predict Ashton Whiteley: Germany Revises Growth Predictions Upwards By www.24-7pressrelease.com Published On :: Tue, 06 Feb 2018 07:00:00 GMT Ashton Whiteley: Despite persistent political uncertainty, the German economy looks set to continue its upward trend in 2018. Full Article
predict Wheat Farmers Call For Stable and Predictable Farm Programs in Current Farm Economy By www.24-7pressrelease.com Published On :: Wed, 23 May 2018 07:00:00 GMT Washington Wheat Speaks Out Against Farm Bill Critics Full Article
predict 2019 Homecoming Dress Purchasing Trends and Predictions: Pulse of Homecoming By www.24-7pressrelease.com Published On :: Tue, 27 Aug 2019 07:00:00 GMT At the beginning of a new homecoming season, Occasion Brands, LLC, releases this 2019 issue of Pulse of Homecoming with pre-season predictions of consumer purchasing trends for homecoming 2019 dresses. Full Article
predict Tucker Frump: The Children's Book that Predicted Impeachment By www.24-7pressrelease.com Published On :: Wed, 18 Dec 2019 07:00:00 GMT Tucker Frump is a children's book that aims to teach kids that lying, bullying, discrimination, cheating, and name-calling are bad…despite what they see from the president. Full Article
predict LSTM for time series prediction By feedproxy.google.com Published On :: Mon, 27 Apr 2020 16:00:26 +0000 Learn how to develop a LSTM neural network with PyTorch on trading data to predict future prices by mimicking actual values of the time series data. Full Article 2020 Apr Tutorials Overviews Deep Learning Forecasting LSTM Neural Networks Recurrent Neural Networks Time Series
predict Best Coronavirus Projections, Predictions, Dashboards and Data Resources By feedproxy.google.com Published On :: Wed, 06 May 2020 12:00:05 +0000 Check out this curated collection of coronavirus-related projections, dashboards, visualizations, and data that we have encountered on the internet. Full Article 2020 May Tutorials Overviews Coronavirus Covid-19 Dashboard Predictions Resources
predict Making Time Off Predictable and Required By hbr.org Published On :: Thu, 01 Oct 2009 17:21:58 -0500 Leslie Perlow, Harvard Business School professor and coauthor of the HBR article "Making Time Off Predictable--and Required." Full Article
predict Nate Silver on Predicting the Unpredictable By hbr.org Published On :: Thu, 18 Oct 2012 19:49:45 -0500 Nate Silver, statistician and founder of The New York Times political blog FiveThirtyEight.com. Full Article
predict How AI Is Making Prediction Cheaper By hbr.org Published On :: Tue, 22 May 2018 16:34:21 -0500 Avi Goldfarb, a professor at the University of Toronto’s Rotman School of Management, explains the economics of machine learning, a branch of artificial intelligence that makes predictions. He says as prediction gets cheaper and better, machines are going to be doing more of it. That means businesses — and individual workers — need to figure out how to take advantage of the technology to stay competitive. Goldfarb is the coauthor of the book “Prediction Machines: The Simple Economics of Artificial Intelligence.” Full Article
predict Simons joins hands with predictive analytics firm Retalon By feedproxy.google.com Published On :: Sat, 09 May 2020 23:00:04 GMT Full Article
predict 30 Big Tech Predictions for 2020 By feedproxy.google.com Published On :: Sat, 09 May 2020 12:27:00 -0400 Digital transformation has just begun. Not a single industry is safe from the unstoppable wave of digitization that is sweeping through finance, retail, healthcare, and more. In 2020, we expect to see even more transformative developments that will change our businesses, careers, and lives.See the rest of the story at Business InsiderSee Also:GoBear has acquired AsiaKredit to drive growth through digital consumer lendingUS personal savings rate increases due to lowered spending amid social distancingRBS is shuttering its standalone digital bank Bó due to coronavirus fallout Full Article BI Intelligence BI Intelligence Content Marketing BII Markets Insider BII Daily Conversion Insider Intelligence
predict Knowledge management predictions for 2020 By www.kmworld.com Published On :: Mon, 09 Dec 2019 09:00:00 EST As we approach a new year?and a new decade?executives from multiple industry sectors offer predictions on the intertwined areas of CX, information governance and compliance, and automation and AI Full Article
predict SCCM Pod-310 Evidence-Based Pediatric Outcome Predictors to Guide the Allocation of Critical Care Resources in a Mass Casualty Event By sccm-audio.s3.amazonaws.com Published On :: Thu, 18 Feb 2016 08:00:00 -0500 Margaret Parker, MD, MCCM, speaks with Philip Toltzis, MD. Dr. Toltzis is Professor of Pediatrics at Case Western Reserve University School of Medicine. Full Article Medicine
predict Predicting the unpredictable: potential climate change impacts on vegetation in the Pacific Northwest. By www.fs.fed.us Published On :: Tue., 05 Apr 2016 12:00:00 PST Earth's climate is changing, as evidenced by warming temperatures, increased temperature variability, fluctuating precipitation patterns, and climate-related environmental disturbances. Full Article
predict A field guide to predict delayed mortality of fire-damaged ponderosa pine: application and validation of the Malheur model. By www.fs.fed.us Published On :: Thur 06 Nov 2008 08:00:00 PST The Malheur model for fire-caused delayed mortality is presented as an easily interpreted graph (mortality-probability calculator) as part of a one-page field guide that allows the user to determine postfire probability of mortality for ponderosa pine (Pinus ponderosa Dougl. ex Laws.). Full Article
predict A key for predicting postfire successional trajectories in black spruce stands of interior Alaska. By www.fs.fed.us Published On :: Mon, 08 Dec 2008 08:00:00 PST Black spruce (Picea mariana (Mill) B.S.P) is the dominant forest cover type in interior Alaska and is prone to frequent, stand-replacing wildfires. Full Article
predict A landscape model for predicting potential natural vegetation of the Olympic Peninsula USA using boundary equations and newly developed environmental variables By www.fs.fed.us Published On :: Thu 18 Aug 2011 10:30:00 PDT A gradient-analysis-based model and grid-based map are presented that use the potential vegetation zone as the object of the model. Several new variables are presented that describe the environmental gradients of the landscape at different scales. Boundary algorithms are conceptualized, and then defined, that describe the environmental boundaries between vegetation zones on the Olympic Peninsula, Washington, USA. Full Article
predict Better science needed to support clinical predictors that link cardiac arrest, brain injury, and death: a statement from the American Heart Association By newsroom.heart.org Published On :: Thu, 11 Jul 2019 09:00:00 GMT Statement Highlights: While significant improvements have been made in resuscitation and post cardiac arrest resuscitation care, mortality remains high and is mainly attributed to widespread brain injury.Better science is needed to support the ... Full Article
predict TrailBuddy: Using AI to Create a Predictive Trail Conditions App By feedproxy.google.com Published On :: Thu, 19 Mar 2020 08:00:00 -0400 Viget is full of outdoor enthusiasts and, of course, technologists. For this year's Pointless Weekend, we brought these passions together to build TrailBuddy. This app aims to solve that eternal question: Is my favorite trail dry so I can go hike/run/ride? While getting muddy might rekindle fond childhood memories for some, exposing your gear to the elements isn’t great – it’s bad for your equipment and can cause long-term, and potentially expensive, damage to the trail. There are some trail apps out there but we wanted one that would focus on current conditions. Currently, our favorites trail apps, like mtbproject.com, trailrunproject.com, and hikingproject.com -- all owned by REI, rely on user-reported conditions. While this can be effective, the reports are frequently unreliable, as condition reports can become outdated in just a few days. Our goal was to solve this problem by building an app that brought together location, soil type, and weather history data to create on-demand condition predictions for any trail in the US. We built an initial version of TrailBuddy by tapping into several readily-available APIs, then running the combined data through a machine learning algorithm. (Oh, and also by bringing together a bunch of smart and motivated people and combining them with pizza and some of the magic that is our Pointless Weekends. We'll share the other Pointless Project, Scurry, with you soon.) Learn More We're hiring Front-End Developers in our Boulder, Chattanooga, Durham, Falls Church and Remote (U.S. Only) offices. Learn more and introduce yourself. The quest for data. We knew from the start this app would require data from a number of sources. As previously mentioned, we used REI’s APIs (i.e. https://www.hikingproject.com/data) as the source for basic trail information. We used the trails’ latitude and longitude coordinates as well as its elevation to query weather and soil type. We also found data points such as a trail’s total distance to be relevant to our app users and decided to include that on the front-end, too. Since we wanted to go beyond relying solely on user-reported metrics, which is how REI’s current MTB project works, we came up with a list of factors that could affect the trail for that day. First on that list was weather. We not only considered the impacts of the current forecast, but we also looked at the previous day’s forecast. For example, it’s safe to assume that if it’s currently raining or had been raining over the last several days, it would likely lead to muddy and unfavorable conditions for that trail. We utilized the DarkSky API (https://darksky.net/dev) to get the weather forecasts for that day, as well as the records for previous days. This included expected information, like temperature and precipitation chance. It also included some interesting data points that we realized may be factors, like precipitation intensity, cloud cover, and UV index. But weather alone can’t predict how muddy or dry a trail will be. To determine that for sure, we also wanted to use soil data to help predict how well a trail’s unique soil composition recovers after precipitation. Similar amounts of rain on trails of very different soil types could lead to vastly different trail conditions. A more clay-based soil would hold water much longer, and therefore be much more unfavorable, than loamy soil. Finding a reliable source for soil type and soil drainage proved incredibly difficult. After many hours, we finally found a source through the USDA that we could use. As a side note—the USDA keeps track of lots of data points on soil information that’s actually pretty interesting! We can’t say we’re soil experts but, we felt like we got pretty close. We used Whimsical to build our initial wireframes. Putting our design hats on. From the very first pitch for this app, TrailBuddy’s main differentiator to peer trail resources is its ability to surface real-time information, reliably, and simply. For as complicated as the technology needed to collect and interpret information, the front-end app design needed to be clean and unencumbered. We thought about how users would naturally look for information when setting out to find a trail and what factors they’d think about when doing so. We posed questions like: How easy or difficult of a trail are they looking for?How long is this trail?What does the trail look like?How far away is the trail in relation to my location?For what activity am I needing a trail for? Is this a trail I’d want to come back to in the future? By putting ourselves in our users’ shoes we quickly identified key features TrailBuddy needed to have to be relevant and useful. First, we needed filtering, so users could filter between difficulty and distance to narrow down their results to fit the activity level. Next, we needed a way to look up trails by activity type—mountain biking, hiking, and running are all types of activities REI’s MTB API tracks already so those made sense as a starting point. And lastly, we needed a way for the app to find trails based on your location; or at the very least the ability to find a trail within a certain distance of your current location. We used Figma to design, prototype, and gather feedback on TrailBuddy. Using machine learning to predict trail conditions. As stated earlier, none of us are actual soil or data scientists. So, in order to achieve the real-time conditions reporting TrailBuddy promised, we’d decided to leverage machine learning to make predictions for us. Digging into the utility of machine learning was a first for all of us on this team. Luckily, there was an excellent tutorial that laid out the basics of building an ML model in Python. Provided a CSV file with inputs in the left columns, and the desired output on the right, the script we generated was able to test out multiple different model strategies, and output the effectiveness of each in predicting results, shown below. We assembled all of the historical weather and soil data we could find for a given latitude/longitude coordinate, compiled a 1000 * 100 sized CSV, ran it through the Python evaluator, and found that the CART and SVM models consistently outranked the others in terms of predicting trail status. In other words, we found a working model for which to run our data through and get (hopefully) reliable predictions from. The next step was to figure out which data fields were actually critical in predicting the trail status. The more we could refine our data set, the faster and smarter our predictive model could become. We pulled in some Ruby code to take the original (and quite massive) CSV, and output smaller versions to test with. Now again, we’re no data scientists here but, we were able to cull out a good majority of the data and still get a model that performed at 95% accuracy. With our trained model in hand, we could serialize that to into a model.pkl file (pkl stands for “pickle”, as in we’ve “pickled” the model), move that file into our Rails app along with it a python script to deserialize it, pass in a dynamic set of data, and generate real-time predictions. At the end of the day, our model has a propensity to predict fantastic trail conditions (about 99% of the time in fact…). Just one of those optimistic machine learning models we guess. Where we go from here. It was clear that after two days, our team still wanted to do more. As a first refinement, we’d love to work more with our data set and ML model. Something that was quite surprising during the weekend was that we found we could remove all but two days worth of weather data, and all of the soil data we worked so hard to dig up, and still hit 95% accuracy. Which … doesn’t make a ton of sense. Perhaps the data we chose to predict trail conditions just isn’t a great empirical predictor of trail status. While these are questions too big to solve in just a single weekend, we'd love to spend more time digging into this in a future iteration. Full Article News & Culture
predict TrailBuddy: Using AI to Create a Predictive Trail Conditions App By feedproxy.google.com Published On :: Thu, 19 Mar 2020 08:00:00 -0400 Viget is full of outdoor enthusiasts and, of course, technologists. For this year's Pointless Weekend, we brought these passions together to build TrailBuddy. This app aims to solve that eternal question: Is my favorite trail dry so I can go hike/run/ride? While getting muddy might rekindle fond childhood memories for some, exposing your gear to the elements isn’t great – it’s bad for your equipment and can cause long-term, and potentially expensive, damage to the trail. There are some trail apps out there but we wanted one that would focus on current conditions. Currently, our favorites trail apps, like mtbproject.com, trailrunproject.com, and hikingproject.com -- all owned by REI, rely on user-reported conditions. While this can be effective, the reports are frequently unreliable, as condition reports can become outdated in just a few days. Our goal was to solve this problem by building an app that brought together location, soil type, and weather history data to create on-demand condition predictions for any trail in the US. We built an initial version of TrailBuddy by tapping into several readily-available APIs, then running the combined data through a machine learning algorithm. (Oh, and also by bringing together a bunch of smart and motivated people and combining them with pizza and some of the magic that is our Pointless Weekends. We'll share the other Pointless Project, Scurry, with you soon.) Learn More We're hiring Front-End Developers in our Boulder, Chattanooga, Durham, Falls Church and Remote (U.S. Only) offices. Learn more and introduce yourself. The quest for data. We knew from the start this app would require data from a number of sources. As previously mentioned, we used REI’s APIs (i.e. https://www.hikingproject.com/data) as the source for basic trail information. We used the trails’ latitude and longitude coordinates as well as its elevation to query weather and soil type. We also found data points such as a trail’s total distance to be relevant to our app users and decided to include that on the front-end, too. Since we wanted to go beyond relying solely on user-reported metrics, which is how REI’s current MTB project works, we came up with a list of factors that could affect the trail for that day. First on that list was weather. We not only considered the impacts of the current forecast, but we also looked at the previous day’s forecast. For example, it’s safe to assume that if it’s currently raining or had been raining over the last several days, it would likely lead to muddy and unfavorable conditions for that trail. We utilized the DarkSky API (https://darksky.net/dev) to get the weather forecasts for that day, as well as the records for previous days. This included expected information, like temperature and precipitation chance. It also included some interesting data points that we realized may be factors, like precipitation intensity, cloud cover, and UV index. But weather alone can’t predict how muddy or dry a trail will be. To determine that for sure, we also wanted to use soil data to help predict how well a trail’s unique soil composition recovers after precipitation. Similar amounts of rain on trails of very different soil types could lead to vastly different trail conditions. A more clay-based soil would hold water much longer, and therefore be much more unfavorable, than loamy soil. Finding a reliable source for soil type and soil drainage proved incredibly difficult. After many hours, we finally found a source through the USDA that we could use. As a side note—the USDA keeps track of lots of data points on soil information that’s actually pretty interesting! We can’t say we’re soil experts but, we felt like we got pretty close. We used Whimsical to build our initial wireframes. Putting our design hats on. From the very first pitch for this app, TrailBuddy’s main differentiator to peer trail resources is its ability to surface real-time information, reliably, and simply. For as complicated as the technology needed to collect and interpret information, the front-end app design needed to be clean and unencumbered. We thought about how users would naturally look for information when setting out to find a trail and what factors they’d think about when doing so. We posed questions like: How easy or difficult of a trail are they looking for?How long is this trail?What does the trail look like?How far away is the trail in relation to my location?For what activity am I needing a trail for? Is this a trail I’d want to come back to in the future? By putting ourselves in our users’ shoes we quickly identified key features TrailBuddy needed to have to be relevant and useful. First, we needed filtering, so users could filter between difficulty and distance to narrow down their results to fit the activity level. Next, we needed a way to look up trails by activity type—mountain biking, hiking, and running are all types of activities REI’s MTB API tracks already so those made sense as a starting point. And lastly, we needed a way for the app to find trails based on your location; or at the very least the ability to find a trail within a certain distance of your current location. We used Figma to design, prototype, and gather feedback on TrailBuddy. Using machine learning to predict trail conditions. As stated earlier, none of us are actual soil or data scientists. So, in order to achieve the real-time conditions reporting TrailBuddy promised, we’d decided to leverage machine learning to make predictions for us. Digging into the utility of machine learning was a first for all of us on this team. Luckily, there was an excellent tutorial that laid out the basics of building an ML model in Python. Provided a CSV file with inputs in the left columns, and the desired output on the right, the script we generated was able to test out multiple different model strategies, and output the effectiveness of each in predicting results, shown below. We assembled all of the historical weather and soil data we could find for a given latitude/longitude coordinate, compiled a 1000 * 100 sized CSV, ran it through the Python evaluator, and found that the CART and SVM models consistently outranked the others in terms of predicting trail status. In other words, we found a working model for which to run our data through and get (hopefully) reliable predictions from. The next step was to figure out which data fields were actually critical in predicting the trail status. The more we could refine our data set, the faster and smarter our predictive model could become. We pulled in some Ruby code to take the original (and quite massive) CSV, and output smaller versions to test with. Now again, we’re no data scientists here but, we were able to cull out a good majority of the data and still get a model that performed at 95% accuracy. With our trained model in hand, we could serialize that to into a model.pkl file (pkl stands for “pickle”, as in we’ve “pickled” the model), move that file into our Rails app along with it a python script to deserialize it, pass in a dynamic set of data, and generate real-time predictions. At the end of the day, our model has a propensity to predict fantastic trail conditions (about 99% of the time in fact…). Just one of those optimistic machine learning models we guess. Where we go from here. It was clear that after two days, our team still wanted to do more. As a first refinement, we’d love to work more with our data set and ML model. Something that was quite surprising during the weekend was that we found we could remove all but two days worth of weather data, and all of the soil data we worked so hard to dig up, and still hit 95% accuracy. Which … doesn’t make a ton of sense. Perhaps the data we chose to predict trail conditions just isn’t a great empirical predictor of trail status. While these are questions too big to solve in just a single weekend, we'd love to spend more time digging into this in a future iteration. Full Article News & Culture
predict TrailBuddy: Using AI to Create a Predictive Trail Conditions App By feedproxy.google.com Published On :: Thu, 19 Mar 2020 08:00:00 -0400 Viget is full of outdoor enthusiasts and, of course, technologists. For this year's Pointless Weekend, we brought these passions together to build TrailBuddy. This app aims to solve that eternal question: Is my favorite trail dry so I can go hike/run/ride? While getting muddy might rekindle fond childhood memories for some, exposing your gear to the elements isn’t great – it’s bad for your equipment and can cause long-term, and potentially expensive, damage to the trail. There are some trail apps out there but we wanted one that would focus on current conditions. Currently, our favorites trail apps, like mtbproject.com, trailrunproject.com, and hikingproject.com -- all owned by REI, rely on user-reported conditions. While this can be effective, the reports are frequently unreliable, as condition reports can become outdated in just a few days. Our goal was to solve this problem by building an app that brought together location, soil type, and weather history data to create on-demand condition predictions for any trail in the US. We built an initial version of TrailBuddy by tapping into several readily-available APIs, then running the combined data through a machine learning algorithm. (Oh, and also by bringing together a bunch of smart and motivated people and combining them with pizza and some of the magic that is our Pointless Weekends. We'll share the other Pointless Project, Scurry, with you soon.) Learn More We're hiring Front-End Developers in our Boulder, Chattanooga, Durham, Falls Church and Remote (U.S. Only) offices. Learn more and introduce yourself. The quest for data. We knew from the start this app would require data from a number of sources. As previously mentioned, we used REI’s APIs (i.e. https://www.hikingproject.com/data) as the source for basic trail information. We used the trails’ latitude and longitude coordinates as well as its elevation to query weather and soil type. We also found data points such as a trail’s total distance to be relevant to our app users and decided to include that on the front-end, too. Since we wanted to go beyond relying solely on user-reported metrics, which is how REI’s current MTB project works, we came up with a list of factors that could affect the trail for that day. First on that list was weather. We not only considered the impacts of the current forecast, but we also looked at the previous day’s forecast. For example, it’s safe to assume that if it’s currently raining or had been raining over the last several days, it would likely lead to muddy and unfavorable conditions for that trail. We utilized the DarkSky API (https://darksky.net/dev) to get the weather forecasts for that day, as well as the records for previous days. This included expected information, like temperature and precipitation chance. It also included some interesting data points that we realized may be factors, like precipitation intensity, cloud cover, and UV index. But weather alone can’t predict how muddy or dry a trail will be. To determine that for sure, we also wanted to use soil data to help predict how well a trail’s unique soil composition recovers after precipitation. Similar amounts of rain on trails of very different soil types could lead to vastly different trail conditions. A more clay-based soil would hold water much longer, and therefore be much more unfavorable, than loamy soil. Finding a reliable source for soil type and soil drainage proved incredibly difficult. After many hours, we finally found a source through the USDA that we could use. As a side note—the USDA keeps track of lots of data points on soil information that’s actually pretty interesting! We can’t say we’re soil experts but, we felt like we got pretty close. We used Whimsical to build our initial wireframes. Putting our design hats on. From the very first pitch for this app, TrailBuddy’s main differentiator to peer trail resources is its ability to surface real-time information, reliably, and simply. For as complicated as the technology needed to collect and interpret information, the front-end app design needed to be clean and unencumbered. We thought about how users would naturally look for information when setting out to find a trail and what factors they’d think about when doing so. We posed questions like: How easy or difficult of a trail are they looking for?How long is this trail?What does the trail look like?How far away is the trail in relation to my location?For what activity am I needing a trail for? Is this a trail I’d want to come back to in the future? By putting ourselves in our users’ shoes we quickly identified key features TrailBuddy needed to have to be relevant and useful. First, we needed filtering, so users could filter between difficulty and distance to narrow down their results to fit the activity level. Next, we needed a way to look up trails by activity type—mountain biking, hiking, and running are all types of activities REI’s MTB API tracks already so those made sense as a starting point. And lastly, we needed a way for the app to find trails based on your location; or at the very least the ability to find a trail within a certain distance of your current location. We used Figma to design, prototype, and gather feedback on TrailBuddy. Using machine learning to predict trail conditions. As stated earlier, none of us are actual soil or data scientists. So, in order to achieve the real-time conditions reporting TrailBuddy promised, we’d decided to leverage machine learning to make predictions for us. Digging into the utility of machine learning was a first for all of us on this team. Luckily, there was an excellent tutorial that laid out the basics of building an ML model in Python. Provided a CSV file with inputs in the left columns, and the desired output on the right, the script we generated was able to test out multiple different model strategies, and output the effectiveness of each in predicting results, shown below. We assembled all of the historical weather and soil data we could find for a given latitude/longitude coordinate, compiled a 1000 * 100 sized CSV, ran it through the Python evaluator, and found that the CART and SVM models consistently outranked the others in terms of predicting trail status. In other words, we found a working model for which to run our data through and get (hopefully) reliable predictions from. The next step was to figure out which data fields were actually critical in predicting the trail status. The more we could refine our data set, the faster and smarter our predictive model could become. We pulled in some Ruby code to take the original (and quite massive) CSV, and output smaller versions to test with. Now again, we’re no data scientists here but, we were able to cull out a good majority of the data and still get a model that performed at 95% accuracy. With our trained model in hand, we could serialize that to into a model.pkl file (pkl stands for “pickle”, as in we’ve “pickled” the model), move that file into our Rails app along with it a python script to deserialize it, pass in a dynamic set of data, and generate real-time predictions. At the end of the day, our model has a propensity to predict fantastic trail conditions (about 99% of the time in fact…). Just one of those optimistic machine learning models we guess. Where we go from here. It was clear that after two days, our team still wanted to do more. As a first refinement, we’d love to work more with our data set and ML model. Something that was quite surprising during the weekend was that we found we could remove all but two days worth of weather data, and all of the soil data we worked so hard to dig up, and still hit 95% accuracy. Which … doesn’t make a ton of sense. Perhaps the data we chose to predict trail conditions just isn’t a great empirical predictor of trail status. While these are questions too big to solve in just a single weekend, we'd love to spend more time digging into this in a future iteration. Full Article News & Culture
predict TrailBuddy: Using AI to Create a Predictive Trail Conditions App By feedproxy.google.com Published On :: Thu, 19 Mar 2020 08:00:00 -0400 Viget is full of outdoor enthusiasts and, of course, technologists. For this year's Pointless Weekend, we brought these passions together to build TrailBuddy. This app aims to solve that eternal question: Is my favorite trail dry so I can go hike/run/ride? While getting muddy might rekindle fond childhood memories for some, exposing your gear to the elements isn’t great – it’s bad for your equipment and can cause long-term, and potentially expensive, damage to the trail. There are some trail apps out there but we wanted one that would focus on current conditions. Currently, our favorites trail apps, like mtbproject.com, trailrunproject.com, and hikingproject.com -- all owned by REI, rely on user-reported conditions. While this can be effective, the reports are frequently unreliable, as condition reports can become outdated in just a few days. Our goal was to solve this problem by building an app that brought together location, soil type, and weather history data to create on-demand condition predictions for any trail in the US. We built an initial version of TrailBuddy by tapping into several readily-available APIs, then running the combined data through a machine learning algorithm. (Oh, and also by bringing together a bunch of smart and motivated people and combining them with pizza and some of the magic that is our Pointless Weekends. We'll share the other Pointless Project, Scurry, with you soon.) Learn More We're hiring Front-End Developers in our Boulder, Chattanooga, Durham, Falls Church and Remote (U.S. Only) offices. Learn more and introduce yourself. The quest for data. We knew from the start this app would require data from a number of sources. As previously mentioned, we used REI’s APIs (i.e. https://www.hikingproject.com/data) as the source for basic trail information. We used the trails’ latitude and longitude coordinates as well as its elevation to query weather and soil type. We also found data points such as a trail’s total distance to be relevant to our app users and decided to include that on the front-end, too. Since we wanted to go beyond relying solely on user-reported metrics, which is how REI’s current MTB project works, we came up with a list of factors that could affect the trail for that day. First on that list was weather. We not only considered the impacts of the current forecast, but we also looked at the previous day’s forecast. For example, it’s safe to assume that if it’s currently raining or had been raining over the last several days, it would likely lead to muddy and unfavorable conditions for that trail. We utilized the DarkSky API (https://darksky.net/dev) to get the weather forecasts for that day, as well as the records for previous days. This included expected information, like temperature and precipitation chance. It also included some interesting data points that we realized may be factors, like precipitation intensity, cloud cover, and UV index. But weather alone can’t predict how muddy or dry a trail will be. To determine that for sure, we also wanted to use soil data to help predict how well a trail’s unique soil composition recovers after precipitation. Similar amounts of rain on trails of very different soil types could lead to vastly different trail conditions. A more clay-based soil would hold water much longer, and therefore be much more unfavorable, than loamy soil. Finding a reliable source for soil type and soil drainage proved incredibly difficult. After many hours, we finally found a source through the USDA that we could use. As a side note—the USDA keeps track of lots of data points on soil information that’s actually pretty interesting! We can’t say we’re soil experts but, we felt like we got pretty close. We used Whimsical to build our initial wireframes. Putting our design hats on. From the very first pitch for this app, TrailBuddy’s main differentiator to peer trail resources is its ability to surface real-time information, reliably, and simply. For as complicated as the technology needed to collect and interpret information, the front-end app design needed to be clean and unencumbered. We thought about how users would naturally look for information when setting out to find a trail and what factors they’d think about when doing so. We posed questions like: How easy or difficult of a trail are they looking for?How long is this trail?What does the trail look like?How far away is the trail in relation to my location?For what activity am I needing a trail for? Is this a trail I’d want to come back to in the future? By putting ourselves in our users’ shoes we quickly identified key features TrailBuddy needed to have to be relevant and useful. First, we needed filtering, so users could filter between difficulty and distance to narrow down their results to fit the activity level. Next, we needed a way to look up trails by activity type—mountain biking, hiking, and running are all types of activities REI’s MTB API tracks already so those made sense as a starting point. And lastly, we needed a way for the app to find trails based on your location; or at the very least the ability to find a trail within a certain distance of your current location. We used Figma to design, prototype, and gather feedback on TrailBuddy. Using machine learning to predict trail conditions. As stated earlier, none of us are actual soil or data scientists. So, in order to achieve the real-time conditions reporting TrailBuddy promised, we’d decided to leverage machine learning to make predictions for us. Digging into the utility of machine learning was a first for all of us on this team. Luckily, there was an excellent tutorial that laid out the basics of building an ML model in Python. Provided a CSV file with inputs in the left columns, and the desired output on the right, the script we generated was able to test out multiple different model strategies, and output the effectiveness of each in predicting results, shown below. We assembled all of the historical weather and soil data we could find for a given latitude/longitude coordinate, compiled a 1000 * 100 sized CSV, ran it through the Python evaluator, and found that the CART and SVM models consistently outranked the others in terms of predicting trail status. In other words, we found a working model for which to run our data through and get (hopefully) reliable predictions from. The next step was to figure out which data fields were actually critical in predicting the trail status. The more we could refine our data set, the faster and smarter our predictive model could become. We pulled in some Ruby code to take the original (and quite massive) CSV, and output smaller versions to test with. Now again, we’re no data scientists here but, we were able to cull out a good majority of the data and still get a model that performed at 95% accuracy. With our trained model in hand, we could serialize that to into a model.pkl file (pkl stands for “pickle”, as in we’ve “pickled” the model), move that file into our Rails app along with it a python script to deserialize it, pass in a dynamic set of data, and generate real-time predictions. At the end of the day, our model has a propensity to predict fantastic trail conditions (about 99% of the time in fact…). Just one of those optimistic machine learning models we guess. Where we go from here. It was clear that after two days, our team still wanted to do more. As a first refinement, we’d love to work more with our data set and ML model. Something that was quite surprising during the weekend was that we found we could remove all but two days worth of weather data, and all of the soil data we worked so hard to dig up, and still hit 95% accuracy. Which … doesn’t make a ton of sense. Perhaps the data we chose to predict trail conditions just isn’t a great empirical predictor of trail status. While these are questions too big to solve in just a single weekend, we'd love to spend more time digging into this in a future iteration. Full Article News & Culture
predict Optimal construction of Koopman eigenfunctions for prediction and control. (arXiv:1810.08733v3 [math.OC] UPDATED) By arxiv.org Published On :: This work presents a novel data-driven framework for constructing eigenfunctions of the Koopman operator geared toward prediction and control. The method leverages the richness of the spectrum of the Koopman operator away from attractors to construct a rich set of eigenfunctions such that the state (or any other observable quantity of interest) is in the span of these eigenfunctions and hence predictable in a linear fashion. The eigenfunction construction is optimization-based with no dictionary selection required. Once a predictor for the uncontrolled part of the system is obtained in this way, the incorporation of control is done through a multi-step prediction error minimization, carried out by a simple linear least-squares regression. The predictor so obtained is in the form of a linear controlled dynamical system and can be readily applied within the Koopman model predictive control framework of [12] to control nonlinear dynamical systems using linear model predictive control tools. The method is entirely data-driven and based purely on convex optimization, with no reliance on neural networks or other non-convex machine learning tools. The novel eigenfunction construction method is also analyzed theoretically, proving rigorously that the family of eigenfunctions obtained is rich enough to span the space of all continuous functions. In addition, the method is extended to construct generalized eigenfunctions that also give rise Koopman invariant subspaces and hence can be used for linear prediction. Detailed numerical examples with code available online demonstrate the approach, both for prediction and feedback control. Full Article
predict A Chance Constraint Predictive Control and Estimation Framework for Spacecraft Descent with Field Of View Constraints. (arXiv:2005.03245v1 [math.OC]) By arxiv.org Published On :: Recent studies of optimization methods and GNC of spacecraft near small bodies focusing on descent, landing, rendezvous, etc., with key safety constraints such as line-of-sight conic zones and soft landings have shown promising results; this paper considers descent missions to an asteroid surface with a constraint that consists of an onboard camera and asteroid surface markers while using a stochastic convex MPC law. An undermodeled asteroid gravity and spacecraft technology inspired measurement model is established to develop the constraint. Then a computationally light stochastic Linear Quadratic MPC strategy is presented to keep the spacecraft in satisfactory field of view of the surface markers while trajectory tracking, employing chance based constraints and up-to-date estimation uncertainty from navigation. The estimation uncertainty giving rise to the tightened constraints is particularly addressed. Results suggest robust tracking performance across a variety of trajectories. Full Article
predict Temporal Event Segmentation using Attention-based Perceptual Prediction Model for Continual Learning. (arXiv:2005.02463v2 [cs.CV] UPDATED) By arxiv.org Published On :: Temporal event segmentation of a long video into coherent events requires a high level understanding of activities' temporal features. The event segmentation problem has been tackled by researchers in an offline training scheme, either by providing full, or weak, supervision through manually annotated labels or by self-supervised epoch based training. In this work, we present a continual learning perceptual prediction framework (influenced by cognitive psychology) capable of temporal event segmentation through understanding of the underlying representation of objects within individual frames. Our framework also outputs attention maps which effectively localize and track events-causing objects in each frame. The model is tested on a wildlife monitoring dataset in a continual training manner resulting in $80\%$ recall rate at $20\%$ false positive rate for frame level segmentation. Activity level testing has yielded $80\%$ activity recall rate for one false activity detection every 50 minutes. Full Article
predict Prediction of Event Related Potential Speller Performance Using Resting-State EEG. (arXiv:2005.01325v3 [cs.HC] UPDATED) By arxiv.org Published On :: Event-related potential (ERP) speller can be utilized in device control and communication for locked-in or severely injured patients. However, problems such as inter-subject performance instability and ERP-illiteracy are still unresolved. Therefore, it is necessary to predict classification performance before performing an ERP speller in order to use it efficiently. In this study, we investigated the correlations with ERP speller performance using a resting-state before an ERP speller. In specific, we used spectral power and functional connectivity according to four brain regions and five frequency bands. As a result, the delta power in the frontal region and functional connectivity in the delta, alpha, gamma bands are significantly correlated with the ERP speller performance. Also, we predicted the ERP speller performance using EEG features in the resting-state. These findings may contribute to investigating the ERP-illiteracy and considering the appropriate alternatives for each user. Full Article
predict A memory of motion for visual predictive control tasks. (arXiv:2001.11759v3 [cs.RO] UPDATED) By arxiv.org Published On :: This paper addresses the problem of efficiently achieving visual predictive control tasks. To this end, a memory of motion, containing a set of trajectories built off-line, is used for leveraging precomputation and dealing with difficult visual tasks. Standard regression techniques, such as k-nearest neighbors and Gaussian process regression, are used to query the memory and provide on-line a warm-start and a way point to the control optimization process. The proposed technique allows the control scheme to achieve high performance and, at the same time, keep the computational time limited. Simulation and experimental results, carried out with a 7-axis manipulator, show the effectiveness of the approach. Full Article
predict A predictive path-following controller for multi-steered articulated vehicles. (arXiv:1912.06259v5 [math.OC] UPDATED) By arxiv.org Published On :: Stabilizing multi-steered articulated vehicles in backward motion is a complex task for any human driver. Unless the vehicle is accurately steered, its structurally unstable joint-angle kinematics during reverse maneuvers can cause the vehicle segments to fold and enter a jack-knife state. In this work, a model predictive path-following controller is proposed enabling automatic low-speed steering control of multi-steered articulated vehicles, comprising a car-like tractor and an arbitrary number of trailers with passive or active steering. The proposed path-following controller is tailored to follow nominal paths that contains full state and control-input information, and is designed to satisfy various physical constraints on the vehicle states as well as saturations and rate limitations on the tractor's curvature and the trailer steering angles. The performance of the proposed model predictive path-following controller is evaluated in a set of simulations for a multi-steered 2-trailer with a car-like tractor where the last trailer has steerable wheels. Full Article
predict Universal Coding and Prediction on Martin-L"of Random Points. (arXiv:2005.03627v1 [math.PR]) By arxiv.org Published On :: We perform an effectivization of classical results concerning universal coding and prediction for stationary ergodic processes over an arbitrary finite alphabet. That is, we lift the well-known almost sure statements to statements about Martin-L"of random sequences. Most of this work is quite mechanical but, by the way, we complete a result of Ryabko from 2008 by showing that each universal probability measure in the sense of universal coding induces a universal predictor in the prequential sense. Surprisingly, the effectivization of this implication holds true provided the universal measure does not ascribe too low conditional probabilities to individual symbols. As an example, we show that the Prediction by Partial Matching (PPM) measure satisfies this requirement. In the almost sure setting, the requirement is superfluous. Full Article
predict Predictions and algorithmic statistics for infinite sequence. (arXiv:2005.03467v1 [cs.IT]) By arxiv.org Published On :: Consider the following prediction problem. Assume that there is a block box that produces bits according to some unknown computable distribution on the binary tree. We know first $n$ bits $x_1 x_2 ldots x_n$. We want to know the probability of the event that that the next bit is equal to $1$. Solomonoff suggested to use universal semimeasure $m$ for solving this task. He proved that for every computable distribution $P$ and for every $b in {0,1}$ the following holds: $$sum_{n=1}^{infty}sum_{x: l(x)=n} P(x) (P(b | x) - m(b | x))^2 < infty .$$ However, Solomonoff's method has a negative aspect: Hutter and Muchnik proved that there are an universal semimeasure $m$, computable distribution $P$ and a random (in Martin-L{"o}f sense) sequence $x_1 x_2ldots$ such that $lim_{n o infty} P(x_{n+1} | x_1ldots x_n) - m(x_{n+1} | x_1ldots x_n) rightarrow 0$. We suggest a new way for prediction. For every finite string $x$ we predict the new bit according to the best (in some sence) distribution for $x$. We prove the similar result as Solomonoff theorem for our way of prediction. Also we show that our method of prediction has no that negative aspect as Solomonoff's method. Full Article
predict A combination of 'pooling' with a prediction model can reduce by 73% the number of COVID-19 (Corona-virus) tests. (arXiv:2005.03453v1 [cs.LG]) By arxiv.org Published On :: We show that combining a prediction model (based on neural networks), with a new method of test pooling (better than the original Dorfman method, and better than double-pooling) called 'Grid', we can reduce the number of Covid-19 tests by 73%. Full Article
predict Joint Prediction and Time Estimation of COVID-19 Developing Severe Symptoms using Chest CT Scan. (arXiv:2005.03405v1 [eess.IV]) By arxiv.org Published On :: With the rapidly worldwide spread of Coronavirus disease (COVID-19), it is of great importance to conduct early diagnosis of COVID-19 and predict the time that patients might convert to the severe stage, for designing effective treatment plan and reducing the clinicians' workloads. In this study, we propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time, and if yes, predict the possible conversion time that the patient would spend to convert to the severe stage. To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification, and 2) the weight for each feature via a sparsity regularization term to remove the redundant features of high-dimensional data and learn the shared information across the classification task and the regression task. To our knowledge, this study is the first work to predict the disease progression and the conversion time, which could help clinicians to deal with the potential severe cases in time or even save the patients' lives. Experimental analysis was conducted on a real data set from two hospitals with 422 chest computed tomography (CT) scans, where 52 cases were converted to severe on average 5.64 days and 34 cases were severe at admission. Results show that our method achieves the best classification (e.g., 85.91% of accuracy) and regression (e.g., 0.462 of the correlation coefficient) performance, compared to all comparison methods. Moreover, our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time. Full Article
predict Hierarchical Predictive Coding Models in a Deep-Learning Framework. (arXiv:2005.03230v1 [cs.CV]) By arxiv.org Published On :: Bayesian predictive coding is a putative neuromorphic method for acquiring higher-level neural representations to account for sensory input. Although originating in the neuroscience community, there are also efforts in the machine learning community to study these models. This paper reviews some of the more well known models. Our review analyzes module connectivity and patterns of information transfer, seeking to find general principles used across the models. We also survey some recent attempts to cast these models within a deep learning framework. A defining feature of Bayesian predictive coding is that it uses top-down, reconstructive mechanisms to predict incoming sensory inputs or their lower-level representations. Discrepancies between the predicted and the actual inputs, known as prediction errors, then give rise to future learning that refines and improves the predictive accuracy of learned higher-level representations. Predictive coding models intended to describe computations in the neocortex emerged prior to the development of deep learning and used a communication structure between modules that we name the Rao-Ballard protocol. This protocol was derived from a Bayesian generative model with some rather strong statistical assumptions. The RB protocol provides a rubric to assess the fidelity of deep learning models that claim to implement predictive coding. Full Article
predict A Gentle Introduction to Quantum Computing Algorithms with Applications to Universal Prediction. (arXiv:2005.03137v1 [quant-ph]) By arxiv.org Published On :: In this technical report we give an elementary introduction to Quantum Computing for non-physicists. In this introduction we describe in detail some of the foundational Quantum Algorithms including: the Deutsch-Jozsa Algorithm, Shor's Algorithm, Grocer Search, and Quantum Counting Algorithm and briefly the Harrow-Lloyd Algorithm. Additionally we give an introduction to Solomonoff Induction, a theoretically optimal method for prediction. We then attempt to use Quantum computing to find better algorithms for the approximation of Solomonoff Induction. This is done by using techniques from other Quantum computing algorithms to achieve a speedup in computing the speed prior, which is an approximation of Solomonoff's prior, a key part of Solomonoff Induction. The major limiting factors are that the probabilities being computed are often so small that without a sufficient (often large) amount of trials, the error may be larger than the result. If a substantial speedup in the computation of an approximation of Solomonoff Induction can be achieved through quantum computing, then this can be applied to the field of intelligent agents as a key part of an approximation of the agent AIXI. Full Article
predict Trump administration models predict near doubling of daily death toll by June By www.inlander.com Published On :: Mon, 04 May 2020 14:21:00 -0700 By The New York Times The New York Times Company As President Donald Trump presses for states to reopen their economies, his administration is privately projecting a steady rise in the number of cases and deaths from the coronavirus over the next several weeks, reaching about 3,000 daily deaths June 1, according to an internal document obtained by The New York Times, nearly double from the current level of about 1,750.… Full Article Nation & World
predict Modeling of time-variant threshability due to interactions between a crop in a field and atmospheric and soil conditions for prediction of daily opportunity windows for harvest operations using field-level diagnosis and prediction of weather conditions an By www.freepatentsonline.com Published On :: Tue, 19 May 2015 08:00:00 EDT A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyzes. Full Article
predict Systems and methods for anti-causal noise predictive filtering in a data channel By www.freepatentsonline.com Published On :: Tue, 05 May 2015 08:00:00 EDT Various embodiments of the present invention provide systems and methods for data processing. As an example, a data processing circuit is disclosed that includes a data detector circuit. The data detector circuit includes an anti-causal noise predictive filter circuit and a data detection circuit. In some cases, the anti-causal noise predictive filter circuit is operable to apply noise predictive filtering to a detector input to yield a filtered output, and the data detection circuit is operable to apply a data detection algorithm to the filtered output derived from the anti-causal noise predictive filter circuit. Full Article
predict Combined branch target and predicate prediction for instruction blocks By www.freepatentsonline.com Published On :: Tue, 28 Apr 2015 08:00:00 EDT Embodiments provide methods, apparatus, systems, and computer readable media associated with predicting predicates and branch targets during execution of programs using combined branch target and predicate predictions. The predictions may be made using one or more prediction control flow graphs which represent predicates in instruction blocks and branches between blocks in a program. The prediction control flow graphs may be structured as trees such that each node in the graphs is associated with a predicate instruction, and each leaf associated with a branch target which jumps to another block. During execution of a block, a prediction generator may take a control point history and generate a prediction. Following the path suggested by the prediction through the tree, both predicate values and branch targets may be predicted. Other embodiments may be described and claimed. Full Article
predict Virtualization support for branch prediction logic enable / disable at hypervisor and guest operating system levels By www.freepatentsonline.com Published On :: Tue, 12 May 2015 08:00:00 EDT A hypervisor and one or more guest operating systems resident in a data processing system and hosted by the hypervisor are configured to selectively enable or disable branch prediction logic through separate hypervisor-mode and guest-mode instructions. By doing so, different branch prediction strategies may be employed for different operating systems and user applications hosted thereby to provide finer grained optimization of the branch prediction logic for different operating scenarios. Full Article
predict Predictive software streaming By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT A software streaming platform may be implemented that predictively chooses units of a program to download based on the value of downloading the unit. In one example, a program is divided into blocks. The sequence in which blocks of the program historically have been requested is analyzed in order to determine, for a given history, what block is the next most likely to be requested. Blocks then may be combined into chunks, where each chunk represents a chain of blocks that have a high likelihood of occurring in a sequence. A table is then constructed indicating, for a given chunk, the chunks that are most likely to follow the given chunk. Based on the likelihood table and various other considerations, the value of downloading particular chunks is determined, and the chunk with the highest expected value is downloaded. Full Article
predict Predicting odor pleasantness with an electronic nose By www.freepatentsonline.com Published On :: Tue, 04 Nov 2014 08:00:00 EST Apparatus and method for assessing odors, comprises an electronic nose, to be applied to an odor and to output a structure identifying the odor; a neural network which maps an extracted structure to a first location on a pre-learned axis of odor pleasantness; and an output for outputting an assessment of an applied odor based on said first location. The assessment may be a prediction of how pleasant a user will consider the odor. Full Article
predict Predictive natural guidance By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT In one embodiment, a navigation system provides predictive natural guidance utilizing a mobile landmark based on location data. The location data may be a schedule. A controller receives data of a schedule of a mobile landmark. The location data could be collected in real time or estimated. The mobile landmark may be a vehicle or a celestial body. The controller correlates a route from an origin location to a destination location and the location of the mobile landmark. The controller generates a message based on the correlation. The message is output during presentation of the route and references the mobile landmark. Full Article
predict Prediction of dynamic current waveform and spectrum in a semiconductor device By www.freepatentsonline.com Published On :: Tue, 19 May 2015 08:00:00 EDT A method for accurately determining the shape of currents in a current spectrum for a circuit design is provided. The method includes determining timing and power consumption characteristics. In one embodiment, timing characteristics are provided through a electronic design automation tool. The timing characteristics yield a current pulse time width. In another embodiment, power consumption characteristics are provided by an EDA tool. The power consumption characteristics yield a current pulse amplitude. The shape of the current pulse is obtained by incrementally processing a power analyzer tool over relatively small time increments over one or more clock cycles while capturing the switching nodes of a simulation of the circuit design for each time increment. In one embodiment, the time increments are one nanosecond or less. Full Article
predict System and method for applying a text prediction algorithm to a virtual keyboard By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT An electronic device for text prediction in a virtual keyboard. The device includes a memory including an input determination module for execution by the microprocessor, the input determination module being configured to: receive signals representing input at the virtual keyboard, the virtual keyboard being divided into a plurality of subregions, the plurality of subregions including at least one subregion being associated with two or more characters and/or symbols of the virtual keyboard; identify a subregion on the virtual keyboard corresponding to the input; determine any character or symbol associated with the identified subregion; and if there is at least one determined character or symbol, provide the at least one determined character or symbol to a text prediction algorithm. Full Article
predict Multi-unit blood processor with volume prediction By www.freepatentsonline.com Published On :: Tue, 12 May 2015 08:00:00 EDT Method and Apparatus for predicting the volume of a component separated from a composite fluid by predicting the volume of the composite fluid from sensed pressure and predicting the volume of other separated components from sensed movement of the other components to collection bags. Full Article
predict Real-time predictive systems for intelligent energy monitoring and management of electrical power networks By www.freepatentsonline.com Published On :: Tue, 12 May 2015 08:00:00 EDT A system for intelligent monitoring and management of an electrical system is disclosed. The system includes a data acquisition component, a power analytics server and a client terminal. The data acquisition component acquires real-time data output from the electrical system. The power analytics server is comprised of a real-time energy pricing engine, virtual system modeling engine, an analytics engine, a machine learning engine and a schematic user interface creator engine. The real-time energy pricing engine generates real-time utility power pricing data. The virtual system modeling engine generates predicted data output for the electrical system. The analytics engine monitors real-time data output and predicted data output of the electrical system. The machine learning engine stores acid processes patterns observed from the real-time data output and the predicted data output to forecast an aspect of the electrical system. Full Article
predict Systems and methods for phase predictive impedance loss model calibration and compensation By www.freepatentsonline.com Published On :: Tue, 19 May 2015 08:00:00 EDT The systems and methods of the present disclosure calibrate impedance loss model parameters associated with an electrosurgical system having no external cabling or having external cabling with a fixed or known reactance, and obtain accurate electrical measurements of a tissue site by compensating for impedance losses associated with the transmission line of an electrosurgical device using the calibrated impedance loss model parameters. A computer system stores voltage and current sensor data for a range of different test loads and calculates sensed impedance values for each test load. The computer system then predicts a phase value for each load using each respective load impedance value. The computer system back calculates impedance loss model parameters including a source impedance parameter and a leakage impedance parameter based upon the voltage and current sensor data, the predicted phase values, and the impedance values of the test loads. Full Article
predict Predictive pulse width modulation for an open delta H-bridge driven high efficiency ironless permanent magnet machine By www.freepatentsonline.com Published On :: Tue, 05 Aug 2014 08:00:00 EDT Embodiments of the present method and system permit an effective method for determining the optimum selection of pulse width modulation polarity and type including determining machine parameters, inputting the machine parameters into a predicted duty cycle module, determining the optimum polarity of the pulse width modulation for a predicted duty cycle based on a pulse width modulation generation algorithm, and determining the optimum type of the pulse width modulation for a predicted duty cycle based on the pulse width modulation generation algorithm. Full Article
predict Automating predictive maintenance for automobiles By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT An approach is provided to automate predictive vehicle maintenance. In the approach, a vehicle's information handling system receives vehicle data transmissions from a number of other vehicles in geographic proximity to the vehicle. Both the vehicle and the other vehicles correspond to various vehicle types that are used to identify those other vehicles that are similar to the vehicle. The sets of received vehicle data transmissions that are received to similar vehicles are analyzed with respect to a plurality of vehicle maintenance data corresponding to the vehicle. The analysis of the vehicle data transmissions resulting in predictive vehicle maintenance recommendations pertaining to the first vehicle. Full Article
predict Voltage controlled oscillator band-select fast searching using predictive searching By www.freepatentsonline.com Published On :: Tue, 05 May 2015 08:00:00 EDT A method, an apparatus, and a computer program product are provided. The apparatus tunes a frequency provided by a VCO. The apparatus determines a relative capacitance change associated with a first frequency and a desired frequency from a look-up table. The apparatus adjusts a capacitor circuit in the VCO based on the determined relative capacitance change determined from the look-up table in order to tune from the first frequency to the desired frequency. The apparatus determines that the frequency provided by the VCO is a second frequency different than the desired frequency after adjusting the capacitor circuit. The apparatus performs an iterative search to further adjust the capacitor circuit when a difference between the second frequency and the desired frequency is greater than a threshold. Full Article