mit International scientific conference to debate new lifestyles to mitigate climate change By www.eurekalert.org Published On :: Tue, 05 May 2020 00:00:00 EDT (Universitat Autonoma de Barcelona) More than 500 researchers from all around the world will gather virtually tomorrow Wednesday May 6 at the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) to discuss and propose how society should adopt more sustainable and low-carbon forms of lifestyle that contribute to mitigating climate change. Full Article
mit Recommitting to International Criminal Justice and Human Rights in Indonesia By feedproxy.google.com Published On :: Fri, 06 Apr 2018 15:19:11 +0000 6 April 2018 Agantaranansa Juanda Academy Associate, International Law Programme LinkedIn Jason Naselli Senior Digital Editor LinkedIn Agantaranansa Juanda speaks to Jason Naselli about the promises the government has made and the steps that still need to be taken for the country to deliver justice for past violations of human rights. 2018-04-06-Jokowi.jpg Indonesian PM Joko Widodo. Photo: Getty Images. Does the Indonesian government adequately protect human rights?It does and it does not; it really depends on the context. Indonesia looks good among its neighbours in Southeast Asia in terms of protection of civil and political rights, and to some extent economic, social and cultural rights, although room for improvements exists.But one of the promises of the current president, Joko Widodo, during his 2014 campaign was about international criminal justice, which involves rights for many victims of past cases of human rights abuses in Indonesia. In that sense, it does not protect these rights, including the rights to justice, truth, reparations or guarantees of non-recurrence.For example, in the case of the conflict over independence for East Timor in 1999, there were many gross violations of human rights. However, there has never been any sort of effective judicial process to address gross violations of human rights, and crimes against humanity in particular.In 1965–66, during the government’s violent anti-communist operations, 500,000 people or more were killed. Indonesia’s National Commission on Human Rights was tasked with conducting an investigation into this period within its limited mandate, but it led to nothing; there have never been any prosecutions relating to these crimes.The election promise of the current president was to deal with a number of these past human rights cases, and this promise has not been met at all. His opponent in 2014, Prabowo Subianto, was a former military general involved in alleged past human rights abuses, so it was politically expedient to make such a promise. But it has not been pursued in office.In 2000, Indonesia established its own Human Rights Court. What is your assessment of its record?Some human rights activists suggested that the establishment of the Human Rights Court took place under international pressure following the independence of East Timor. To avoid international scrutiny, for example the creation of an ad hoc international tribunal, the government established this court.Based on the report of the International Commission of Inquiry on East Timor in 2000, it was indeed recommended that an international human rights tribunal be set up. Indonesian government rejected the proposal with strong assurances that it would provide justice for atrocities committed by its nationals. So it is fair for some to see the establishment of Indonesia’s Human Rights Court as a political move by the government at that time, in order to avoid scrutiny by the international community.When it comes to performance, the Human Rights Court actually investigated and prosecuted cases relating to atrocities in East Timor. There were around 100 suspects identified, and 18 were put on trial. Out of these 18, only one trial, of Eurico Guterres, ended in a conviction for crimes against humanity. However, the Indonesian Supreme Court cleared Guterres of all charges in 2008. So the Human Rights Court did take steps, but the net result amounted to essentially nothing. Impunity remains.So it has not lived up to its mandate, but there is another factor, which is that the founding law of the Human Rights Court does not accommodate international standards of criminal justice. It only covers two of the four categories of crime as outlined in the Rome Statute – crimes against humanity and genocide. It also does not provide adequate protection for victims and witnesses. So there are issues not only with the performance of the Human Rights Court but also with the legislation establishing it.Why hasn’t Indonesia become a party to the Rome Statute to join the ICC?The main opposition came from the military, because they were afraid of being targeted by the ICC. There was also a lot of discussion about Indonesia’s ‘sovereign right to prosecute’.But what those opposing failed to understand is that the ICC is bound by temporal and territorial boundaries, meaning that it will not intervene if the state in question is able and willing to prosecute. So I think accession to the Rome Statute has not taken place because of this misunderstanding.I think another factor since this was initially raised is there is a focus on other issues. Indonesia is an emerging country economically; there is a focus on building infrastructure. So many in government feel like they are done with the past. But for the millions of victims of past crimes and their families, the past is not done.So it’s very important at this point in the country’s history to revisit the commitment to international criminal justice to be able to contribute to sustainable peace and development.What steps could the Indonesian government take to improve how it handles these issues?The establishment of the Human Rights Court was an important starting point, but clearly there has to be significant reform, both in terms of the substantive law underpinning it and its procedures.Clearly the domestic laws need to be reformed, but also, an effort needs to be made to improve the courts capacity in terms of manpower and logistical support. This is why the government needs to restart the discussion about becoming a party to the Rome Statute. Through the outreach programme of the ICC, this would give the Human Rights Court the capacity, in terms of manpower and logistical support, to tackle past human rights violations in Indonesia, which the Human Rights Court is currently lacking.Only if these two steps are taken – reforming the domestic Human Rights Court and restarting discussion about becoming a party to the Rome Statute – will the Indonesian government be able to say it has made progress on international criminal justice.The Indonesian government is actually running for a seat on the UN Security Council for the period of 2019–20. So I think it is an urgent discussion that the Indonesian government needs to have before it makes another pledge to contribute to the maintenance of international peace and security. It is difficult to have sustainable peace without justice. Full Article
mit COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism. Full Article
mit HIGD2A is required for assembly of the COX3 module of human mitochondrial complex IV By feedproxy.google.com Published On :: 2020-04-21 Daniella H HockApr 21, 2020; 0:RA120.002076v1-mcp.RA120.002076Research Full Article
mit A cross-linking mass spectrometry approach defines protein interactions in yeast mitochondria By feedproxy.google.com Published On :: 2020-04-24 Andreas LindenApr 24, 2020; 0:RA120.002028v1-mcp.RA120.002028Research Full Article
mit Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches By feedproxy.google.com Published On :: 2020-05-01 Payman Samavarchi-TehraniMay 1, 2020; 19:757-773Review Full Article
mit Examining Measures to Mitigate Cyber Vulnerabilities of Space-based Strategic Assets By feedproxy.google.com Published On :: Tue, 03 Sep 2019 08:45:02 +0000 Invitation Only Research Event 30 October 2019 - 9:30am to 4:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Beyza Unal, Senior Research Fellow, International Security Department, Chatham HousePatricia Lewis, Research Director, International Security Department, Chatham House Strategic systems that depend on space-based assets, such as command, control and communication, early warning systems, weapons systems and weapons platforms, are essential for conducting successful NATO operations and missions. Given the increasing dependency on such systems, the alliance and key member states would therefore benefit from an in-depth analysis of possible mitigation and resilience measures.This workshop is part of the International Security Department’s (ISD) project on space security and the vulnerability of strategic assets to cyberattacks, which includes a recently published report. This project aims to create resilience in NATO and key NATO member states, building the capacity of key policymakers and stakeholders to respond with effective policies and procedures. This workshop will focus on measures to mitigate the cyber vulnerabilities of NATO’s space-dependent strategic assets. Moreover, participants will discuss the type of resilience measures and mechanisms required.Attendance at this event is by invitation only. Department/project International Security Programme Calum Inverarity Research Analyst and Coordinator, International Security Department +44 (0) 207 957 5751 Email Full Article
Calum Inverarity Research Analyst and Coordinator, International Security Department +44 (0) 207 957 5751 Email
mit Webinar: The Environmental Crisis in the MENA Region – Impacts and Mitigation By feedproxy.google.com Published On :: Thu, 02 Apr 2020 13:40:01 +0000 Research Event 16 April 2020 - 11:30am to 12:30pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Glada Lahn, Senior Research Fellow, Energy, Environment and Resources Programme, Chatham HouseGreg Shapland, Associate Fellow, Middle East and North Africa Programme, Chatham House Moderator: Sanam Vakil, Deputy Director and Senior Research Fellow, Middle East and North Africa Programme, Chatham House The event will be livestreamed on the MENA Programme Facebook page.Climate and environmental issues have largely been marginalized in discussions about the Middle East and North Africa region and yet are critical to peace and security. In this webinar, experts will explore mounting pressures including those related to water (reduced, less reliable and more polluted sources), extreme temperatures, air pollution, land degradation and sea-level rise. Panelists will discuss the potential impact of worsening environmental conditions and what the region's governments can do to protect the health and livelihoods of their peoples.This webinar is part of the Chatham House MENA Programme's Online Event Series and will be held on the record. Department/project Middle East and North Africa Programme Reni Zhelyazkova Programme Coordinator, Middle East and North Africa Programme +44 (0)20 7314 3624 Email Full Article
Reni Zhelyazkova Programme Coordinator, Middle East and North Africa Programme +44 (0)20 7314 3624 Email
mit PARP-1-targeted Auger emitters display high-LET cytotoxic properties in vitro but show limited therapeutic utility in solid tumor models of human neuroblastoma By jnm.snmjournals.org Published On :: 2019-11-01T13:36:37-07:00 The currently available therapeutic radiopharmaceutical for high-risk neuroblastoma, 131I-MIBG, is ineffective at targeting micrometastases due to the low linear energy transfer (LET) properties of high-energy beta particles. In contrast, Auger radiation has high-LET properties with nanometer ranges in tissue, efficiently causing DNA damage when emitted in close proximity to DNA. The aim of this study was to evaluate the cytotoxicity of targeted Auger therapy in pre-clinical models of high-risk neuroblastoma. Methods: Using a radiolabeled poly(ADP-ribose) polymerase (PARP) inhibitor, 125I-KX1, we delivered an Auger emitter iodine-125 to PARP-1: a chromatin-binding enzyme overexpressed in neuroblastoma. In vitro cytotoxicity of 125I-KX1 was assessed in nineteen neuroblastoma cell lines, followed by in-depth pharmacological analysis in a sensitive and resistant pair of cell lines. Immunofluorescence microscopy was used to characterize 125I-KX1-induced DNA damage. Finally, in vitro/in vivo microdosimetry was modeled from experimentally derived pharmacological variables. Results: 125I-KX1 was highly cytotoxic in vitro across a panel of neuroblastoma cell lines, directly causing double strand DNA breaks. Based on subcellular dosimetry, 125I-KX1 was approximately twice as effective compared to 131I-KX1, whereas cytoplasmic 125I-MIBG demonstrated low biological effectiveness. Despite the ability to deliver focused radiation dose to the cell nuclei, 125I-KX1 remained less effective than its alpha-emitting analog 211At-MM4, and required significantly higher activity for equivalent in vivo efficacy based on tumor microdosimetry. Conclusion: Chromatin-targeted Auger therapy is lethal to high-risk neuroblastoma cells with potential use in micrometastatic disease. This study provides the first evidence for cellular lethality from a PARP-1 targeted Auger emitter, calling for further investigation into targeted Auger therapy. Full Article
mit Defining hyper-progressive disease using tumor growth rate: what are limitations and shortcuts? By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 Full Article
mit MITIGATE-NeoBOMB1, a Phase I/IIa Study to Evaluate Safety, Pharmacokinetics and Preliminary Imaging of 68Ga-NeoBOMB1, a Gastrin-releasing Peptide Receptor Antagonist, in GIST Patients By jnm.snmjournals.org Published On :: 2020-04-24T14:33:41-07:00 Introduction: Gastrin Releasing peptide receptors (GRPRs) are potential molecular imaging targets in a variety of tumors. Recently, a 68Ga-labelled antagonist to GRPRs, NeoBOMB1, was developed for PET. We report on the outcome of a Phase I/IIa clinical trial (EudraCT 2016-002053-38) within the EU-FP7 project Closed-loop Molecular Environment for Minimally Invasive Treatment of Patients with Metastatic Gastrointestinal Stromal Tumours (‘MITIGATE’) (grant agreement number 602306) in patients with oligometastatic gastrointestinal stromal tumors (GIST). Materials and Methods: The main objectives were evaluation of safety, biodistribution, dosimetry and preliminary tumor targeting of 68Ga-NeoBOMB1 in patients with advanced TKI-treated GIST using PET/CT. Six patients with histologically confirmed GIST and unresectable primary or metastases undergoing an extended protocol for detailed pharmacokinetic analysis were included. 68Ga-NeoBOMB1 was prepared using a kit procedure with a licensed 68Ge/68Ga generator. 3 MBq/kg body-weight were injected intravenously and safety parameters were assessed. PET/CT included dynamic imaging at 5 min, 11 min and 19 min as well as static imaging at 1, 2 and 3-4 h p.i. for dosimetry calculations. Venous blood samples and urine were collected for pharmacokinetics. Tumor targeting was assessed on a per-lesion and per-patient basis. Results: 68Ga-NeoBOMB1 (50 µg) was prepared with high radiochemical purity (yield >97%). Patients received 174 ± 28 MBq of the radiotracer, which was well tolerated in all patients over a follow-up period of 4 weeks. Dosimetry calculations revealed a mean adsorbed effective dose of 0.029 ± 0.06 mSv/MBq with highest organ dose to the pancreas (0.274 ± 0.099 mSv/MBq). Mean plasma half-life was 27.3 min with primarily renal clearance (mean 25.7 ± 5.4% of injected dose 4h p.i.). Plasma metabolite analyses revealed high stability, metabolites were only detected in the urine. In three patients a significant uptake with increasing maximum standard uptake values (SUVmax at 2h p.i.: 4.3 to 25.9) over time was found in tumor lesions. Conclusion: This Phase I/IIa study provides safety data for 68Ga-NeoBOMB1, a promising radiopharmaceutical for targeting GRPR-expressing tumors. Safety profiles and pharmacokinetics are suitable for PET imaging and absorbed dose estimates are comparable to other 68Ga-labelled radiopharmaceuticals used in clinical routine. Full Article
mit POSTPONED: Africa, Japan and the UK: Emerging Partnerships Beyond Summits By feedproxy.google.com Published On :: Fri, 21 Feb 2020 13:00:02 +0000 Research Event 17 March 2020 - 9:30am to 1:15pm Chatham House | 10 St James's Square | London | SW1Y 4LE Agendapdf | 133.11 KB Event participants HE Nabil Ben Khedher, Ambassador of Tunisia to the United KingdomProfessor Naohiro Kitano, Visiting Fellow, Japan International Cooperation Agency Research Institute (JICA-RI); Professor, Waseda UniversityTaku Miyazaki, Deputy Director General, Japan External Trade Organisation (JETRO) LondonSerge Mouangue, Founder and Art Director, WAfricaNorio Suzuki, Senior Strategist, BBOXXHE Professor Mohammed Gana Yisa, Ambassador of the Federal Republic of Nigeria to Japan; Chairman, African Diplomatic Corps in Tokyo (ADC) TICAD CommitteeChairs:Dr Champa Patel, Director, Asia-Pacific Programme, Chatham HouseDr Alex Vines OBE, Managing Director, Ethics, Risk & Resilience; Director, Africa Programme Since Japan established its Tokyo International Conference on African Development (TICAD) in 1993, an increasing number of summits for African engagement have appeared across the Asia-Pacific region. TICAD VII, held on 28-30 August 2019 in Yokohama, sought to strengthen partnerships between Japan and Africa in three main areas: technical cooperation; business and women’s entrepreneurship; and next generation and people-to-people connectivity.The UK-Africa Investment Summit held in January 2020 highlighted similar themes, with an emphasis on investing to generate sustainable growth and create jobs. Common interests and goals among different African countries, Japan and the UK bring opportunities for trilateral cooperation.This event will examine how collaboration between African countries, Japan and the UK can help to more effectively achieve sustainable growth, business development and job creation.PLEASE NOTE THIS EVENT IS POSTPONED UNTIL FURTHER NOTICE. Department/project Africa Programme, Foreign Relations and Africa’s Agency in the International System, Inclusive Economic Growth, Governance and Technology Hanna Desta Programme Assistant, Africa Programme Email Full Article
mit Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches [Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation. Full Article
mit The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression. Full Article
mit COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism. Full Article
mit Sphingolipids distribution at mitochondria-associated membranes (MAM) upon induction of apoptosis. By feedproxy.google.com Published On :: 2020-04-29 Vincent MignardApr 29, 2020; 0:jlr.RA120000628v1-jlr.RA120000628Research Articles Full Article
mit Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination By feedproxy.google.com Published On :: 2020-04-01 Deanna L. DavisApr 1, 2020; 61:505-522Research Articles Full Article
mit Episode 30 - The Internet of Unlimited Play-Doh (IoUPD): Amazon Dash, Apple tax and headphone sexism By play.acast.com Published On :: Fri, 02 Sep 2016 11:40:30 GMT This week Ashleigh Allsopp is simultaneously fascinated and worried by the UK launch of Amazon's Dash buttons, and discusses the many wonderful and not-so-wonderful things they enable you to buy on a drunken whim. Then David Price takes his turn to shine a spotlight on Apple's mysterious tax affairs (12:20) and tries to explain why the Irish government doesn't want to be given 13 billion euros. Finally a surprisingly riled-up Neil Bennett explains why women wearing headphones are not fair game for dimwitted pick-up artists (25:00), and ponders the social conventions surrounding the place of technology in each of our lives. See acast.com/privacy for privacy and opt-out information. Full Article
mit Sphingolipids distribution at mitochondria-associated membranes (MAM) upon induction of apoptosis. [Research Articles] By feedproxy.google.com Published On :: 2020-04-29T08:36:37-07:00 The levels and composition of sphingolipids and related metabolites are altered in aging and common disorders such as diabetes and cancers, as well as in neurodegenerative, cardiovascular, and respiratory diseases. Changes in sphingolipids have been implicated as being an essential step in mitochondria-driven cell death. However, little is known about the precise sphingolipid composition and modulation in mitochondria or related organelles. Here, we used LC–MS/MS to analyze the presence of key components of the ceramide metabolic pathway in vivo and in vitro in purified endoplasmic reticulum (ER), mitochondria-associated membranes (MAM), and mitochondria. Specifically, we analyzed the sphingolipids in the three pathways that generate ceramide: sphinganine in the de novo ceramide pathway, sphingomyelin in the breakdown pathway, and sphingosine in the salvage pathway. We observed sphingolipid profiles in mouse liver, mouse brain, and a human glioma cell line (U251). We analyzed the quantitative and qualitative changes of these sphingolipids during staurosporine (STS)-induced apoptosis in U251 cells. Ceramide, especially C16-ceramide, levels increased during early apoptosis possibly through a conversion from mitochondrial sphinganine and sphingomyelin, but sphingosine and lactosyl- and glucosyl-ceramide levels were unaffected. We also found that ceramide generation is enhanced in mitochondria when sphingomyelin levels are decreased in the MAM. This decrease was associated with an increase in acid sphingomyelinase (ASM) activity in MAM. We conclude that meaningful sphingolipid modifications occur in MAM, the mitochondria, and ER during the early phases of apoptosis. Full Article
mit HIGD2A is required for assembly of the COX3 module of human mitochondrial complex IV [Research] By feedproxy.google.com Published On :: 2020-04-21T08:36:14-07:00 Assembly factors play a critical role in the biogenesis of mitochondrial respiratory chain complexes I-IV where they assist in the membrane insertion of subunits, attachment of co-factors, and stabilization of assembly intermediates. The major fraction of complexes I, III and IV are present together in large molecular structures known as respiratory chain supercomplexes. A number of assembly factors have been proposed as required for supercomplex assembly, including the hypoxia inducible gene 1 domain family member HIGD2A. Using gene-edited human cell lines and extensive steady state, translation and affinity enrichment proteomics techniques we show that loss of HIGD2A leads to defects in the de novo biogenesis of mtDNA-encoded COX3, subsequent accumulation of complex IV intermediates and turnover of COX3 partner proteins. Deletion of HIGD2A also leads to defective complex IV activity. The impact of HIGD2A loss on complex IV was not altered by growth under hypoxic conditions, consistent with its role being in basal complex IV assembly. While in the absence of HIGD2A we show that mitochondria do contain an altered supercomplex assembly, we demonstrate it to harbor a crippled complex IV lacking COX3. Our results redefine HIGD2A as a classical assembly factor required for building the COX3 module of complex IV. Full Article
mit A cross-linking mass spectrometry approach defines protein interactions in yeast mitochondria [Research] By feedproxy.google.com Published On :: 2020-04-24T09:36:17-07:00 Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labelling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labelled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly due to the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8 mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase. Full Article
mit Lukashenka’s Commitment to Belarusian Sovereignty Is Overstated By feedproxy.google.com Published On :: Tue, 18 Feb 2020 15:56:54 +0000 18 February 2020 Ryhor Astapenia Robert Bosch Stiftung Academy Fellow, Russia and Eurasia Programme @ryhorastapenia LinkedIn Although President Lukashenka has recently shown assertiveness in relations with Russia, overall he has done very little to ensure his country’s freedom of action. 2020-02-18-LP.jpg Putin and Lukashenka play ice hockey in Sochi after a day of talks in February. Photo: Getty Images. Earlier this month, US Secretary of State Mike Pompeo became the highest-ranking US official to visit Belarus since Bill Clinton in 1994. After meetings with Belarusian President Alexander Lukashenka – who Condoleezza Rice once memorably described as ‘Europe’s last dictator’ – Pompeo said he was ‘optimistic about our strengthened relationship’. The EU and its member states have also changed their tune, at least a little. Previously, prosecutions of democratic activists led to sanctions against the Lukashenka regime. But his less-than-liberal manner of governance did not prevent him from visiting Austria last November or from receiving invitations to Brussels. Eight years ago, most EU contacts with Belarusian officials were frozen. Now, Western diplomats regularly meet with Belarusian officials again. This year, a US ambassador to Belarus will be appointed after a 12-year break.The West is also more willing to support Belarus financially. The European Bank for Reconstruction and Development invested a record-breaking $433 million in the country in 2019. The European Investment Bank only began working with the country in 2017 but already has a portfolio of $600 million.Certain policymakers in the EU and US now, at least publicly, appear to regard Lukashenka as one of the sources of regional security and a defender of Belarusian sovereignty against Russia.There is some truth in this. He has taken a neutral position in Russia’s conflict with Ukraine, and he has consistently resisted pressure from the Kremlin to establish a military base in Belarus.Now, amid Moscow’s demands for deeper integration in exchange for the continuation of Russian energy subsidies, Lukashenka has shown reluctance to sell his autonomy. In a token attempt to portray sovereignty Belarus even started buying oil from Norway, although this makes no economic sense.But Lukashenka’s long-term record shows he has done little to ensure the country’s sovereignty. Lukashenka has resisted reforms that would have strengthened the economy (because they would have weakened his own position). The political system is also dependent on Russia because Lukashenka has been unwilling to build better relations with the West. Belarusians are still strongly influenced by Russian culture and media because the authorities marginalize their own national identity.Since the conflict in Ukraine in 2014, Lukashenka’s primary goal has not been to strengthen the sovereignty of Belarus, but to preserve his absolute control over the country.For example, when in 2018 Russia started pressing Belarus to deepen its integration in order to retain economic support, Minsk did not reject this approach outright; instead, it discussed no less than 31 ‘road maps’ for deepening integration for more than a year, hoping to receive more benefits. For Lukashenka, greater dependency on Russia is a matter of price and conditions, not principle. None of this is to say Belarus has illusions about Russia. It is just that Lukashenka does not take long-term steps to protect the country’s sovereignty or to strengthen relations with the West.Belarus needs to start economic reform with the support of the International Monetary Fund, but this cannot happen without Lukashenka’s genuine commitment to transform the economy. Absence of cross-sectoral reform has led to the deterioration of the education system as well as unprecedented emigration. Few Belarusian experts are optimistic about their country’s future. Lukashenka knows all this, but does not change his system, fearing it would damage the stability of his regime. The West should therefore adopt a broader policy. Lukashenka is unlikely to still be president in 10–15 years, so policymakers should develop relations with the broader ruling elite, which will remain after he leaves, and try to be present in Belarus as much as possible helping it to improve public governance and develop private businesses.The West should also support the country’s civil society and independent media, for whom Belarusian independence is a matter of principle rather than something to be bargained away.Lukashenka may be a strong leader, but the state he has built is weak. Full Article
mit Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination [Research Articles] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases. Full Article
mit Problem Notes for SAS®9 - 65682: Running FedSQL with an Oracle table is slow, even when you use a LIMIT clause By feedproxy.google.com Published On :: Fri, 1 May 2020 14:43:59 EST When you query an Oracle table and use the LIMIT clause using either SAS Federation Server or FedSQL, a row limit is not passed to the database. In this scenario, a Full Article DFFEDSVR+SAS+Federation+Server
mit Necrostatin-1 Mitigates Cognitive Dysfunction in Prediabetic Rats With no Alteration in Insulin Sensitivity By diabetes.diabetesjournals.org Published On :: 2020-04-28T14:32:29-07:00 Previous studies show that 12-week of high-fat diet (HFD) consumption caused not only prediabetes, but also cognitive decline and brain pathologies. Recently, necrostatin-1 (nec-1), a necroptosis inhibitor, showed beneficial effects in brain against stroke. However, the comparative effects of nec-1 and metformin on cognition and brain pathologies in prediabetes have not been investigated. We hypothesized that nec-1 and metformin equally attenuated cognitive decline and brain pathologies in prediabetic rats. Rats (n=32) were fed with either normal diet (ND) or high-fat diet (HFD) for 20 weeks. At week 13, ND-fed rats were given a vehicle (n=8) and HFD-fed rats were randomly assigned into 3 subgroups (n=8/subgroup) with vehicle, nec-1 or metformin for 8 weeks. Metabolic parameters, cognitive function, brain insulin receptor function, synaptic plasticity, dendritic spine density, microglial morphology, brain mitochondrial function, Alzheimer’s protein, and cell death were determined. HFD-fed rats exhibited prediabetes, cognitive decline, and brain pathologies. Nec-1 and metformin equally improved cognitive function, synaptic plasticity, dendritic spine density, microglial morphology, brain mitochondrial function, reduced hyperphosphorylated-tau and necroptosis in HFD-fed rats. Interestingly metformin, but not nec-1, improved brain insulin sensitivity in those rats. In conclusion, necroptosis inhibition directly improved cognition in prediabetic rats without alteration in insulin sensitivity. Full Article
mit Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction By diabetes.diabetesjournals.org Published On :: 2020-05-04T10:07:04-07:00 Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear if these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy we generated transgenic mice with inducible cardiomyocyte-specific expression of the glucose transporter (GLUT4). We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in non-diabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset, exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations. Full Article
mit The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression. Full Article
mit S-Palmitoylation of the sodium channel Nav1.6 regulates its activity and neuronal excitability [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978 S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions. Full Article
mit DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7−/− mice. Although palmitoylation of barttin in kidneys of Zdhhc7−/− animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7−/− mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension. Full Article
mit The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining {alpha}-tubulin acetylation [Signal Transduction] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2–depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment. Full Article
mit The Biology of Mitochondrial Uncoupling Proteins By diabetes.diabetesjournals.org Published On :: 2004-02-01 Sophie RoussetFeb 1, 2004; 53:S130-S135Section III: Mitochondria, Beta-Cell Function, and Type 2 Diabetes Full Article
mit Correction: Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 VOLUME 285 (2010) PAGES 13742–13747In Fig. 1E, passage 10, the splicing of a non-adjacent lane from the same immunoblot was not marked. This error has now been corrected and does not affect the results or conclusions of this work.jbc;295/16/5533/F1F1F1Figure 1E. Full Article
mit Correction: A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 VOLUME 295 (2020) PAGES 3285–3300An incorrect graph was used in Fig. 5C. This error has now been corrected. Additionally, some of the statistics reported in the legend and text referring to Fig. 5C were incorrect. The F statistics for Fig. 5C should state Fken(3,16) = 7.454, p < 0.01; FCCCP(1,16) = 102.9, p < 0.0001; Finteraction(3,16) = 7.480, p < 0.01. This correction does not affect the results or conclusions of this work.jbc;295/17/5835/F5F1F5Figure 5C. Full Article
mit Re: Mitigating the wider health effects of covid-19 pandemic response By feeds.bmj.com Published On :: Friday, May 8, 2020 - 09:36 Full Article
mit Covid-19: Lack of capacity led to halting of community testing in March, admits deputy chief medical officer By feeds.bmj.com Published On :: Wednesday, May 6, 2020 - 12:25 Full Article
mit Lukashenka’s Commitment to Belarusian Sovereignty Is Overstated By feedproxy.google.com Published On :: Tue, 18 Feb 2020 15:56:54 +0000 18 February 2020 Ryhor Astapenia Robert Bosch Stiftung Academy Fellow, Russia and Eurasia Programme @ryhorastapenia LinkedIn Although President Lukashenka has recently shown assertiveness in relations with Russia, overall he has done very little to ensure his country’s freedom of action. 2020-02-18-LP.jpg Putin and Lukashenka play ice hockey in Sochi after a day of talks in February. Photo: Getty Images. Earlier this month, US Secretary of State Mike Pompeo became the highest-ranking US official to visit Belarus since Bill Clinton in 1994. After meetings with Belarusian President Alexander Lukashenka – who Condoleezza Rice once memorably described as ‘Europe’s last dictator’ – Pompeo said he was ‘optimistic about our strengthened relationship’. The EU and its member states have also changed their tune, at least a little. Previously, prosecutions of democratic activists led to sanctions against the Lukashenka regime. But his less-than-liberal manner of governance did not prevent him from visiting Austria last November or from receiving invitations to Brussels. Eight years ago, most EU contacts with Belarusian officials were frozen. Now, Western diplomats regularly meet with Belarusian officials again. This year, a US ambassador to Belarus will be appointed after a 12-year break.The West is also more willing to support Belarus financially. The European Bank for Reconstruction and Development invested a record-breaking $433 million in the country in 2019. The European Investment Bank only began working with the country in 2017 but already has a portfolio of $600 million.Certain policymakers in the EU and US now, at least publicly, appear to regard Lukashenka as one of the sources of regional security and a defender of Belarusian sovereignty against Russia.There is some truth in this. He has taken a neutral position in Russia’s conflict with Ukraine, and he has consistently resisted pressure from the Kremlin to establish a military base in Belarus.Now, amid Moscow’s demands for deeper integration in exchange for the continuation of Russian energy subsidies, Lukashenka has shown reluctance to sell his autonomy. In a token attempt to portray sovereignty Belarus even started buying oil from Norway, although this makes no economic sense.But Lukashenka’s long-term record shows he has done little to ensure the country’s sovereignty. Lukashenka has resisted reforms that would have strengthened the economy (because they would have weakened his own position). The political system is also dependent on Russia because Lukashenka has been unwilling to build better relations with the West. Belarusians are still strongly influenced by Russian culture and media because the authorities marginalize their own national identity.Since the conflict in Ukraine in 2014, Lukashenka’s primary goal has not been to strengthen the sovereignty of Belarus, but to preserve his absolute control over the country.For example, when in 2018 Russia started pressing Belarus to deepen its integration in order to retain economic support, Minsk did not reject this approach outright; instead, it discussed no less than 31 ‘road maps’ for deepening integration for more than a year, hoping to receive more benefits. For Lukashenka, greater dependency on Russia is a matter of price and conditions, not principle. None of this is to say Belarus has illusions about Russia. It is just that Lukashenka does not take long-term steps to protect the country’s sovereignty or to strengthen relations with the West.Belarus needs to start economic reform with the support of the International Monetary Fund, but this cannot happen without Lukashenka’s genuine commitment to transform the economy. Absence of cross-sectoral reform has led to the deterioration of the education system as well as unprecedented emigration. Few Belarusian experts are optimistic about their country’s future. Lukashenka knows all this, but does not change his system, fearing it would damage the stability of his regime. The West should therefore adopt a broader policy. Lukashenka is unlikely to still be president in 10–15 years, so policymakers should develop relations with the broader ruling elite, which will remain after he leaves, and try to be present in Belarus as much as possible helping it to improve public governance and develop private businesses.The West should also support the country’s civil society and independent media, for whom Belarusian independence is a matter of principle rather than something to be bargained away.Lukashenka may be a strong leader, but the state he has built is weak. Full Article
mit Inhibition of Mitochondrial Calcium Overload by SIRT3 Prevents Obesity- or Age-Related Whitening of Brown Adipose Tissue By diabetes.diabetesjournals.org Published On :: 2020-01-20T12:00:26-08:00 The whitening and loss of brown adipose tissue (BAT) during obesity and aging promote metabolic disorders and related diseases. The imbalance of Ca2+ homeostasis accounts for the dysfunction and clearance of mitochondria during BAT whitening. Capsaicin, a dietary factor activating TRPV1, can inhibit obesity induced by high-fat diet (HFD), but whether capsaicin inhibits BAT loss and the underlying mechanism remain unclear. In this study, we determined that the inhibitory effects of capsaicin on HFD-induced obesity and BAT whitening were dependent on the participation of SIRT3, a critical mitochondrial deacetylase. SIRT3 also mediated all of the beneficial effects of capsaicin on alleviating reactive oxygen species generation, elevating mitochondrial activity, and restricting mitochondrial calcium overload induced by HFD. Mechanistically, SIRT3 inhibits mitochondrial calcium uniporter (MCU)-mediated mitochondrial calcium overload by reducing the H3K27ac level on the MCU promoter in an AMPK-dependent manner. In addition, HFD also inhibits AMPK activity to reduce SIRT3 expression, which could be reversed by capsaicin. Capsaicin intervention also inhibited aging-induced BAT whitening through this mechanism. In conclusion, this study emphasizes a critical role of the AMPK/SIRT3 pathway in the maintenance of BAT morphology and function and suggests that intervention in this pathway may be an effective target for preventing obesity- or age-related metabolic diseases. Full Article
mit Raising HD awareness personal for Smith, wife By mlb.mlb.com Published On :: Mon, 18 Feb 2019 16:25:28 EDT They wrestled with the decision to start a family for five years. It's something most young couples discuss at some point. Timing is important, and considering their busy lives, even more so for Astros pitcher Joe Smith and his wife, TV sports reporter Allie LaForce. The issue facing the couple is far more momentous than most others have to deal with -- one that's a matter of life and death. Full Article
mit Windies players lack commitment – Benjamin By jamaica-gleaner.com Published On :: Sat, 09 May 2020 00:13:16 -0500 BRIDGETOWN, Barbados (CMC): Former Windies fast bowler Kenny Benjamin says that cricket in the Caribbean is suffering from players’ lack of loyalty and commitment and that intervention is required to save the sport. The Antiguan called for coaches... Full Article
mit Nuffield summit - Bastiaan Bloem on parkinsons.net By feeds.bmj.com Published On :: Thu, 05 Mar 2015 16:22:29 +0000 Bastiaan Bloem, consultant neurologist at Radboud University Nijmegen Medical Centre, Netherlands, discussing his revolutionary approach to patient centred care. Read more from the summit: http://www.bmj.com/content/350/bmj.h1172 Full Article
mit Nuffield Summit 2017 - Reducing Demand By feeds.bmj.com Published On :: Thu, 16 Mar 2017 13:47:20 +0000 As the NHS strains under pressure from rising patient activity, an ageing population, and financial constraints, The BMJ hosted a discussion on how clinicians should be helping to manage demand at last week’s Nuffield Trust health policy summit. Taking part are: - Eileen Burns, president of the British Geriatrics Society - Andrew Fernando, GP... Full Article
mit Dysfunction of Mitochondria in Human Skeletal Muscle in Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2002-10-01 David E. KelleyOct 1, 2002; 51:2944-2950Metabolism and Signal Transduction Full Article
mit BGLC ‘vindicated’ in lottery permit process – Evans By jamaica-gleaner.com Published On :: Fri, 08 May 2020 00:25:18 -0500 An application earlier this year by Mahoe Gaming Enterprises Limited (MGEL) has not benefited from any preferential treatment by the Betting, Gaming and Lotteries Commission (BGLC). That was the finding of ex-commissioner of the Integrity... Full Article
mit World Bank predicts sharpest decline of remittances to Caribbean By jamaica-gleaner.com Published On :: Thu, 23 Apr 2020 15:26:53 -0500 WASHINGTON, CMC – The World Bank has predicted the sharpest decline of remittances to Latin America and the Caribbean, saying that global remittances on a whole are projected to fall by about 20 percent in 2020 due to the economic crisis... Full Article
mit Mitochondrial Proton Leak Regulated by Cyclophilin D Elevates Insulin Secretion in Islets at Nonstimulatory Glucose Levels By diabetes.diabetesjournals.org Published On :: 2020-01-20T12:00:25-08:00 Fasting hyperinsulinemia precedes the development of type 2 diabetes. However, it is unclear whether fasting insulin hypersecretion is a primary driver of insulin resistance or a consequence of the progressive increase in fasting glycemia induced by insulin resistance in the prediabetic state. Herein, we have discovered a mechanism that specifically regulates non–glucose-stimulated insulin secretion (NGSIS) in pancreatic islets that is activated by nonesterified free fatty acids, the major fuel used by β-cells during fasting. We show that the mitochondrial permeability transition pore regulator cyclophilin D (CypD) promotes NGSIS, but not glucose-stimulated insulin secretion, by increasing mitochondrial proton leak. Islets from prediabetic obese mice show significantly higher CypD-dependent proton leak and NGSIS compared with lean mice. Proton leak–mediated NGSIS is conserved in human islets and is stimulated by exposure to nonesterified free fatty acids at concentrations observed in obese subjects. Mechanistically, proton leak activates islet NGSIS independently of mitochondrial ATP synthesis but ultimately requires closure of the KATP channel. In summary, we have described a novel nonesterified free fatty acid–stimulated pathway that selectively drives pancreatic islet NGSIS, which may be therapeutically exploited as an alternative way to halt fasting hyperinsulinemia and the progression of type 2 diabetes. Full Article
mit A Novel Model of Diabetic Complications: Adipocyte Mitochondrial Dysfunction Triggers Massive {beta}-Cell Hyperplasia By diabetes.diabetesjournals.org Published On :: 2020-02-20T11:55:30-08:00 Obesity-associated type 2 diabetes mellitus (T2DM) entails insulin resistance and loss of β-cell mass. Adipose tissue mitochondrial dysfunction is emerging as a key component in the etiology of T2DM. Identifying approaches to preserve mitochondrial function, adipose tissue integrity, and β-cell mass during obesity is a major challenge. Mitochondrial ferritin (FtMT) is a mitochondrial matrix protein that chelates iron. We sought to determine whether perturbation of adipocyte mitochondria influences energy metabolism during obesity. We used an adipocyte-specific doxycycline-inducible mouse model of FtMT overexpression (FtMT-Adip mice). During a dietary challenge, FtMT-Adip mice are leaner but exhibit glucose intolerance, low adiponectin levels, increased reactive oxygen species damage, and elevated GDF15 and FGF21 levels, indicating metabolically dysfunctional fat. Paradoxically, despite harboring highly dysfunctional fat, transgenic mice display massive β-cell hyperplasia, reflecting a beneficial mitochondria-induced fat-to-pancreas interorgan signaling axis. This identifies the unique and critical impact that adipocyte mitochondrial dysfunction has on increasing β-cell mass during obesity-related insulin resistance. Full Article
mit Perivascular Adipose Tissue Controls Insulin-Stimulated Perfusion, Mitochondrial Protein Expression, and Glucose Uptake in Muscle Through Adipomuscular Arterioles By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 Insulin-mediated microvascular recruitment (IMVR) regulates delivery of insulin and glucose to insulin-sensitive tissues. We have previously proposed that perivascular adipose tissue (PVAT) controls vascular function through outside-to-inside communication and through vessel-to-vessel, or "vasocrine," signaling. However, direct experimental evidence supporting a role of local PVAT in regulating IMVR and insulin sensitivity in vivo is lacking. Here, we studied muscles with and without PVAT in mice using combined contrast-enhanced ultrasonography and intravital microscopy to measure IMVR and gracilis artery diameter at baseline and during the hyperinsulinemic-euglycemic clamp. We show, using microsurgical removal of PVAT from the muscle microcirculation, that local PVAT depots regulate insulin-stimulated muscle perfusion and glucose uptake in vivo. We discovered direct microvascular connections between PVAT and the distal muscle microcirculation, or adipomuscular arterioles, the removal of which abolished IMVR. Local removal of intramuscular PVAT altered protein clusters in the connected muscle, including upregulation of a cluster featuring Hsp90ab1 and Hsp70 and downregulation of a cluster of mitochondrial protein components of complexes III, IV, and V. These data highlight the importance of PVAT in vascular and metabolic physiology and are likely relevant for obesity and diabetes. Full Article
mit Greinke discusses commitment to D-backs By mlb.mlb.com Published On :: Sat, 16 Feb 2019 19:23:55 EDT Despite a stiff neck, which he says came on a recent airplane flight, D-backs ace Zack Greinke said Saturday that he feels much better physically than he did last year when he reported to Spring Training. Here are five takeaways from Greinke's Saturday session with reporters. Full Article
mit Covid-19: Lack of capacity led to halting of community testing in March, admits deputy chief medical officer By feeds.bmj.com Published On :: Wednesday, May 6, 2020 - 12:25 Full Article
mit Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Knowledge of the molecular events in mitochondrial DNA (mtDNA) replication is crucial to understanding the origins of human disorders arising from mitochondrial dysfunction. Twinkle helicase is an essential component of mtDNA replication. Here, we employed atomic force microscopy imaging in air and liquids to visualize ring assembly, DNA binding, and unwinding activity of individual Twinkle hexamers at the single-molecule level. We observed that the Twinkle subunits self-assemble into hexamers and higher-order complexes that can switch between open and closed-ring configurations in the absence of DNA. Our analyses helped visualize Twinkle loading onto and unloading from DNA in an open-ringed configuration. They also revealed that closed-ring conformers bind and unwind several hundred base pairs of duplex DNA at an average rate of ∼240 bp/min. We found that the addition of mitochondrial single-stranded (ss) DNA–binding protein both influences the ways Twinkle loads onto defined DNA substrates and stabilizes the unwound ssDNA product, resulting in a ∼5-fold stimulation of the apparent DNA-unwinding rate. Mitochondrial ssDNA-binding protein also increased the estimated translocation processivity from 1750 to >9000 bp before helicase disassociation, suggesting that more than half of the mitochondrial genome could be unwound by Twinkle during a single DNA-binding event. The strategies used in this work provide a new platform to examine Twinkle disease variants and the core mtDNA replication machinery. They also offer an enhanced framework to investigate molecular mechanisms underlying deletion and depletion of the mitochondrial genome as observed in mitochondrial diseases. Full Article