control unit drives and controls the brake hydraulic pressure control section so as to decrease the proportion of the braking forces applied by the brake units and increase the proportion of the braking forces applied by the brake units.




ic

Method and system for diagnosing the operating status of an assisted start-up mode for a motor vehicle

A method and system for diagnosing an operating status of an assisted start-up mode for a motor vehicle. The system includes a driving engine, a transmission including a mechanism determining a piece of engine rotation speed information, a piece of information on a position of an accelerator pedal of the vehicle, a piece of information on a position of a transmission, and a piece of information on torque transmitted to wheels, a detection mechanism producing a malfunction signal for the assisted start-up using the information received, a plurality of encoding mechanisms to produce a follow-up signal for each piece of calculated information received, and a memory saving the follow-up signals.




ic

Brake system for a motor vehicle and method for operating a brake system

A brake system for a motor vehicle includes on at least one wheel, an electric-regenerative brake and a friction brake that can be hydraulically actuated by a first generator of brake pressure using a fluid, wherein the friction brake can be connected via an actuatable inlet valve to the first generator of brake pressure and via a first actuatable outlet valve to a pressure accumulator, so that a volume of fluid applied by the first generator of brake pressure can be diverted via the first outlet valve into the pressure accumulator. The first generator of brake pressure can be connected to the pressure accumulator via a further hydraulic connection having a second actuatable outlet valve. A method for operating a brake system is also disclosed.




ic

Hydraulic brake system with controlled boost

A vehicle brake system includes a brake pedal unit (BPU) coupled to a vehicle brake pedal and including an input piston connected to operate a pedal simulator during a normal braking mode, and coupled to actuate a pair of output pistons during a manual push through mode. The output pistons are operable to generate brake actuating pressure at first and second outputs of the BPU. A hydraulic pressure source for supplying fluid at a controlled boost pressure is included. The system further includes a hydraulic control unit (HCU) adapted to be hydraulically connected to the BPU and the hydraulic pressure source, the HCU including a slip control valve arrangement, and a switching base brake valve arrangement for switching the brake system between the normal braking mode wherein boost pressure from the pressure source is supplied to first and second vehicle brakes, and the manual push through mode wherein brake actuating pressure from the BPU is supplied to the first and second vehicle brakes.




ic

Electric-hydraulic antilock braking system for a trailer

An electric-hydraulic antilock braking system (ABS) installed in a trailer is coupled with a tow vehicle to facilitate controlled braking of the trailer. A trailer in-cab controller (TIC) monitors vehicle networks for diagnostic information used in determining appropriate braking actions to be taken. A communication network can interconnect the TIC, a trailer actuator controller (TAC), and an ABS controller. The ABS controller receives current tow vehicle speeds and current trailer wheel speeds, and dynamically adjusts the brakes based on the differences in the speeds. A three-way solenoid valve or an equivalent valve structure thereto allows for the ABS system to be quickly activated and deactivated.




ic

Vehicle brake device

In a vehicle brake device, a port is provided at a hydraulic chamber of a master cylinder and communicates with a reservoir tank. A piston movable in the hydraulic chamber for closing the port is provided with at least one piston-side port that faces on the port when at a first position. When a brake pedal is stepped on from a retracted state to move the piston from the first position to a second position spaced from the first position by a predetermined distance, the hydraulic chamber is blocked from the communication with the reservoir tank. The at least one piston-side port is provided therein with an orifice, so that the hydraulic pressure in the hydraulic chamber is raised at the time of a quick stepping of the brake pedal but is allowed to flow to the reservoir tank without being raised at the time of a non-quick stepping.




ic

Electric braking device for vehicles

An electric braking device for a vehicle. The device includes: front wheel and/or rear wheel braking modules that are not powered when the vehicle is in a standby state; at least one on-board computer; at least one user control module which, upon a user's request, delivers a power supply control signal to control the power supply to the braking modules and braking control signals to activate the braking modules when the modules are powered; and a mechanism for cutting the power supply to the braking modules once the vehicle has zero speed and the wheels are immobilized under action of the braking modules. The device can reduce the power consumption of vehicles.




ic

Vehicle brake device

In a vehicle brake device, when a brake pedal is depressed normally, high regeneration efficiency and high fuel efficiency can be achieved by positively utilizing the regenerative braking force, and early applying of basic hydraulic braking force can be achieved when the brake pedal is suddenly depressed. The vehicle brake device includes an operation force transmitting mechanism on a connecting member between the brake pedal and the master cylinder piston and having first and second rods and a spring member biasing the first and second rods in a direction separating both rods from each other. The operation force transmitting mechanism includes an inner space between both rods and a communication passage allowing communication of the inner space with the exterior. The communication passage restricts the outflow of fluid in the inner space upon an emergency brake pedal depression and allows the outflow thereof upon non-emergency brake pedal depression.




ic

Fault-tolerant vehicle brake system

A braking system for a vehicle, particularly a commercial vehicle, includes an operating brake device for providing an operating brake function for braking the vehicle, and a parking brake device for providing a parking brake function independently of the operating brake system. If one of the two braking devices partially or completely fails, the vehicle can be braked automatically by means of the other braking device.




ic

Pump housing for motor-vehicle hydraulic assemblies and the use thereof

In a pump housing of a motor-vehicle hydraulic assembly, on which at least two inlet-valve openings, at least two outlet-valve openings, at least one high-pressure control valve opening and at least one switchover-valve opening and a pressure-sensor connection are formed. The at least two inlet-valve openings are arranged in a first row, the at least two outlet-valve openings are arranged in a following second row, the pressure sensor connection is arranged in a further following third row, and the at least one high-pressure control valve opening and the at least one switchover valve opening are arranged in a further following fourth row. There are also five embodiments of arrangements of connecting lines and holes in a pump housing for the short connection of the valve openings and connections, and one embodiment with respect to the use of the pump housing according to one of the six embodiments.




ic

Braking device and vehicle

Provided is a driving device that applies a braking force to a first tire and a second tire rotatably arranged in a vehicle body. The driving device includes: a master cylinder configured to include a first liquid pressure chamber and a second liquid pressure chamber that supply a liquid pressure; a piston configured to apply an external force to the first liquid pressure chamber and the second liquid pressure chamber; a first hydraulic braking unit configured to apply a braking force to the first tire based on the liquid pressure supplied from the first liquid pressure chamber; and a second hydraulic braking unit configured to apply a braking force to the second tire based on the liquid pressure supplied from the second liquid pressure chamber.




ic

System and method for providing indication of braking for electric brakes

A system for electrical braking of a vehicle comprises a power bus coupled to a first driver associated with a first electromechanical actuator (EMA). The power bus is also coupled to a second driver associated with a second EMA, and the first EMA and the second EMA are associated with a wheel of the vehicle. The power bus provides braking power to the first EMA via the first driver and to the second EMA via the second driver. A normal braking command interface provides a first braking signal to the first driver and a second braking signal to the second driver. An emergency/park brake interface bypasses the normal braking command interface and sends a first emergency/park braking signal to the first driver and a second emergency/park braking signal to the second driver. A sensor measures a current at a single location of the power bus that is proportional to a braking force exerted on the wheel.




ic

Method for operation of a braking system for a motor vehicle

Disclosed is a method for operating an electromechanically operable parking brake for motor vehicles with a driving engine furnished with a mechanical gear box, being substantially composed of an operating element, an electronic control unit, to which are sent wheel rotational speed values from wheel rotational speed sensors, at least one unit for generating a brake application force, and brake devices on at least one axle being lockable by the unit, with the electronic control unit actuating the unit after detection of a starting maneuver of the motor vehicle in the sense of a release operation of the parking brake. In order to render a release operation of the parking brake as comfortable as possible after detection of a starting maneuver of the motor vehicle, the method at issued arranges that the electronic control unit (6) actuates the unit (1) in order to reduce the brake application force to an inclination-responsive holding force when a starting maneuver is detected and before the release operation of the parking brake is performed.