In the spirit of the Halloween season, IEEE Spectrum presents a pair of stories that—although grounded in scientific truth rather than the macabre—were no less harrowing for those who lived them. In today’s installment, Robert Langer had to push back against his field’s conventional wisdom to pioneer a drug-delivery mechanism vital to modern medicine.
Nicknamed the Edison of Medicine, Robert Langer is one of the world’s most-cited researchers, with over 1,600 published papers, 1,400 patents, and a top-dog role as one of MIT’s nine prestigious Institute Professors. Langer pioneered the now-ubiquitous drug delivery systems used in modern cancer treatments and vaccines, indirectly saving countless lives throughout his 50-year career.
But, much like Edison and other inventors, Langer’s big ideas were initially met with skepticism from the scientific establishment.
He came up in the 1970s as a chemical engineering postdoc working in the lab of Dr. Judah Folkman, a pediatric surgeon at the Boston Children’s Hospital. Langer was tasked with solving what many believed was an impossible problem—isolating angiogenesis inhibitors to halt cancer growth. Folkman’s vision of stopping tumors from forming their own self-sustaining blood vessels was compelling enough, but few believed it possible.
Langer encountered both practical and social challenges before his first breakthrough. One day, a lab technician accidentally spilled six months’ worth of samples onto the floor, forcing him to repeat the painstaking process of dialyzing extracts. Those months of additional work steered Langer’s development of novel microspheres that could deliver large molecules of medicine directly to tumors.
In the 1970s, Langer developed these tiny microspheres to release large molecules through solid materials, a groundbreaking proof-of-concept for drug delivery.Robert Langer
Langer then submitted the discovery to prestigious journals and was invited to speak at a conference in Michigan in 1976. He practiced the 20-minute presentation for weeks, hoping for positive feedback from respected materials scientists. But when he stepped off the podium, a group approached him and said bluntly, “We don’t believe anything you just said.” They insisted that macromolecules were simply too large to pass through solid materials, and his choice of organic solvents would destroy many inputs. Conventional wisdom said so.
Nature published Langer’s paper three months later, demonstrating for the first time that non-inflammatory polymers could enable the sustained release of proteins and other macromolecules. The same year, Science published his isolation mechanism to restrict tumor growth.
Langer and Folkman’s research paved the way for modern drug delivery.MIT and Boston Children’s Hospital
Even with impressive publications, Langer still struggled to secure funding for his work in controlling macromolecule delivery, isolating the first angiogenesis inhibitors, and testing their behavior. His first two grant proposals were rejected on the same day, a devastating blow for a young academic. The reviewers doubted his experience as “just an engineer” who knew nothing about cancer or biology. One colleague tried to cheer him up, saying, “It’s probably good those grants were rejected early in your career. Since you’re not supporting any graduate students, you don’t have to let anyone go.” Langer thought the colleague was probably right, but the rejections still stung.
His patent applications, filed alongside Folkman at the Boston Children’s Hospital, were rejected five years in a row. After all, it’s difficult to prove you’ve got something good if you’re the only one doing it. Langer remembers feeling disappointed but not crushed entirely. Eventually, other scientists cited his findings and expanded upon them, giving Langer and Folkman the validation needed for intellectual property development. As of this writing, the pair’s two studies from 1976 have been cited nearly 2,000 times.
As the head of MIT’s Langer Lab, he often shares these same stories of rejection with early-career students and researchers. He leads a team of over 100 undergrads, grad students, postdoctoral fellows, and visiting scientists, all finding new ways to deliver genetically engineered proteins, DNA, and RNA, among other research areas. Langer’s reputation is further bolstered by the many successful companies he co-founded or advised, like mRNA leader Moderna, which rose to prominence after developing its widely used COVID-19 vaccine.
Langer sometimes thinks back to those early days—the shattered samples, the cold rejections, and the criticism from senior scientists. He maintains that “Conventional wisdom isn’t always correct, and it’s important to never give up—(almost) regardless of what others say.”