la Coronavirus: the week explained - 10 April - The Guardian By www.theguardian.com Published On :: Fri, 10 Apr 2020 11:11:36 GMT Coronavirus: the week explained - 10 April The Guardian Full Article
la Ancient underwater landslides help Brit scientists predict tsunamis - Metro.co.uk By metro.co.uk Published On :: Fri, 24 Apr 2020 07:16:08 GMT Ancient underwater landslides help Brit scientists predict tsunamis Metro.co.uk Full Article
la Scientists Explain Why Earth’s Magnetic North Pole Is Drifting Away From Canada Towards Siberia - Mashable India By in.mashable.com Published On :: Fri, 08 May 2020 13:10:00 GMT Scientists Explain Why Earth’s Magnetic North Pole Is Drifting Away From Canada Towards Siberia Mashable India Full Article
la Explained: How coronavirus lockdown reduced Earth’s seismic noise levels - The Indian Express By indianexpress.com Published On :: Sun, 12 Apr 2020 18:31:06 GMT Explained: How coronavirus lockdown reduced Earth’s seismic noise levels The Indian Express Full Article
la Ancient underwater landslides help predict tsunami risk - Aberdeen Evening Express By www.eveningexpress.co.uk Published On :: Thu, 23 Apr 2020 07:00:00 GMT Ancient underwater landslides help predict tsunami risk Aberdeen Evening Express Full Article
la Did the earth move for you? British Geological Survey has asked if Cumbrians felt an earth tremor last week - News & Star By www.newsandstar.co.uk Published On :: Sat, 02 May 2020 04:00:00 GMT Did the earth move for you? British Geological Survey has asked if Cumbrians felt an earth tremor last week News & Star Full Article
la Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism By scripts.iucr.org Published On :: 2020-04-28 The bacterial type VI secretion system (T6SS) secretes many toxic effectors to gain advantage in interbacterial competition and for eukaryotic host infection. The cognate immunity proteins of these effectors protect bacteria from their own effectors. PldB is a T6SS trans-kingdom effector in Pseudomonas aeruginosa that can infect both prokaryotic and eukaryotic cells. Three proteins, PA5086, PA5087 and PA5088, are employed to suppress the toxicity of PldB-family proteins. The structures of PA5087 and PA5088 have previously been reported, but the identification of further distinctions between these immunity proteins is needed. Here, the crystal structure of PA5086 is reported at 1.90 Å resolution. A structural comparison of the three PldB immunity proteins showed vast divergences in their electrostatic potential surfaces. This interesting phenomenon provides an explanation of the stockpiling mechanism of T6SS immunity proteins. Full Article text
la Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport By scripts.iucr.org Published On :: 2020-04-29 The transmembrane intracellular lectin ER–Golgi intermediate compartment protein 53 (ERGIC-53) and the soluble EF-hand multiple coagulation factor deficiency protein 2 (MCFD2) form a complex that functions as a cargo receptor, trafficking various glycoproteins between the endoplasmic reticulum (ER) and the Golgi apparatus. It has been demonstrated that the carbohydrate-recognition domain (CRD) of ERGIC-53 (ERGIC-53CRD) interacts with N-linked glycans on cargo glycoproteins, whereas MCFD2 recognizes polypeptide segments of cargo glycoproteins. Crystal structures of ERGIC-53CRD complexed with MCFD2 and mannosyl oligosaccharides have revealed protein–protein and protein–sugar binding modes. In contrast, the polypeptide-recognition mechanism of MCFD2 remains largely unknown. Here, a 1.60 Å resolution crystal structure of the ERGIC-53CRD–MCFD2 complex is reported, along with three other crystal forms. Comparison of these structures with those previously reported reveal that MCFD2, but not ERGIC-53–CRD, exhibits significant conformational plasticity that may be relevant to its accommodation of various polypeptide ligands. Full Article text
la Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway By scripts.iucr.org Published On :: 2020-04-28 The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and l-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Å resolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life. Full Article text
la Chirality in Biological Nanospaces: Reactions in Active Sites. By Nilashis Nandi. Pp. 209. CRC Press, 2011. Price £79.99. ISBN 9781439840023. By journals.iucr.org Published On :: Full Article text
la Solution structure and assembly of β-amylase 2 from Arabidopsis thaliana By journals.iucr.org Published On :: Solution structure of β-amylase 2 from Arabidopsis thaliana shows the role of the conserved N-terminus in enzyme tetramer formation. Full Article text
la Crystal and solution structures of fragments of the human leucocyte common antigen-related protein By journals.iucr.org Published On :: The crystal and solution SAXS structures of a fragment of human leucocyte common antigen-related protein show that it is less flexible than the homologous proteins tyrosine phosphatase receptors δ and σ. Full Article text
la Structure of P46, an immunodominant surface protein from Mycoplasma hyopneumoniae: interaction with a monoclonal antibody By journals.iucr.org Published On :: Structures of the immunodominant protein P46 from M. hyopneumoniae has been determined by X-ray crystallography and it is shown that P46 can bind a diversity of oligosaccharides, particularly xylose, which exhibits a very high affinity for this protein. Structures of a monoclonal antibody, both alone and in complex with P46, that was raised against M. hyopnemoniae cells and specifically recognizes P46 are also reported. Full Article text
la Structural basis of carbohydrate binding in domain C of a type I pullulanase from Paenibacillus barengoltzii By journals.iucr.org Published On :: Full Article text
la Macromolecular X-ray crystallography: soon to be a road less travelled? By journals.iucr.org Published On :: From the perspective of a young(ish) structural biologist who currently specialises in macromolecular X-ray crystallography, are the best years of crystallography over? Some evidence and hopefully thought-provoking analysis is presented here on the subject. Full Article text
la Structure of Thermococcus litoralis Δ1-pyrroline-2-carboxylate reductase in complex with NADH and L-proline By journals.iucr.org Published On :: The paper reports the structure of a Δ1-pyrroline-2-carboxylate reductase from the archaeon Thermococcus litoralis, a key enzyme involved in the second step of trans-4-Hydroxy-L-proline metabolism, conserved in archaea, bacteria and humans. Full Article text
la Polymeric poly[[decaaquabis(μ6-1,8-disulfonato-9H-carbazole-3,6-dicarboxylato)di-μ3-hydroxy-pentazinc] decahydrate] By scripts.iucr.org Published On :: 2019-05-14 The asymmetric unit of the title MOF, [Zn5(C14H5NO10S2)2(OH)2(H2O)10]n comprises three ZnII atoms, one of which is located on a centre of inversion, a tetra-negative carboxylate ligand, one μ3-hydroxide and five water molecules, each of which is coordinated. The ZnII atom, lying on a centre of inversion, is coordinated by trans sulfoxide-O atoms and four water molecules in an octahedral geometry. Another ZnII atom is coordinated by two carboxylate-O atoms, one hydroxy-O, one sulfoxide-O and a water-O atom to define a distorted trigonal–bipyramidal geometry; a close Zn⋯O(carboxylate) interaction derived from an asymmetrically coordinating ligand (Zn—O = 1.95 and 3.07 Å) suggests a 5 + 1 coordination geometry. The third ZnII atom is coordinated in an octahedral fashion by two hydroxy-O atoms, one carboxylate-O, one sulfoxide-O and two water-O atoms, the latter being mutually cis. In all, the carboxylate ligand binds six ZnII ions leading to a three-dimensional architecture. In the crystal, all acidic donors form hydrogen bonds to oxygen acceptors to contribute to the stability of the three-dimensional architecture. Full Article text
la Dibromido[N-(1-diethylamino-1-oxo-3-phenylpropan-2-yl)-N'-(pyridin-2-yl)imidazol-2-ylidene]palladium(II) dichloromethane monosolvate By scripts.iucr.org Published On :: 2019-07-15 In the molecule of the title N,N'-disubstituted imidazol-2-ylidene palladium(II) complex, [PdBr2(C21H24N4O)]·CH2Cl2, the palladium(II) atom adopts a slightly distorted square-planar coordination (r.m.s. deviation = 0.0145 Å), and the five-membered chelate ring is almost planar [maximum displacement = 0.015 (8) Å]. The molecular conformation is enforced by intramolecular C—H⋯Br hydrogen bonds. In the crystal, complex molecules and dichloromethane molecules are linked into a three-dimensional network by C—H⋯O and C—H⋯Br hydrogen bonds. Full Article text
la Iodo(triphenyl)silane By scripts.iucr.org Published On :: 2019-07-09 The molecular structure of the title compound, C18H15ISi, which crystallizes in the space group C2/c, does not exhibit any unusual features. Two weak C—H⋯π interactions may help to consolidate the packing. The present structure is not isostructural with the known Ph3SiX (X = F, Cl or Br) compounds. Full Article text
la Bis(2-methyllactato)borate tetrahydrate By scripts.iucr.org Published On :: 2019-07-12 The asymmetric unit of the title compound (systematic name: 3,3,8,8-tetramethyl-1,4,6,9-tetraoxa-λ4-boraspiro[4.4]nonane-2,7-dione tetrahydrate), C8H12BO6·4H2O, consists of half a bis(2-methyllactato)borate molecule and two water molecules of solvation. In the crystal, O—H⋯O hydrogen bonds link the components into a three-dimensional network. Full Article text
la Poly[[μ4-4-(carboxylatomethyl)benzoato]zinc(II)] By scripts.iucr.org Published On :: 2019-07-19 In the title compound, [Zn(C9H6O4)]n, the ZnII cations are coordinated in a tetrahedral fashion by carboxylate O-atom donors belonging to four 4-(carboxymethyl) benzoate (4-cmb) ligands. Each 4-cmb ligand binds to four ZnII cations in an exotetradentate fashion to create a non-interpenetrated [Zn(4-cmb)]n three-dimensional coordination polymer network with a new non-diamondoid 66 topology. The crystal studied was refined as an inversion twin. Full Article text
la (S)-1-(Benzylselanyl)-3-phenylpropan-2-amine By scripts.iucr.org Published On :: 2019-07-26 In the title compound, C16H19NSe, the dihedral angle between the benzene rings is 66.49 (12) and a weak intramolecular N—H⋯Se hydrogen bond generates an S(6) ring. In the crystal, weak N—H⋯N hydrogen bonds link the molecules into [100] chains. Full Article text
la (1,4,8,11-Tetraazacyclotetradecane)palladium(II) diiodide monohydrate By scripts.iucr.org Published On :: 2019-07-23 In the title compound, [Pd(C10H24N4)]I2·H2O, the PdII ion is four-coordinated in a slightly distorted square-planar coordination environment defined by four N atoms from a 1,4,8,11-tetraazacyclotetradecane ligand. The cationic complex, two I− anions and the solvent water molecule are linked through intermolecular hydrogen bonds into a three-dimensional network structure. Full Article text
la Bis(μ2-4-nitrophenolato)bis(4-nitrophenolato)di-μ3-oxido-octaphenyltetratin chloroform sesquisolvate [+ solvate]: a tetranuclear stannoxane By scripts.iucr.org Published On :: 2019-08-06 The title tetranuclear stannoxane, [Sn4(C6H5)8(C6H4NO3)4O2]·1.5CHCl3·solvent, crystallized with two independent complex molecules, A and B, in the asymmetric unit together with 1.5 molecules of chloroform. There is also a region of disordered electron density, which was corrected for using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18]. The oxo-tin core of each complex is in a planar `ladder' arrangement and each Sn atom is fivefold SnO3C2 coordinated, with one tin centre having an almost perfect square-pyramidal coordination geometry, while the other three Sn centres have distorted shapes. In the crystal, the complex molecules are arranged in layers, composed of A or B complexes, lying parallel to the bc plane. The complex molecules are linked by a number of C—H⋯O hydrogen bonds within the layers and between the layers, forming a supramolecular three-dimensional structure. Full Article text
la [SP-4-2]-(Acetonitrile-κN)chlorido[2-(4,6-diphenylpyridin-2-yl)phenyl-κ2C1,N]platinum(II) By scripts.iucr.org Published On :: 2019-09-20 The synthesis and crystal structure of the title PtII complex, [Pt(C23H16N)Cl(CH3CN)], based on the C,N-chelating 2,4,6-triphenylpyridine as the primary ligand, is described. The central PtII atom is in a distorted square-planar coordination environment. In the crystal, molecules are arranged via a metallophilic interaction between platinum atoms with a Pt⋯Pt contact of 7.052 (2) Å. In addition, a π–π interaction occurs. Full Article text
la Bis[2-(dimethylamino-κN)-α,α-diphenylbenzenemethanolato-κO](tetrahydrofuran-κO)magnesium(II) By scripts.iucr.org Published On :: 2019-10-31 The title magnesium complex, [Mg(C21H20NO2)2(C4H8O)]n, exhibits two N,O-bidentate 2-(dimethylamino)-α,α-diphenylbenzenemethanolate ligands, forming two six-membered chelate rings. The distorted square-pyramidal coordination sphere of the MgII atom is completed by the O atom of a tetrahydrofuran ligand, with its O atom in the apical position. The O and N atoms are in a mutual trans arrangement. Except for two C—H⋯π interactions, no significant intermolecular interactions are observed in the crystal. Full Article text
la Sodium [N,N'-ethylenebis(d-penicillaminato)]indate(III) tetrahydrate By scripts.iucr.org Published On :: 2019-11-19 The asymmetric unit of the title compound {systematic name: sodium [2-({2-[(1-carboxylato-2-methyl-2-sulfanidylpropyl)amino]ethyl}amino)-3-methyl-3-sulfanidylbutanoato-κ4S,N,N',S']indate(III) tetrahydrate}, Na[In(C12H20N2O4S2)]·4H2O, contains four indate(III) complex anions {[In(d-ebp)]−; d-H4ebp = N,N'-ethyelenebis(d-penicillamine)], four sodium(I) cations and sixteen water molecules. The indate(III) anions and sodium cations are alternately connected through coordination bonds between Na+ ions and the carboxylate groups of the complex anions, forming an infinite sixfold right-handed helix along the c-axis direction. In the crystal, the helices are linked by O—H⋯O hydrogen bonds between water molecules bound to Na+ ions and carboxylate groups. The crystal studied was twinned via a twofold axis about [001]. Full Article text
la (2,2'-Bipyridine-κ2N,N')(pyridine-2,6-dicarboxylato-κ2N,O)palladium(II) monohydrate By scripts.iucr.org Published On :: 2019-12-06 In the title compound, [Pd(C7H3NO4)(C10H8N2)]·H2O, the PdII cation is four-coordinated in a distorted square-planar coordination geometry defined by the two N atoms of the 2,2'-bipyridine ligand, one O atom and one N atom from the pyridine-2,6-dicarboxylate anion. The complex and solvent water molecule are linked by intermolecular hydrogen bonds. In the crystal, the complex molecules are stacked in columns along the a axis. Full Article text
la [4-(4-Methoxyphenyl)-8-oxo-3-(phenylselanyl)spiro[4.5]deca-3,6,9-trien-2-yl]methylcyanamide By scripts.iucr.org Published On :: 2020-01-28 The title compound, C25H22N2O2Se, crystallizes in the space group P21/c with one molecule in the asymmetric unit. The compound was synthesized by the addition of phenylselenyl bromide to a cyanamide. The phenylselenyl portion and the cyano group, as well as the ketone functional group in the cyclohexa-2,5-dien-1-one portion of the structure, are disordered, with occupancy factors of 0.555 (14) and 0.445 (14). Full Article text
la (3S,5R,6S)-Diphenylmethyl 1-oxo-6-bromopenicillanate By scripts.iucr.org Published On :: 2020-02-11 In the title compound, C21H20BrNO4S, a key intermediate in the synthesis of the widely used β-lactamase inhibitor tazobactam, the five-membered thiazolidine ring adopts an envelope conformation and the four-membered azetidine ring is in a distorted planar conformation. The crystal structure features C—H⋯O hydrogen bonds and a weak C—H⋯π interaction. Full Article text
la Tris(4,4'-di-tert-butyl-2,2'-bipyridine)(trans-4-tert-butylcyclohexanolato)deca-μ-oxido-heptaoxidoheptavanadium acetonitrile monosolvate including another unknown solvent molecule By scripts.iucr.org Published On :: 2020-04-07 The title heptanuclear alkoxido(oxido)vanadium(V) oxide cluster complex, [V7(C10H19O)O17(C18H24N2)3]·CH3CN, was obtained by the reaction of [V8O20(C18H24N2)4] with 4-tert-butylcyclohexanol (mixture of cis and trans) in a mixed CHCl3/CH3CN solvent. The complex has a V7O18N6 core with approximately Cs symmetry, which is composed of two VO4 tetrahedra, two VO6 octahedra and three VO4N2 octahedra. In the crystal, these complexes are linked together by weak intermolecular C—H⋯O hydrogen bonds between the 4,4'-di-tert-butyl-2,2'-bipyridine ligand and the V7O18N6 core, forming a one-dimensional network along the c-axis direction. Besides the complex, the asymmetric unit contains one CH3CN solvent molecule. The contribution of other disordered solvent molecules to the scattering was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The unknown solvent molecules are not considered in the chemical formula and other crystal data. Full Article text
la Bis[μ-bis(2,6-diisopropylphenyl) phosphato-κ2O:O']bis[(2,2'-bipyridine-κ2N,N')lithium] toluene disolvate and its catalytic activity in ring-opening polymerization of ∊-caprolactone and l-dilactide By scripts.iucr.org Published On :: 2019-05-21 The solvated centrosymmmtric title compound, [Li2(C24H34O4P)2(C10H8N2)2]·2C7H8, was formed in the reaction between {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) and 2,2'-bipyridine (bipy) in toluene. The structure has monoclinic (P21/n) symmetry at 120 K and the asymmetric unit consists of half a complex molecule and one molecule of toluene solvent. The diaryl phosphate ligand demonstrates a μ-κO:κO'-bridging coordination mode and the 2,2'-bipyridine ligand is chelating to the Li+ cation, generating a distorted tetrahedral LiN2O2 coordination polyhedron. The complex exhibits a unique dimeric Li2O4P2 core. One isopropyl group is disordered over two orientations in a 0.621 (4):0.379 (4) ratio. In the crystal, weak C—H⋯O and C—H⋯π interactions help to consolidate the packing. Catalytic systems based on the title complex and on the closely related complex {Li[(2,6-iPr2C6H3-O)2POO](MeOH)3}(MeOH) display activity in the ring-opening polymerization of ∊-caprolactone and l-dilactide. Full Article text
la Crystal structure of bis(μ-{2-[(5-bromo-2-oxidobenzylidene)amino]ethyl}sulfanido-κ3N,O,S){2,2'-[(3,4-dithiahexane-1,6-diyl)bis(nitrilomethanylylidene)]bis(4-bromophenolato)-κ4O,N,N',O By scripts.iucr.org Published On :: 2019-05-24 The title binuclear CoIII complex, [Co2(C9H8BrNOS)2(C18H16Br2N2O2S2)]·C3H7NO, with a Schiff base ligand formed in situ from cysteamine (2-aminoethanethiol) and 5-bromosalicylaldehyde crystallizes in the space group P21. It was found that during the synthesis the ligand undergoes spontaneous oxidation, forming the new ligand H2L' having an S—S bond. Thus, the asymmetric unit consists of one Co2(L)2(L') molecule and one DMF solvent molecule. Each CoIII ion has a slightly distorted octahedral S2N2O2 coordination geometry. In the crystal, the components are linked into a three-dimensional network by several S⋯ Br, C⋯ Br, C—H⋯Br, short S⋯C (essentially shorter than the sum of the van der Waals radii for the atoms involved) contacts as well by weak C—H⋯O hydrogen bonds. The crystal studied was refined as an inversion twin. Full Article text
la Bis(4-acetoxy-N,N-dimethyltryptammonium) fumarate: a new crystalline form of psilacetin, an alternative to psilocybin as a psilocin prodrug By scripts.iucr.org Published On :: 2019-05-31 The title compound (systematic name: bis{2-[4-(acetyloxy)-1H-indol-3-yl]ethan-1-aminium} but-2-enedioate), 2C14H19N2O2+·C4H2O42−, has a single protonated psilacetin cation and one half of a fumarate dianion in the asymmetric unit. There are N—H⋯O hydrogen bonds between the ammonium H atoms and the fumarate O atoms, as well as N—H⋯O hydrogen bonds between the indole H atoms and the fumarate O atoms. The hydrogen bonds hold the ions together in infinite one-dimensional chains along [111]. Full Article text
la Crystal structures of trans-diaqua(3-R-1,3,5,8,12-pentaazacyclotetradecane)copper(II) isophthalate hydrates (R = benzyl or pyridin-3-ylmethyl) By scripts.iucr.org Published On :: 2019-06-21 The asymmetric units of the title compounds, trans-diaqua(3-benzyl-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) isophthalate monohydrate, [Cu(C16H29N5)(H2O)2](C8H4O4)·H2O, (I), and trans-diaqua[3-(pyridin-3-ylmethyl)-1,3,5,8,12-pentaazacyclotetradecane-κ4N1,N5,N8,N12]copper(II) isophthalate 0.9-hydrate, [Cu(C15H28N6)(H2O)2](C8H4O4)·0.9H2O, (II) consist of one diaqua macrocyclic cation, one dicarboxylate anion and uncoordinated water molecule(s). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand and the mutually trans O atoms of the water molecules in a tetragonally distorted octahedral geometry. The average equatorial Cu—N bond lengths are significantly shorter than the average axial Cu—O bond lengths [2.020 (9) versus 2.495 (12) Å and 2.015 (4) versus 2.507 (7) Å for (I) and (II), respectively]. The coordinated macrocyclic ligand in the cations of both compounds adopts the most energetically favorable trans-III conformation. In the crystals, the complex cations and counter-anions are connected via hydrogen-bonding interactions between the N—H groups of the macrocycles and the O—H groups of coordinated water molecules as the proton donors and the O atoms of the carboxylate as the proton acceptors. Additionally, as a result of O—H⋯O hydrogen bonding with the coordinated and water molecules of crystallization, the isophthalate dianions form layers lying parallel to the (overline{1}01) and (100) planes in (I) and (II), respectively. Full Article text
la Syntheses, crystal structures, and comparisons of rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2 By scripts.iucr.org Published On :: 2019-06-21 Six different rare-earth oxyapatites, including Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2, were synthesized using solution-based processes followed by cold pressing and sintering. The crystal structures of the synthesized oxyapatites were determined from powder X-ray diffraction (P-XRD) and their chemistries verified with electron probe microanalysis (EPMA). All the oxyapatites were isostructural within the hexagonal space group P63/m and showed similar unit-cell parameters. The isolated [SiO4]4− tetrahedra in each crystal are linked by the cations at the 4f and 6h sites occupied by RE3+ and Ca2+ in Ca2RE8(SiO4)6O2 or La3+ and Na+ in NaLa9(SiO4)6O2. The lattice parameters, cell volumes, and densities of the synthesized oxyapatites fit well to the trendlines calculated from literature values. Full Article text
la Intermolecular hydrogen bonding in isostructural pincer complexes [OH-(t-BuPOCOPt-Bu)MCl] (M = Pd and Pt) By scripts.iucr.org Published On :: 2019-06-21 In the crystal structure of the isostructural title compounds, namely {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridopalladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridoplatinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an interaction of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand. Full Article text
la (1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol and (1R,2S,4r)-4-(2-methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol: application as initiators for ring-opening polymerization of ∊-caprolactone By scripts.iucr.org Published On :: 2019-06-21 Reductive cyclization of 1,3,5-triphenyl- and 3-(2-methoxyphenyl)-1,5-diphenylpentane-1,5-diones by zinc in acetic acid medium leads to the formation of 1,2,4-triphenylcyclopentane-1,2-diol [1,2,4-Ph3C5H5-1,2-(OH)2, C23H22O2, (I)] and 4-(2-methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol [4-(2-MeOC6H4)-1,2-Ph2C5H5-1,2-(OH)2, C24H24O3, (II)]. Their single crystals have been obtained by crystallization from a THF/hexane solvent mixture. Diols (I) and (II) crystallize in orthorhombic (Pbca) and triclinic (Poverline{1}) space groups, respectively, at 150 K. Their asymmetric units comprise one [in the case of (I)] and three [in the case of (II)] crystallographically independent molecules of the achiral (1R,2S,4r)-diol isomer. Each hydroxyl group is involved in one intramolecular and one intermolecular O—H⋯O hydrogen bond, forming one-dimensional chains. Compounds (I) and (II) have been used successfully as precatalyst activators for the ring-opening polymerization of ∊-caprolactone. Full Article text
la Two new glaserite-type orthovanadates: Rb2KDy(VO4)2 and Cs1.52K1.48Gd(VO4)2 By scripts.iucr.org Published On :: 2019-06-21 The crystal structures of dirubidium potassium dysprosium bis(vanadate), Rb2KDy(VO4)2, and caesium potassium gadolinium bis(vanadate), Cs1.52K1.48Gd(VO4)2, were solved from single-crystal X-ray diffraction data. Both compounds, synthesized by the reactive flux method, crystallize in the space group Poverline{3}m1 with the glaserite structure type. VO4 tetrahedra are linked to DyO6 or GdO6 octahedra by common vertices to form sheets stacking along the c axis. The large twelve-coordinate Cs+ or Rb+ cations are sandwiched between these layers in tunnels along the a and b axes, while the K+ cations, surrounded by ten oxygen atoms, are localized in cavities. Full Article text
la Molecular and crystal structure of 5,9-dimethyl-5H-pyrano[3,2-c:5,6-c']bis[2,1-benzothiazin]-7(9H)-one 6,6,8,8-tetroxide dimethylformamide monosolvate By scripts.iucr.org Published On :: 2019-06-28 The title molecule crystallizes as a dimethylformamide monosolvate, C19H14N2O6S2·C3H7NO. The molecule was expected to adopt mirror symmetry but slightly different conformational characteristics of the condensed benzothiazine ring lead to point group symmetry 1. In the crystal, molecules form two types of stacking dimers with distances of 3.464 (2) Å and 3.528 (2) Å between π-systems. As a result, columns extending parallel to [100] are formed, which are connected to intermediate dimethylformamide solvent molecules by C—H⋯O interactions. Full Article text
la 5-Methyl-1,3-phenylene bis[5-(dimethylamino)naphthalene-1-sulfonate]: crystal structure and DFT calculations By scripts.iucr.org Published On :: 2019-06-28 The title compound, C31H30N2S2O6, possesses crystallographically imposed twofold symmetry with the two C atoms of the central benzene ring and the C atom of its methyl substituent lying on the twofold rotation axis. The two dansyl groups are twisted away from the plane of methylphenyl bridging unit in opposite directions. The three-dimensional arrangement in the crystal is mainly stabilized by weak hydrogen bonds between the sulfonyl oxygen atoms and the hydrogen atoms from the N-methyl groups. Stacking of the dansyl group is not observed. From the DFT calculations, the HOMO–LUMO energy gap was found to be 2.99 eV and indicates n→π* and π→π* transitions within the molecule. Full Article text
la N,N'-Bis(pyridin-4-ylmethyl)oxalamide benzene monosolvate: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2019-07-09 The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide molecule: N,N'-bis(pyridin-4-ylmethyl)ethanediamide], comprises a half molecule of each constituent as each is disposed about a centre of inversion. In the oxalamide molecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intramolecular amide-N—H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the molecule adopts an antiperiplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supramolecular layers parallel to (10overline{2}) are generated owing the formation of amide-N—H⋯N(pyridyl) hydrogen bonds. The layers stack encompassing benzene molecules which provide the links between layers via methylene-C—H⋯π(benzene) and benzene-C—H⋯π(pyridyl) interactions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol−1; electrostatic forces) is just over double that by the C—H⋯π contacts (dispersion forces). Full Article text
la (3,5-Dimethyladamantan-1-yl)ammonium methanesulfonate (memantinium mesylate): synthesis, structure and solid-state properties By scripts.iucr.org Published On :: 2019-07-26 The asymmetric unit of the title compound, C12H22N+·CH3O3S−, consists of three (3,5-dimethyladamantan-1-yl)ammonium cations, C12H22N+, and three methanesulfonate anions, CH3O3S−. In the crystal, the cations and anions associate via N—H⋯O hydrogen bonds into layers, parallel to the (001) plane, which include large supramolecular hydrogen-bonded rings. Full Article text
la The crystal structures of {LnCu5}3+ (Ln = Gd, Dy and Ho) 15-metallacrown-5 complexes and a reevaluation of the isotypic EuIII analogue By scripts.iucr.org Published On :: 2019-07-19 Three new isotypic heteropolynuclear complexes, namely pentaaquacarbonatopentakis(glycinehydroxamato)nitratopentacopper(II)lanthanide(III) x-hydrate, [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5]·xH2O (GlyHA2− is glycinehydroxamate, N-hydroxyglycinamidate or aminoacetohydroxamate, C2H4N2O22−), with lanthanide(III) (LnIII) = gadolinium (Gd, 1, x = 3.5), dysprosium (Dy, 2, x = 3.28) and holmium (Ho, 3, x = 3.445), within a 15-metallacrown-5 class were obtained on reaction of lanthanide(III) nitrate, copper(II) acetate and sodium glycinehydroxamate. Complexes 1–3 contain five copper(II) ions and five bridging GlyHA2− anions, forming a [CuGlyHA]5 metallamacrocyclic core. The LnIII ions are coordinated to the metallamacrocycle through five O-donor hydroxamates. The electroneutrality of complexes 1–3 is achieved by a bidentate carbonate anion coordinated to the LnIII ion and a monodentate nitrate anion coordinated apically to one of the copper(II) ions of the metallamacrocycle. The lattice parameters of complexes 1–3 are similar to those previously reported for an EuIII–CuII 15-metallacrown-5 complex with glycinehydroxamate of proposed composition [EuCu5(GlyHA)5(OH)(NO3)2(H2O)4]·3.5H2O [Stemmler et al. (1999). Inorg. Chem. 38, 2807–2817]. High-quality X-ray data obtained for 1–3 have allowed a re-evaluation of the X-ray data solution proposed earlier for the EuCu5 complex and suggest that the formula is actually [EuCu5(GlyHA)5(CO3)(NO3)(H2O)5]·3.5H2O. Full Article text
la Syntheses and structures of piperazin-1-ium ABr2 (A = Cs or Rb): hybrid solids containing `curtain wall' layers of face- and edge-sharing ABr6 trigonal prisms By scripts.iucr.org Published On :: 2019-07-26 The isostructural title compounds, poly[piperazin-1-ium [di-μ-bromido-caesium]], {(C4H11N2)[CsBr2]}n, and poly[piperazin-1-ium [di-μ-bromido-rubidium]], {(C4H11N2)[RbBr2]}n, contain singly-protonated piperazin-1-ium cations and unusual ABr6 (A = Cs or Rb) trigonal prisms. The prisms are linked into a distinctive `curtain wall' arrangement propagating in the (010) plane by face and edge sharing. In each case, a network of N—H⋯N, N—H⋯Br and N—H⋯(Br,Br) hydrogen bonds consolidates the structure. Full Article text
la Palladium(II) complexes of a bridging amine bis(phenolate) ligand featuring κ2 and κ3 coordination modes By scripts.iucr.org Published On :: 2019-07-26 Bidentate and tridentate coordination of a 2,4-di-tert-butyl-substituted bridging amine bis(phenolate) ligand to a palladium(II) center are observed within the same crystal structure, namely dichlorido({6,6'-[(ethane-1,2-diylbis(methylazanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenol))palladium(II) chlorido(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hydroxyphenyl)methyl](methyl)amino}ethyl)(methyl)amino]methyl}phenolato)palladium(II) methanol 1.685-solvate 0.315-hydrate, [PdCl2(C34H56N2O2)][PdCl(C34H55N2O2)]·1.685CH3OH·0.315H2O. Both complexes exhibit a square-planar geometry, with unbound phenol moieties participating in intermolecular hydrogen bonding with co-crystallized water and methanol. The presence of both κ2 and κ3 coordination modes arising from the same solution suggest a dynamic process in which phenol donors may coordinate or dissociate from the metal center, and offers insight into catalyst speciation throughout Pd-mediated processes. The unit cell contains dichlorido({6,6'-[(ethane-1,2-diylbis(methylazanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenol))palladium(II), {(L2)PdCl2}, and chlorido(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hydroxyphenyl)methyl](methyl)amino}ethyl)(methyl)amino]methyl}phenolato)palladium(II), {(L2X)PdCl}, molecules as well as fractional water and methanol solvent molecules. Full Article text
la Six 1-aroyl-4-(4-methoxyphenyl)piperazines: similar molecular structures but different patterns of supramolecular assembly By scripts.iucr.org Published On :: 2019-07-26 Six new 1-aroyl-4-(4-methoxyphenyl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-methoxyphenyl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-methoxyphenyl)piperazine, C18H20N2O2, (I). The molecules of 1-(2-fluorobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking interaction. 1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19ClN2O2, (III), 1-(2-bromobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodobenzoyl)-4-(4-methoxyphenyl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the molecules into sheets. A single O—H⋯O hydrogen bond links the molecules of 1-(2-hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds. Full Article text
la Syntheses and crystal structures of 2-methyl-1,1,2,3,3-pentaphenyl-2-silapropane and 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol By scripts.iucr.org Published On :: 2019-08-23 The sterically hindered silicon compound 2-methyl-1,1,2,3,3-pentaphenyl-2-silapropane, C33H30Si (I), was prepared via the reaction of two equivalents of diphenylmethyllithium (benzhydryllithium) and dichloromethylphenylsilane. This bisbenzhydryl-substituted silicon compound was then reacted with trifluoromethanesulfonic acid, followed by hydrolysis with water to give the silanol 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol, C27H26OSi (II). Key geometric features for I are the Si—C bond lengths that range from 1.867 (2) to 1.914 (2) Å and a τ4 descriptor for fourfold coordination around the Si atom of 0.97 (indicating a nearly perfect tetrahedron). Key geometric features for compound II include Si—C bond lengths that range from 1.835 (4) to 1.905 (3) Å, a Si—O bond length of 1.665 (3) Å, and a τ4 descriptor for fourfold coordination around the Si atom of 0.96. In compound II, there is an intramolecular C—H⋯O hydrogen bond present. In the crystal of I, molecules are linked by two pairs of C—H⋯π interactions, forming dimers that are linked into ribbons propagating along the b-axis direction. In the crystal of II, molecules are linked by C—H⋯π and O—H⋯π interactions that result in the formation of ribbons that run along the a-axis direction. Full Article text
la Crystal structure and Hirshfeld surface analysis of lapachol acetate 80 years after its first synthesis By scripts.iucr.org Published On :: 2019-08-19 Lapachol acetate [systematic name: 3-(3-methylbut-2-enyl)-1,4-dioxonaphthalen-2-yl acetate], C17H16O4, was prepared using a modified high-yield procedure and its crystal structure is reported for the first time 80 years after its first synthesis. The full spectroscopic characterization of the molecule is reported. The molecular conformation shows little difference with other lapachol derivatives and lapachol itself. The packing is directed by intermolecular π–π and C—H⋯O interactions, as described by Hirshfeld surface analysis. The former interactions make the largest contributions to the total packing energy in a ratio of 2:1 with respect to the latter. Full Article text
la Synthesis, characterization, crystal structure and supramolecularity of ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate By scripts.iucr.org Published On :: 2019-08-23 The synthesis, crystal structure and structural motif of two thiophene-based cyanoacrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The molecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The intermolecular interactions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289]. Full Article text