ed A thermal-gradient approach to variable-temperature measurements resolved in space By scripts.iucr.org Published On :: 2020-04-23 Temperature is a ubiquitous environmental variable used to explore materials structure, properties and reactivity. This article reports a new paradigm for variable-temperature measurements that varies the temperature continuously across a sample such that temperature is measured as a function of sample position and not time. The gradient approach offers advantages over conventional variable-temperature studies, in which temperature is scanned during a series measurement, in that it improves the efficiency with which a series of temperatures can be probed and it allows the sample evolution at multiple temperatures to be measured in parallel to resolve kinetic and thermodynamic effects. Applied to treat samples at a continuum of temperatures prior to measurements at ambient temperature, the gradient approach enables parametric studies of recovered systems, eliminating temperature-dependent structural and chemical variations to simplify interpretation of the data. The implementation of spatially resolved variable-temperature measurements presented here is based on a gradient-heater design that uses a 3D-printed ceramic template to guide the variable pitch of the wire in a resistively heated wire-wound heater element. The configuration of the gradient heater was refined on the basis of thermal modelling. Applications of the gradient heater to quantify thermal-expansion behaviour, to map metastable polymorphs recovered to ambient temperature, and to monitor the time- and temperature-dependent phase evolution in a complex solid-state reaction are demonstrated. Full Article text
ed Full reciprocal-space mapping up to 2000 K under controlled atmosphere: the multipurpose QMAX furnace By scripts.iucr.org Published On :: 2020-04-23 A furnace that covers the temperature range from room temperature up to 2000 K has been designed, built and implemented on the D2AM beamline at the ESRF. The QMAX furnace is devoted to the full exploration of the reciprocal hemispace located above the sample surface. It is well suited for symmetric and asymmetric 3D reciprocal space mapping. Owing to the hemispherical design of the furnace, 3D grazing-incidence small- and wide-angle scattering and diffraction measurements are possible. Inert and reactive experiments can be performed at atmospheric pressure under controlled gas flux. It is demonstrated that the QMAX furnace allows monitoring of structural phase transitions as well as microstructural evolution at the nanoscale, such as self-organization processes, crystal growth and strain relaxation. A time-resolved in situ oxidation experiment illustrates the capability to probe the high-temperature reactivity of materials. Full Article text
ed Compressive strain formation in surface-damaged crystals By scripts.iucr.org Published On :: 2020-04-23 The mechanism of formation of residual strain in crystals with a damaged surface has been studied by transmission electron microscopy in GaAs wafers ground with sandpaper. The samples showed a dislocation network located near the sample surface penetrating to a depth of a few micrometres, comparable to the size of abrasive particles used for the treatment, and no other types of defects were observed. A simple model for the formation of a compressive strain induced by the dislocation network in the damaged layer is proposed, in satisfactory agreement with the measured strain. The strain is generated by the formation of dislocation half-loops at the crystal surface, having the same component of the Burgers vectors parallel to the surface of the crystal. This is equivalent to the insertion of extra half-planes from the crystal surface to the depth of the damaged zone. This model can be generalized for other crystal structures. An approximate calculation of the strain generated from the observed dislocation distribution in the sample agrees with the proposed model and permits the conclusion that this mechanism is in general sufficient to explain the observed compressive strain, without the need to consider other types of defects. Full Article text
ed X-ray diffraction using focused-ion-beam-prepared single crystals By scripts.iucr.org Published On :: 2020-04-14 High-quality single-crystal X-ray diffraction measurements are a prerequisite for obtaining precise and reliable structure data and electron densities. The single crystal should therefore fulfill several conditions, of which a regular defined shape is of particularly high importance for compounds consisting of heavy elements with high X-ray absorption coefficients. The absorption of X-rays passing through a 50 µm-thick LiNbO3 crystal can reduce the transmission of Mo Kα radiation by several tens of percent, which makes an absorption correction of the reflection intensities necessary. In order to reduce ambiguities concerning the shape of a crystal, used for the necessary absorption correction, a method for preparation of regularly shaped single crystals out of large samples is presented and evaluated. This method utilizes a focused ion beam to cut crystals with defined size and shape reproducibly and carefully without splintering. For evaluation, a single-crystal X-ray diffraction study using a laboratory diffractometer is presented, comparing differently prepared LiNbO3 crystals originating from the same macroscopic crystal plate. Results of the data reduction, structure refinement and electron density reconstruction indicate qualitatively similar values for all prepared crystals. Thus, the different preparation techniques have a smaller impact than expected. However, the atomic coordinates, electron densities and atomic charges are supposed to be more reliable since the focused-ion-beam-prepared crystal exhibits the smallest extinction influences. This preparation technique is especially recommended for susceptible samples, for cases where a minimal invasive preparation procedure is needed, and for the preparation of crystals from specific areas, complex material architectures and materials that cannot be prepared with common methods (breaking or grinding). Full Article text
ed Sub-millisecond time-resolved small-angle neutron scattering measurements at NIST By scripts.iucr.org Published On :: 2020-04-14 Instrumentation for time-resolved small-angle neutron scattering measurements with sub-millisecond time resolution, based on Gähler's TISANE (time-involved small-angle neutron experiments) concept, is in operation at NIST's Center for Neutron Research. This implementation of the technique includes novel electronics for synchronizing the neutron pulses from high-speed counter-rotating choppers with a periodic stimulus applied to a sample. Instrumentation details are described along with measurements demonstrating the utility of the technique for elucidating the reorientation dynamics of anisometric magnetic particles. Full Article text
ed Formation of a highly dense tetra-rhenium cluster in a protein crystal and its implications in medical imaging By scripts.iucr.org Published On :: 2019-06-13 The fact that a protein crystal can serve as a chemical reaction vessel is intrinsically fascinating. That it can produce an electron-dense tetranuclear rhenium cluster compound from a rhenium tricarbonyl tribromo starting compound adds to the fascination. Such a cluster has been synthesized previously in vitro, where it formed under basic conditions. Therefore, its synthesis in a protein crystal grown at pH 4.5 is even more unexpected. The X-ray crystal structures presented here are for the protein hen egg-white lysozyme incubated with a rhenium tricarbonyl tribromo compound for periods of one and two years. These reveal a completed, very well resolved, tetra-rhenium cluster after two years and an intermediate state, where the carbonyl ligands to the rhenium cluster are not yet clearly resolved, after one year. A dense tetranuclear rhenium cluster, and its technetium form, offer enhanced contrast in medical imaging. Stimulated by these crystallography results, the unusual formation of such a species directly in an in vivo situation has been considered. It offers a new option for medical imaging compounds, particularly when considering the application of the pre-formed tetranuclear cluster, suggesting that it may be suitable for medical diagnosis because of its stability, preference of formation and biological compatibility. Full Article text
ed Structural changes during water-mediated amorphization of semiconducting two-dimensional thiostannates By scripts.iucr.org Published On :: 2019-07-05 Owing to their combined open-framework structures and semiconducting properties, two-dimensional thiostannates show great potential for catalytic and sensing applications. One such class of crystalline materials consists of porous polymeric [Sn3S72−]n sheets with molecular cations embedded in-between. The compounds are denoted R-SnS-1, where R is the cation. Dependent on the cation, some R-SnS-1 thiostannates transition into amorphous phases upon dispersion in water. Knowledge about the fundamental chemical properties of the thiostannates, including their water stability and the nature of the amorphous products, has not yet been established. This paper presents a time-resolved study of the transition from the crystalline to the amorphous phase of two violet-light absorbing thiostannates, i.e. AEPz-SnS-1 [AEPz = 1-(2-aminoethyl)piperazine] and trenH-SnS-1 [tren = tris(2-aminoethyl)amine]. X-ray total scattering data and pair distribution function analysis reveal no change in the local intralayer coordination during the amorphization. However, a rapid decrease in the crystalline domain sizes upon suspension in water is demonstrated. Although scanning electron microscopy shows no significant decrease of the micrometre-sized particles, transmission electron microscopy reveals the formation of small particles (∼200–400 nm) in addition to the larger particles. The amorphization is associated with disorder of the thiostannate nanosheet stacking. For example, an average decrease in the interlayer distance (from 19.0 to 15.6 Å) is connected to the substantial loss of the organic components as shown by elemental analysis and X-ray photoelectron spectroscopy. Despite the structural changes, the light absorption properties of the amorphisized R-SnS-1 compounds remain intact, which is encouraging for future water-based applications of such materials. Full Article text
ed Structures of three ependymin-related proteins suggest their function as a hydrophobic molecule binder By scripts.iucr.org Published On :: 2019-06-20 Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation. Full Article text
ed Automated serial rotation electron diffraction combined with cluster analysis: an efficient multi-crystal workflow for structure determination By scripts.iucr.org Published On :: 2019-07-12 Serial rotation electron diffraction (SerialRED) has been developed as a fully automated technique for three-dimensional electron diffraction data collection that can run autonomously without human intervention. It builds on the previously established serial electron diffraction technique, in which submicrometre-sized crystals are detected using image processing algorithms. Continuous rotation electron diffraction (cRED) data are collected on each crystal while dynamically tracking the movement of the crystal during rotation using defocused diffraction patterns and applying a set of deflector changes. A typical data collection screens up to 500 crystals per hour, and cRED data are collected from suitable crystals. A data processing pipeline is developed to process the SerialRED data sets. Hierarchical cluster analysis is implemented to group and identify the different phases present in the sample and to find the best matching data sets to be merged for subsequent structure analysis. This method has been successfully applied to a series of zeolites and a beam-sensitive metal–organic framework sample to study its capability for structure determination and refinement. Two multi-phase samples were tested to show that the individual crystal phases can be identified and their structures determined. The results show that refined structures obtained using automatically collected SerialRED data are indistinguishable from those collected manually using the cRED technique. At the same time, SerialRED has lower requirements of expertise in transmission electron microscopy and is less labor intensive, making it a promising high-throughput crystal screening and structure analysis tool. Full Article text
ed Ligand pathways in neuroglobin revealed by low-temperature photodissociation and docking experiments By scripts.iucr.org Published On :: 2019-07-10 A combined biophysical approach was applied to map gas-docking sites within murine neuroglobin (Ngb), revealing snapshots of events that might govern activity and dynamics in this unique hexacoordinate globin, which is most likely to be involved in gas-sensing in the central nervous system and for which a precise mechanism of action remains to be elucidated. The application of UV–visible microspectroscopy in crystallo, solution X-ray absorption near-edge spectroscopy and X-ray diffraction experiments at 15–40 K provided the structural characterization of an Ngb photolytic intermediate by cryo-trapping and allowed direct observation of the relocation of carbon monoxide within the distal heme pocket after photodissociation. Moreover, X-ray diffraction at 100 K under a high pressure of dioxygen, a physiological ligand of Ngb, unravelled the existence of a storage site for O2 in Ngb which coincides with Xe-III, a previously described docking site for xenon or krypton. Notably, no other secondary sites were observed under our experimental conditions. Full Article text
ed X-ray photon correlation spectroscopy of protein dynamics at nearly diffraction-limited storage rings By scripts.iucr.org Published On :: 2019-07-11 This study explores the possibility of measuring the dynamics of proteins in solution using X-ray photon correlation spectroscopy (XPCS) at nearly diffraction-limited storage rings (DLSRs). We calculate the signal-to-noise ratio (SNR) of XPCS experiments from a concentrated lysozyme solution at the length scale of the hydrodynamic radius of the protein molecule. We take into account limitations given by the critical X-ray dose and find expressions for the SNR as a function of beam size, sample-to-detector distance and photon energy. Specifically, we show that the combined increase in coherent flux and coherence lengths at the DLSR PETRA IV yields an increase in SNR of more than one order of magnitude. The resulting SNR values indicate that XPCS experiments of biological macromolecules on nanometre length scales will become feasible with the advent of a new generation of synchrotron sources. Our findings provide valuable input for the design and construction of future XPCS beamlines at DLSRs. Full Article text
ed Catalytically important damage-free structures of a copper nitrite reductase obtained by femtosecond X-ray laser and room-temperature neutron crystallography By scripts.iucr.org Published On :: 2019-06-23 Copper-containing nitrite reductases (CuNiRs) that convert NO2− to NO via a CuCAT–His–Cys–CuET proton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å. Here, for the first time, the damage-free structure of the resting state of one of the most studied CuNiRs was obtained by combining X-ray free-electron laser (XFEL) and neutron crystallography. This represents the first direct comparison of neutron and XFEL structural data for any protein. In addition, damage-free structures of the reduced and nitrite-bound forms have been obtained to high resolution from cryogenically maintained crystals by XFEL crystallography. It is demonstrated that AspCAT and HisCAT are deprotonated in the resting state of CuNiRs at pH values close to the optimum for activity. A bridging neutral water (D2O) is positioned with one deuteron directed towards AspCAT Oδ1 and one towards HisCAT N∊2. The catalytic T2Cu-ligated water (W1) can clearly be modelled as a neutral D2O molecule as opposed to D3O+ or OD−, which have previously been suggested as possible alternatives. The bridging water restricts the movement of the unprotonated AspCAT and is too distant to form a hydrogen bond to the O atom of the bound nitrite that interacts with AspCAT. Upon the binding of NO2− a proton is transferred from the bridging water to the Oδ2 atom of AspCAT, prompting electron transfer from T1Cu to T2Cu and reducing the catalytic redox centre. This triggers the transfer of a proton from AspCAT to the bound nitrite, enabling the reaction to proceed. Full Article text
ed Magnetic field-induced magnetostructural transition and huge tensile superelasticity in an oligocrystalline Ni–Cu–Co–Mn–In microwire By scripts.iucr.org Published On :: 2019-07-11 Meta-magnetic shape-memory alloys combine ferroelastic order with ferromagnetic order and exhibit attractive multifunctional properties, but they are extremely brittle, showing hardly any tensile deformability, which impedes their practical application. Here, for the first time, an Ni–Cu–Co–Mn–In microwire has been developed that simultaneously exhibits a magnetic field-induced first-order meta-magnetic phase transition and huge tensile superelasticity. A temperature-dependent in situ synchrotron high-energy X-ray diffraction investigation reveals that the martensite of this Ni43.7Cu1.5Co5.1Mn36.7In13 microwire shows a monoclinic six-layered modulated structure and the austenite shows a cubic structure. This microwire exhibits an oligocrystalline structure with bamboo grains, which remarkably reduces the strain incompatibility during deformation and martensitic transformation. As a result, huge tensile superelasticity with a recoverable strain of 13% is achieved in the microwire. This huge tensile superelasticity is in agreement with our theoretical calculations based on the crystal structure and lattice correspondence of austenite and martensite and the crystallographic orientation of the grains. Owing to the large magnetization difference between austenite and martensite, a pronounced magnetic field-induced magnetostructural transition is achieved in the microwire, which could give rise to a variety of magnetically driven functional properties. For example, a large magnetocaloric effect with an isothermal entropy change of 12.7 J kg−1 K−1 (under 5 T) is obtained. The realization of magnetic-field- and tensile-stress-induced structural transformations in the microwire may pave the way for exploiting the multifunctional properties under the coupling of magnetic field and stress for applications in miniature multifunctional devices. Full Article text
ed 1 kHz fixed-target serial crystallography using a multilayer monochromator and an integrating pixel detector By scripts.iucr.org Published On :: 2019-08-17 Reliable sample delivery and efficient use of limited beam time have remained bottlenecks for serial crystallography (SX). Using a high-intensity polychromatic X-ray beam in combination with a newly developed charge-integrating JUNGFRAU detector, we have applied the method of fixed-target SX to collect data at a rate of 1 kHz at a synchrotron-radiation facility. According to our data analysis for the given experimental conditions, only about 3 000 diffraction patterns are required for a high-quality diffraction dataset. With indexing rates of up to 25%, recording of such a dataset takes less than 30 s. Full Article text
ed Spin resolved electron density study of YTiO3 in its ferromagnetic phase: signature of orbital ordering By scripts.iucr.org Published On :: 2019-08-02 The present work reports on the charge and spin density modelling of YTiO3 in its ferromagnetic state (TC = 27 K). Accurate polarized neutron diffraction and high-resolution X-ray diffraction (XRD) experiments were carried out on a single crystal at the ORPHÉE reactor (LLB) and SPRING8 synchrotron source. The experimental data are modelled by the spin resolved pseudo-atomic multipolar model (Deutsch et al., 2012). The refinement strategy is discussed and the result of this electron density modelling is compared with that from XRD measured at 100 K and with density functional theory calculations. The results show that the spin and charge densities around the Ti atom have lobes directed away from the O atoms, confirming the filling of the t2g orbitals of the Ti atom. The dxy orbital is less populated than dxz and dyz, which is a sign of a partial lift of degeneracy of the t2g orbitals. This study confirms the orbital ordering at low temperature (20 K), which is already present in the paramagnetic state above the ferromagnetic transition (100 K). Full Article text
ed Charge densities in actinide compounds: strategies for data reduction and model building By scripts.iucr.org Published On :: 2019-08-07 The data quality requirements for charge density studies on actinide compounds are extreme. Important steps in data collection and reduction required to obtain such data are summarized and evaluated. The steps involved in building an augmented Hansen–Coppens multipole model for an actinide pseudo-atom are provided. The number and choice of radial functions, in particular the definition of the core, valence and pseudo-valence terms are discussed. The conclusions in this paper are based on a re-examination and improvement of a previously reported study on [PPh4][UF6]. Topological analysis of the total electron density shows remarkable agreement between experiment and theory; however, there are significant differences in the Laplacian distribution close to the uranium atoms which may be due to the effective core potential employed for the theoretical calculations. Full Article text
ed MicroED with the Falcon III direct electron detector By scripts.iucr.org Published On :: 2019-08-17 Microcrystal electron diffraction (MicroED) combines crystallography and electron cryo-microscopy (cryo-EM) into a method that is applicable to high-resolution structure determination. In MicroED, nanosized crystals, which are often intractable using other techniques, are probed by high-energy electrons in a transmission electron microscope. Diffraction data are recorded by a camera in movie mode: the nanocrystal is continuously rotated in the beam, thus creating a sequence of frames that constitute a movie with respect to the rotation angle. Until now, diffraction-optimized cameras have mostly been used for MicroED. Here, the use of a direct electron detector that was designed for imaging is reported. It is demonstrated that data can be collected more rapidly using the Falcon III for MicroED and with markedly lower exposure than has previously been reported. The Falcon III was operated at 40 frames per second and complete data sets reaching atomic resolution were recorded in minutes. The resulting density maps to 2.1 Å resolution of the serine protease proteinase K showed no visible signs of radiation damage. It is thus demonstrated that dedicated diffraction-optimized detectors are not required for MicroED, as shown by the fact that the very same cameras that are used for imaging applications in electron microscopy, such as single-particle cryo-EM, can also be used effectively for diffraction measurements. Full Article text
ed Conformational characterization of full-length X-chromosome-linked inhibitor of apoptosis protein (XIAP) through an integrated approach By scripts.iucr.org Published On :: 2019-08-23 The X-chromosome-linked inhibitor of apoptosis protein (XIAP) is a multidomain protein whose main function is to block apoptosis by caspase inhibition. XIAP is also involved in other signalling pathways, including NF-κB activation and copper homeostasis. XIAP is overexpressed in tumours, potentiating cell survival and resistance to chemotherapeutics, and has therefore become an important target for the treatment of malignancy. Despite the fact that the structure of each single domain is known, the conformation of the full-length protein has never been determined. Here, the first structural model of the full-length XIAP dimer, determined by an integrated approach using nuclear magnetic resonance, small-angle X-ray scattering and electron paramagnetic resonance data, is presented. It is shown that XIAP adopts a compact and relatively rigid conformation, implying that the spatial arrangement of its domains must be taken into account when studying the interactions with its physiological partners and in developing effective inhibitors. Full Article text
ed Crystallographic insights into diamond-shaped 7M martensite in Ni–Mn–Ga ferromagnetic shape-memory alloys By scripts.iucr.org Published On :: 2019-08-15 For Heusler-type Ni–Mn–Ga ferromagnetic shape-memory alloys, the configuration of the martensite variants is a decisive factor in achieving a large magnetic shape-memory effect through field-induced variant reorientation. Based upon the spatially resolved electron backscatter diffraction technique, the microstructural evolution associated with the martensitic transformation from austenite to seven-layered modulated (7M) martensite was investigated on a polycrystalline Ni53Mn22Ga25 alloy. It was clearly shown that grain interior nucleation led to the formation of diamond-shaped 7M martensite within the parent austenite matrix. This diamond microstructure underwent further growth through an isotropic expansion with the coordinated outward movement of four side habit planes, followed by an anisotropic elongation with the forward extension of a type-I twin pair. A two-step growth model is proposed to describe the specific morphology and crystallography of 7M martensite. In addition, the habit planes were revealed to possess a stepped structure, with the {1 0 1}A plane as the terrace and the {0 1 0}A plane as the step. The characteristic combination of martensite variants and the underlying mechanism of self-accommodation in the martensitic transformation have been analysed in terms of the minimum total transformation strain, where the deformation gradient matrix was constructed according to the experimentally determined orientation relationship between the two phases. The present results may deepen the understanding of special martensite microstructures during the martensitic transformation in ferromagnetic shape-memory alloys. Full Article text
ed A new small-angle X-ray scattering model for polymer spherulites with a limited lateral size of the lamellar crystals By scripts.iucr.org Published On :: 2019-08-31 As is well known, polymers commonly form lamellar crystals, and these assemble further into lamellar stacks and spherulites during quiescent crystallization. Fifty years ago, Vonk and Kortleve constructed the classical small-angle X-ray scattering theory (SAXS) for a lamellar system, in which it was assumed that the lamellar stack had an infinite lateral size [Vonk & Kortleve (1967), Kolloid Z. Z. Polym. 220, 19–24]. Under this assumption, only crystal planes satisfying the Bragg condition can form strong scattering, and the scattering from the lamellar stack arises from the difference between the scattering intensities in the amorphous and crystalline layers, induced by the incident X-ray beam. This assumption is now deemed unreasonable. In a real polymer spherulite, the lamellar crystal commonly has dimensions of only a few hundred nanometres. At such a limited lateral size, lamellar stacks in a broad orientation have similar scattering, so interference between these lamellar stacks must be considered. Scattering from lamellar stacks parallel to the incident X-ray beam also needs to be considered when total reflection occurs. In this study, various scattering contributions from lamellar stacks in a spherulite are determined. It is found that, for a limited lateral size, the scattering induced by the incident X-ray beam is not the main origin of SAXS. It forms double peaks, which are not observed in real scattering because of destructive interference between the lamellar stacks. The scattering induced by the evanescent wave is the main origin. It can form a similar interference pattern to that observed in a real SAXS measurement: a Guinier region in the small-q range, a signal region in the intermediate-q range and a Porod region in the high-q range. It is estimated that, to avoid destructive interference, the lateral size needs to be greater than 11 µm, which cannot be satisfied in a real lamellar system. Therefore, SAXS in a real polymer system arises largely from the scattering induced by the evanescent wave. Evidence for the existence of the evanescent wave was identified in the scattering of isotactic polypropylene. This study corrects a long-term misunderstanding of SAXS in a polymer lamellar system. Full Article text
ed Diversifying molecular and topological space via a supramolecular solid-state synthesis: a purely organic mok net sustained by hydrogen bonds By scripts.iucr.org Published On :: 2019-09-07 A three-dimensional hydrogen-bonded network based on a rare mok topology has been constructed using an organic molecule synthesized in the solid state. The molecule is obtained using a supramolecular protecting-group strategy that is applied to a solid-state [2+2] photodimerization. The photodimerization affords a novel head-to-head cyclobutane product. The cyclobutane possesses tetrahedrally disposed cis-hydrogen-bond donor (phenolic) and cis-hydrogen-bond acceptor (pyridyl) groups. The product self-assembles in the solid state to form a mok network that exhibits twofold interpenetration. The cyclobutane adopts different conformations to provide combinations of hydrogen-bond donor and acceptor sites to conform to the structural requirements of the mok net. Full Article text
ed A cryo-EM grid preparation device for time-resolved structural studies By scripts.iucr.org Published On :: 2019-09-05 Structural biology generally provides static snapshots of protein conformations that can provide information on the functional mechanisms of biological systems. Time-resolved structural biology provides a means to visualize, at near-atomic resolution, the dynamic conformational changes that macromolecules undergo as they function. X-ray free-electron-laser technology has provided a powerful tool to study enzyme mechanisms at atomic resolution, typically in the femtosecond to picosecond timeframe. Complementary to this, recent advances in the resolution obtainable by electron microscopy and the broad range of samples that can be studied make it ideally suited to time-resolved approaches in the microsecond to millisecond timeframe to study large loop and domain motions in biomolecules. Here we describe a cryo-EM grid preparation device that permits rapid mixing, voltage-assisted spraying and vitrification of samples. It is shown that the device produces grids of sufficient ice quality to enable data collection from single grids that results in a sub-4 Å reconstruction. Rapid mixing can be achieved by blot-and-spray or mix-and-spray approaches with a delay of ∼10 ms, providing greater temporal resolution than previously reported mix-and-spray approaches. Full Article text
ed DeepRes: a new deep-learning- and aspect-based local resolution method for electron-microscopy maps By scripts.iucr.org Published On :: 2019-09-18 In this article, a method is presented to estimate a new local quality measure for 3D cryoEM maps that adopts the form of a `local resolution' type of information. The algorithm (DeepRes) is based on deep-learning 3D feature detection. DeepRes is fully automatic and parameter-free, and avoids the issues of most current methods, such as their insensitivity to enhancements owing to B-factor sharpening (unless the 3D mask is changed), among others, which is an issue that has been virtually neglected in the cryoEM field until now. In this way, DeepRes can be applied to any map, detecting subtle changes in local quality after applying enhancement processes such as isotropic filters or substantially more complex procedures, such as model-based local sharpening, non-model-based methods or denoising, that may be very difficult to follow using current methods. It performs as a human observer expects. The comparison with traditional local resolution indicators is also addressed. Full Article text
ed R3c-type LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) half-metals with multiple Dirac cones: a potential class of advanced spintronic materials By scripts.iucr.org Published On :: 2019-10-16 In the past three years, Dirac half-metals (DHMs) have attracted considerable attention and become a high-profile topic in spintronics becuase of their excellent physical properties such as 100% spin polarization and massless Dirac fermions. Two-dimensional DHMs proposed recently have not yet been experimentally synthesized and thus remain theoretical. As a result, their characteristics cannot be experimentally confirmed. In addition, many theoretically predicted Dirac materials have only a single cone, resulting in a nonlinear electromagnetic response with insufficient intensity and inadequate transport carrier efficiency near the Fermi level. Therefore, after several attempts, we have focused on a novel class of DHMs with multiple Dirac crossings to address the above limitations. In particular, we direct our attention to three-dimensional bulk materials. In this study, the discovery via first principles of an experimentally synthesized DHM LaNiO3 with many Dirac cones and complete spin polarization near the Fermi level is reported. It is also shown that the crystal structures of these materials are strongly correlated with their physical properties. The results indicate that many rhombohedral materials with the general formula LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) in the space group R3c are potential DHMs with multiple Dirac cones. Full Article text
ed Toward G protein-coupled receptor structure-based drug design using X-ray lasers By scripts.iucr.org Published On :: 2019-10-24 Rational structure-based drug design (SBDD) relies on the availability of a large number of co-crystal structures to map the ligand-binding pocket of the target protein and use this information for lead-compound optimization via an iterative process. While SBDD has proven successful for many drug-discovery projects, its application to G protein-coupled receptors (GPCRs) has been limited owing to extreme difficulties with their crystallization. Here, a method is presented for the rapid determination of multiple co-crystal structures for a target GPCR in complex with various ligands, taking advantage of the serial femtosecond crystallography approach, which obviates the need for large crystals and requires only submilligram quantities of purified protein. The method was applied to the human β2-adrenergic receptor, resulting in eight room-temperature co-crystal structures with six different ligands, including previously unreported structures with carvedilol and propranolol. The generality of the proposed method was tested with three other receptors. This approach has the potential to enable SBDD for GPCRs and other difficult-to-crystallize membrane proteins. Full Article text
ed Mutagenesis facilitated crystallization of GLP-1R By scripts.iucr.org Published On :: 2019-10-17 The class B family of G-protein-coupled receptors (GPCRs) has long been a paradigm for peptide hormone recognition and signal transduction. One class B GPCR, the glucagon-like peptide-1 receptor (GLP-1R), has been considered as an anti-diabetes drug target and there are several peptidic drugs available for the treatment of this overwhelming disease. The previously determined structures of inactive GLP-1R in complex with two negative allosteric modulators include ten thermal-stabilizing mutations that were selected from a total of 98 designed mutations. Here we systematically summarize all 98 mutations we have tested and the results suggest that the mutagenesis strategy that strengthens inter-helical hydrophobic interactions shows the highest success rate. We further investigate four back mutations by thermal-shift assay, crystallization and molecular dynamic simulations, and conclude that mutation I1962.66bF increases thermal stability intrinsically and that mutation S2714.47bA decreases crystal packing entropy extrinsically, while mutations S1932.63bC and M2333.36bC may be dispensable since these two cysteines are not disulfide-linked. Our results indicate intrinsic connections between different regions of GPCR transmembrane helices and the current data suggest a general mutagenesis principle for structural determination of GPCRs and other membrane proteins. Full Article text
ed Structure-based mechanism of cysteine-switch latency and of catalysis by pappalysin-family metallopeptidases By scripts.iucr.org Published On :: 2020-01-01 Tannerella forsythia is an oral dysbiotic periodontopathogen involved in severe human periodontal disease. As part of its virulence factor armamentarium, at the site of colonization it secretes mirolysin, a metallopeptidase of the unicellular pappalysin family, as a zymogen that is proteolytically auto-activated extracellularly at the Ser54–Arg55 bond. Crystal structures of the catalytically impaired promirolysin point mutant E225A at 1.4 and 1.6 Å revealed that latency is exerted by an N-terminal 34-residue pro-segment that shields the front surface of the 274-residue catalytic domain, thus preventing substrate access. The catalytic domain conforms to the metzincin clan of metallopeptidases and contains a double calcium site, which acts as a calcium switch for activity. The pro-segment traverses the active-site cleft in the opposite direction to the substrate, which precludes its cleavage. It is anchored to the mature enzyme through residue Arg21, which intrudes into the specificity pocket in cleft sub-site S1'. Moreover, residue Cys23 within a conserved cysteine–glycine motif blocks the catalytic zinc ion by a cysteine-switch mechanism, first described for mammalian matrix metallopeptidases. In addition, a 1.5 Å structure was obtained for a complex of mature mirolysin and a tetradecapeptide, which filled the cleft from sub-site S1' to S6'. A citrate molecule in S1 completed a product-complex mimic that unveiled the mechanism of substrate binding and cleavage by mirolysin, the catalytic domain of which was already preformed in the zymogen. These results, including a preference for cleavage before basic residues, are likely to be valid for other unicellular pappalysins derived from archaea, bacteria, cyanobacteria, algae and fungi, including archetypal ulilysin from Methanosarcina acetivorans. They may further apply, at least in part, to the multi-domain orthologues of higher organisms. Full Article text
ed A fixed-target platform for serial femtosecond crystallography in a hydrated environment By scripts.iucr.org Published On :: 2020-01-01 For serial femtosecond crystallography at X-ray free-electron lasers, which entails collection of single-pulse diffraction patterns from a constantly refreshed supply of microcrystalline sample, delivery of the sample into the X-ray beam path while maintaining low background remains a technical challenge for some experiments, especially where this methodology is applied to relatively low-ordered samples or those difficult to purify and crystallize in large quantities. This work demonstrates a scheme to encapsulate biological samples using polymer thin films and graphene to maintain sample hydration in vacuum conditions. The encapsulated sample is delivered into the X-ray beam on fixed targets for rapid scanning using the Roadrunner fixed-target system towards a long-term goal of low-background measurements on weakly diffracting samples. As a proof of principle, we used microcrystals of the 24 kDa rapid encystment protein (REP24) to provide a benchmark for polymer/graphene sandwich performance. The REP24 microcrystal unit cell obtained from our sandwiched in-vacuum sample was consistent with previously established unit-cell parameters and with those measured by us without encapsulation in humidified helium, indicating that the platform is robust against evaporative losses. While significant scattering from water was observed because of the sample-deposition method, the polymer/graphene sandwich itself was shown to contribute minimally to background scattering. Full Article text
ed Polymorph evolution during crystal growth studied by 3D electron diffraction By scripts.iucr.org Published On :: 2020-01-01 3D electron diffraction (3DED) has been used to follow polymorph evolution in the crystallization of glycine from aqueous solution. The three polymorphs of glycine which exist under ambient conditions follow the stability order β < α < γ. The least stable β polymorph forms within the first 3 min, but this begins to yield the α-form after only 1 min more. Both structures could be determined from continuous rotation electron diffraction data collected in less than 20 s on crystals of thickness ∼100 nm. Even though the γ-form is thermodynamically the most stable polymorph, kinetics favour the α-form, which dominates after prolonged standing. In the same sample, some β and one crystallite of the γ polymorph were also observed. Full Article text
ed Crystal engineering of exemestane to obtain a co-crystal with enhanced urease inhibition activity By scripts.iucr.org Published On :: 2020-01-01 Co-crystallization is a phenomenon widely employed to enhance the physio-chemical and biological properties of active pharmaceutical ingredients (APIs). Exemestane, or 6-methylideneandrosta-1,4-diene-3,17-dione, is an anabolic steroid used as an irreversible steroidal aromatase inhibitor, which is in clinical use to treat breast cancer. The present study deals with the synthesis of co-crystals of exemestane with thiourea by liquid-assisted grinding. The purity and homogeneity of the exemestane–thiourea (1:1) co-crystal were confirmed by single-crystal X-ray diffraction followed by thermal stability analysis on the basis of differential scanning calorimetry and thermogravimetric analysis. Detailed geometric analysis of the co-crystal demonstrated that a 1:1 co-crystal stoichiometry is sustained by N—H⋯O hydrogen bonding between the amine (NH2) groups of thiourea and the carbonyl group of exemestane. The synthesized co-crystal exhibited potent urease inhibition activity in vitro (IC50 = 3.86 ± 0.31 µg ml−1) compared with the API (exemestane), which was found to be inactive, and the co-former (thiourea) (IC50 = 21.0 ± 1.25 µg ml−1), which is also an established tested standard for urease inhibition assays in vitro. The promising results of the present study highlight the significance of co-crystallization as a crystal engineering tool to improve the efficacy of pharmaceutical ingredients. Furthermore, the role of various hydrogen bonds in the crystal stability is successfully analysed quantitatively using Hirshfeld surface analysis. Full Article text
ed 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow By scripts.iucr.org Published On :: 2020-01-16 Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX. Full Article text
ed Structural insights into conformational switching in latency-associated peptide between transforming growth factor β-1 bound and unbound states By scripts.iucr.org Published On :: 2020-02-06 Transforming growth factor β-1 (TGFβ-1) is a secreted signalling protein that directs many cellular processes and is an attractive target for the treatment of several diseases. The primary endogenous activity regulatory mechanism for TGFβ-1 is sequestration by its pro-peptide, latency-associated peptide (LAP), which sterically prohibits receptor binding by caging TGFβ-1. As such, recombinant LAP is promising as a protein-based therapeutic for modulating TGFβ-1 activity; however, the mechanism of binding is incompletely understood. Comparison of the crystal structure of unbound LAP (solved here to 3.5 Å resolution) with that of the bound complex shows that LAP is in a more open and extended conformation when unbound to TGFβ-1. Analysis suggests a mechanism of binding TGFβ-1 through a large-scale conformational change that includes contraction of the inter-monomer interface and caging by the `straight-jacket' domain that may occur in partnership through a loop-to-helix transition in the core jelly-roll fold. This conformational change does not appear to include a repositioning of the integrin-binding motif as previously proposed. X-ray scattering-based modelling supports this mechanism and reveals possible orientations and ensembles in solution. Although native LAP is heavily glycosylated, solution scattering experiments show that the overall folding and flexibility of unbound LAP are not influenced by glycan modification. The combination of crystallography, solution scattering and biochemical experiments reported here provide insight into the mechanism of LAP sequestration of TGFβ-1 that is of fundamental importance for therapeutic development. Full Article text
ed The structural study of mutation-induced inactivation of human muscarinic receptor M4 By scripts.iucr.org Published On :: 2020-02-22 Human muscarinic receptor M4 belongs to the class A subfamily of the G-protein-coupled receptors (GPCRs). M4 has emerged as an attractive drug target for the treatment of Alzheimer's disease and schizophrenia. Recent results showed that M4-mediated cholinergic transmission is related to motor symptoms in Parkinson's disease. Selective ligand design for the five muscarinic acetylcholine receptor (mAchR) subtypes currently remains challenging owing to the high sequence and structural similarity of their orthosteric binding pockets. In order to obtain M4-selective antagonists, a new approach was tried to lock M4 into an inactive form by rationally designing an N4497.49R mutation, which mimics the allosteric sodium binding in the conserved sodium site usually found in class A GPCRs. In addition, the crystal structure of the mutation-induced inactive M4 was determined. By comparative analysis with other mAchR structures, followed by functional assays, the N4497.49R mutation was shown to stabilize M4 into an inactive state. Virtual screening of a focused ligand library using the crystal structure showed that the inactive M4 prefers antagonists much more than agonists. This study provides a powerful mutation strategy to stabilize GPCRs in inactive states and facilitate their structure determination. Full Article text
ed Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals By scripts.iucr.org Published On :: 2020-02-26 Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme. Full Article text
ed The predictive power of data-processing statistics By scripts.iucr.org Published On :: 2020-02-27 This study describes a method to estimate the likelihood of success in determining a macromolecular structure by X-ray crystallography and experimental single-wavelength anomalous dispersion (SAD) or multiple-wavelength anomalous dispersion (MAD) phasing based on initial data-processing statistics and sample crystal properties. Such a predictive tool can rapidly assess the usefulness of data and guide the collection of an optimal data set. The increase in data rates from modern macromolecular crystallography beamlines, together with a demand from users for real-time feedback, has led to pressure on computational resources and a need for smarter data handling. Statistical and machine-learning methods have been applied to construct a classifier that displays 95% accuracy for training and testing data sets compiled from 440 solved structures. Applying this classifier to new data achieved 79% accuracy. These scores already provide clear guidance as to the effective use of computing resources and offer a starting point for a personalized data-collection assistant. Full Article text
ed Structure and mechanism of copper–carbonic anhydrase II: a nitrite reductase By scripts.iucr.org Published On :: 2020-02-21 Nitric oxide (NO) promotes vasodilation through the activation of guanylate cyclase, resulting in the relaxation of the smooth muscle vasculature and a subsequent decrease in blood pressure. Therefore, its regulation is of interest for the treatment and prevention of heart disease. An example is pulmonary hypertension which is treated by targeting this NO/vasodilation pathway. In bacteria, plants and fungi, nitrite (NO2−) is utilized as a source of NO through enzymes known as nitrite reductases. These enzymes reduce NO2− to NO through a catalytic metal ion, often copper. Recently, several studies have shown nitrite reductase activity of mammalian carbonic anhydrase II (CAII), yet the molecular basis for this activity is unknown. Here we report the crystal structure of copper-bound human CAII (Cu–CAII) in complex with NO2− at 1.2 Å resolution. The structure exhibits Type 1 (T-1) and 2 (T-2) copper centers, analogous to bacterial nitrite reductases, both required for catalysis. The copper-substituted CAII active site is penta-coordinated with a `side-on' bound NO2−, resembling a T-2 center. At the N terminus, several residues that are normally disordered form a porphyrin ring-like configuration surrounding a second copper, acting as a T-1 center. A structural comparison with both apo- (without metal) and zinc-bound CAII (Zn–CAII) provides a mechanistic picture of how, in the presence of copper, CAII, with minimal conformational changes, can function as a nitrite reductase. Full Article text
ed Disappeared supramolecular isomer reappears with perylene guest By scripts.iucr.org Published On :: 2020-02-27 Among different types of polymorphism, disappearing polymorphism deals with the metastable kinetic form which can not be reproduced after its first isolation. In the world of coordination polymers (CPs) and metal–organic frameworks (MOFs), despite the fact that many types of supramolecular isomerism exist, we are unaware of disappearing supramolecular isomerism akin to disappearing polymorphism. This work reports a MOF with dia topology that could not be reproduced, but subsequent synthesis yielded another supramolecular isomer, a double-pillared-layer MOF. When perylene was added in the same reaction, the disappeared dia MOF reappeared with perylene as a guest in the channels. Interestingly, the photoluminescence of the dia MOF with a perylene guest is dominated by the emission of the guest molecule. The influence of guest molecules on the stabilization of the supramolecular isomers of a MOF opens up a strategy to access MOFs with different structures. Full Article text
ed Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays By scripts.iucr.org Published On :: 2020-02-19 Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with Å spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Ångstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters. Full Article text
ed Probing the structural pathway of conformational polymorph nucleation by comparing a series of α,ω-alkanedicarboxylic acids By scripts.iucr.org Published On :: 2020-03-26 Herein the nucleation pathway of conformational polymorphs was revealed by studying the relationships and distinctions among a series of α,ω-alkanedicarboxylic acids [HOOC–(CH2)n−2–COOH, named DAn, where n = 5, 7, 9, 11, 13, 15] in the solid state and in solution. Their polymorphic outcomes, with the exception of DA5, show solvent dependence: form I with conformation I crystallizes from solvents with hydrogen-bond donating (HBD) ability, whereas form II with conformation II crystallizes preferentially from solvents with no HBD ability. In contrast, form II of DA5 does not crystallize in any of the solvents used. Quantum mechanical computation showed that there is no direct conformational link between the solvents and the resultant polymorphic outcomes. Surprisingly, solute aggregates were found in no-HBD solvents by Fourier transform infrared spectroscopy, and only monomers could be detected in HBD solvents, suggesting stronger solvation. Furthermore, it was found that all six compounds including DA5 followed the same pattern in solution. Moreover, crystal-packing efficiency calculations and stability tests stated that dimorphs of DA5 bear a greater stability difference than others. These suggest that the rearrangement from conformation II to I could not be limited by hard desolvation in HBD solvents, where form I was also obtained. In other systems, metastable II was produced in the same solvents, probably as a result of the rearrangement being limited by hard desolvation. In this work, a comparative study uncovers the proposed nucleation pathway: difficulty in desolvation has a remarkable effect on the result of rearrangement and nucleation outcome. Full Article text
ed Hypothesis for a mechanism of beam-induced motion in cryo-electron microscopy By scripts.iucr.org Published On :: 2020-03-26 Estimates of heat-transfer rates during plunge-cooling and the patterns of ice observed in cryo-EM samples indicate that the grid bars cool much more slowly than do the support foil and sample near the middle of the grid openings. The resulting transient temperature differences generate transient tensile stresses in the support foil. Most of this foil stress develops while the sample is liquid and cooling toward its glass transition Tg, and so does not generate tensile sample stress. As the grid bars continue cooling towards the cryogen temperature and contracting, the tensile stress in the foil is released, placing the sample in compressive stress. Radiation-induced creep in the presence of this compressive stress should generate a doming of the sample in the foil openings, as is observed experimentally. Crude estimates of the magnitude of the doming that may be generated by this mechanism are consistent with observation. Several approaches to reducing beam-induced motion are discussed. Full Article text
ed First synthesis of a unique icosahedral phase from the Khatyrka meteorite by shock-recovery experiment By scripts.iucr.org Published On :: 2020-03-26 Icosahedral quasicrystals (i-phases) in the Al–Cu–Fe system are of great interest because of their perfect quasicrystalline structure and natural occurrences in the Khatyrka meteorite. The natural quasicrystal of composition Al62Cu31Fe7, referred to as i-phase II, is unique because it deviates significantly from the stability field of i-phase and has not been synthesized in a laboratory setting to date. Synthetic i-phases formed in shock-recovery experiments present a novel strategy for exploring the stability of new quasicrystal compositions and prove the impact origin of natural quasicrystals. In this study, an Al–Cu–W graded density impactor (GDI, originally manufactured as a ramp-generating impactor but here used as a target) disk was shocked to sample a full range of Al/Cu starting ratios in an Fe-bearing 304 stainless-steel target chamber. In a strongly deformed region of the recovered sample, reactions between the GDI and the steel produced an assemblage of co-existing Al61.5Cu30.3Fe6.8Cr1.4 i-phase II + stolperite (β, AlCu) + khatyrkite (θ, Al2Cu), an exact match to the natural i-phase II assemblage in the meteorite. In a second experiment, the continuous interface between the GDI and steel formed another more Fe-rich quinary i-phase (Al68.6Fe14.5Cu11.2Cr4Ni1.8), together with stolperite and hollisterite (λ, Al13Fe4), which is the expected assemblage at phase equilibrium. This study is the first laboratory reproduction of i-phase II with its natural assemblage. It suggests that the field of thermodynamically stable icosahedrite (Al63Cu24Fe13) could separate into two disconnected fields under shock pressure above 20 GPa, leading to the co-existence of Fe-rich and Fe-poor i-phases like the case in Khatyrka. In light of this, shock-recovery experiments do indeed offer an efficient method of constraining the impact conditions recorded by quasicrystal-bearing meteorite, and exploring formation conditions and mechanisms leading to quasicrystals. Full Article text
ed Strong hydrogen bonding in a dense hydrous magnesium silicate discovered by neutron Laue diffraction By scripts.iucr.org Published On :: 2020-04-02 A large amount of hydrogen circulates inside the Earth, which affects the long-term evolution of the planet. The majority of this hydrogen is stored in deep Earth within the crystal structures of dense minerals that are thermodynamically stable at high pressures and temperatures. To understand the reason for their stability under such extreme conditions, the chemical bonding geometry and cation exchange mechanism for including hydrogen were analyzed in a representative structure of such minerals (i.e. phase E of dense hydrous magnesium silicate) by using time-of-flight single-crystal neutron Laue diffraction. Phase E has a layered structure belonging to the space group R3m and a very large hydrogen capacity (up to 18% H2O weight fraction). It is stable at pressures of 13–18 GPa and temperatures of up to at least 1573 K. Deuterated high-quality crystals with the chemical formula Mg2.28Si1.32D2.15O6 were synthesized under the relevant high-pressure and high-temperature conditions. The nuclear density distribution obtained by neutron diffraction indicated that the O—D dipoles were directed towards neighboring O2− ions to form strong interlayer hydrogen bonds. This bonding plays a crucial role in stabilizing hydrogen within the mineral structure under such high-pressure and high-temperature conditions. It is considered that cation exchange occurs among Mg2+, D+ and Si4+ within this structure, making the hydrogen capacity flexible. Full Article text
ed The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer By scripts.iucr.org Published On :: 2020-03-21 Neisseria meningitidis is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from N. meningitidis (NmqNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of NmqNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen Alcaligenes (Achromobacter) xylosoxidans, which primarily migrates as a monomer. The monomer–dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of NmqNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly in crystallo and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme. Full Article text
ed New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy By scripts.iucr.org Published On :: 2020-04-21 This study made use of a recently developed combination of advanced methods to reveal the atomic structure of a disordered nanocrystalline zeolite using exit wave reconstruction, automated diffraction tomography, disorder modelling and diffraction pattern simulation. By applying these methods, it was possible to determine the so far unknown structures of the hydrous layer silicate RUB-6 and the related zeolite-like material RUB-5. The structures of RUB-5 and RUB-6 contain the same dense layer-like building units (LLBUs). In the case of RUB-5, these building units are interconnected via additional SiO4/2 tetrahedra, giving rise to a framework structure with a 2D pore system consisting of intersecting 8-ring channels. In contrast, RUB-6 contains these LLBUs as separate silicate layers terminated by silanol/siloxy groups. Both RUB-6 and RUB-5 show stacking disorder with intergrowths of different polymorphs. The unique structure of RUB-6, together with the possibility for an interlayer expansion reaction to form RUB-5, make it a promising candidate for interlayer expansion with various metal sources to include catalytically active reaction centres. Full Article text
ed Atomic structures determined from digitally defined nanocrystalline regions By scripts.iucr.org Published On :: 2020-04-10 Nanocrystallography has transformed our ability to interrogate the atomic structures of proteins, peptides, organic molecules and materials. By probing atomic level details in ordered sub-10 nm regions of nanocrystals, scanning nanobeam electron diffraction extends the reach of nanocrystallography and in principle obviates the need for diffraction from large portions of one or more crystals. Scanning nanobeam electron diffraction is now applied to determine atomic structures from digitally defined regions of beam-sensitive peptide nanocrystals. Using a direct electron detector, thousands of sparse diffraction patterns over multiple orientations of a given crystal are recorded. Each pattern is assigned to a specific location on a single nanocrystal with axial, lateral and angular coordinates. This approach yields a collection of patterns that represent a tilt series across an angular wedge of reciprocal space: a scanning nanobeam diffraction tomogram. Using this diffraction tomogram, intensities can be digitally extracted from any desired region of a scan in real or diffraction space, exclusive of all other scanned points. Intensities from multiple regions of a crystal or from multiple crystals can be merged to increase data completeness and mitigate missing wedges. It is demonstrated that merged intensities from digitally defined regions of two crystals of a segment from the OsPYL/RCAR5 protein produce fragment-based ab initio solutions that can be refined to atomic resolution, analogous to structures determined by selected-area electron diffraction. In allowing atomic structures to now be determined from digitally outlined regions of a nanocrystal, scanning nanobeam diffraction tomography breaks new ground in nanocrystallography. Full Article text
ed Fast and accurate defocus modulation for improved tunability of cryo-EM experiments By scripts.iucr.org Published On :: 2020-04-25 Current data collection strategies in electron cryo-microscopy (cryo-EM) record multiframe movies with static optical settings. This limits the number of adjustable parameters that can be used to optimize the experiment. Here, a method for fast and accurate defocus (FADE) modulation during movie acquisition is proposed. It uses the objective lens aperture as an electrostatic pole that locally modifies the electron beam potential. The beam potential variation is converted to defocus change by the typically undesired chromatic aberration of the objective lens. The simplicity, electrostatic principle and low electrical impedance of the device allow fast switching speeds that will enable per-frame defocus modulation of cryo-EM movies. Researchers will be able to define custom defocus `recipes' and tailor the experiment for optimal information extraction from the sample. The FADE method could help to convert the microscope into a more dynamic and flexible optical platform that delivers better performance in cryo-EM single-particle analysis and electron cryo-tomography. Full Article text
ed A decagonal quasicrystal with rhombic and hexagonal tiles decorated with icosahedral structural units By scripts.iucr.org Published On :: 2020-04-23 The structure of a decagonal quasicrystal in the Zn58Mg40Y2 (at.%) alloy was studied using electron diffraction and atomic resolution Z-contrast imaging techniques. This stable Frank–Kasper Zn–Mg–Y decagonal quasicrystal has an atomic structure which can be modeled with a rhombic/hexagonal tiling decorated with icosahedral units at each vertex. No perfect decagonal clusters were observed in the Zn–Mg–Y decagonal quasicrystal, which differs from the Zn–Mg–Dy decagonal crystal with the same space group P10/mmm. Y atoms occupy the center of `dented decagon' motifs consisting of three fat rhombic and two flattened hexagonal tiles. About 75% of fat rhombic tiles are arranged in groups of five forming star motifs, while the others connect with each other in a `zigzag' configuration. This decagonal quasicrystal has a composition of Zn68.3Mg29.1Y2.6 (at.%) with a valence electron concentration (e/a) of about 2.03, which is in accord with the Hume–Rothery criterion for the formation of the Zn-based quasicrystal phase (e/a = 2.0–2.15). Full Article text
ed Structures of substrate- and product-bound forms of a multi-domain copper nitrite reductase shed light on the role of domain tethering in protein complexes By scripts.iucr.org Published On :: 2020-04-25 Copper-containing nitrite reductases (CuNiRs) are found in all three kingdoms of life and play a major role in the denitrification branch of the global nitrogen cycle where nitrate is used in place of dioxygen as an electron acceptor in respiratory energy metabolism. Several C- and N-terminal redox domain tethered CuNiRs have been identified and structurally characterized during the last decade. Our understanding of the role of tethered domains in these new classes of three-domain CuNiRs, where an extra cytochrome or cupredoxin domain is tethered to the catalytic two-domain CuNiRs, has remained limited. This is further compounded by a complete lack of substrate-bound structures for these tethered CuNiRs. There is still no substrate-bound structure for any of the as-isolated wild-type tethered enzymes. Here, structures of nitrite and product-bound states from a nitrite-soaked crystal of the N-terminal cupredoxin-tethered enzyme from the Hyphomicrobium denitrificans strain 1NES1 (Hd1NES1NiR) are provided. These, together with the as-isolated structure of the same species, provide clear evidence for the role of the N-terminal peptide bearing the conserved His27 in water-mediated anchoring of the substrate at the catalytic T2Cu site. Our data indicate a more complex role of tethering than the intuitive advantage for a partner-protein electron-transfer complex by narrowing the conformational search in such a combined system. Full Article text
ed Prediction of models for ordered solvent in macromolecular structures by a classifier based upon resolution-independent projections of local feature data By scripts.iucr.org Published On :: 2019-07-30 Current software tools for the automated building of models for macromolecular X-ray crystal structures are capable of assembling high-quality models for ordered macromolecule and small-molecule scattering components with minimal or no user supervision. Many of these tools also incorporate robust functionality for modelling the ordered water molecules that are found in nearly all macromolecular crystal structures. However, no current tools focus on differentiating these ubiquitous water molecules from other frequently occurring multi-atom solvent species, such as sulfate, or the automated building of models for such species. PeakProbe has been developed specifically to address the need for such a tool. PeakProbe predicts likely solvent models for a given point (termed a `peak') in a structure based on analysis (`probing') of its local electron density and chemical environment. PeakProbe maps a total of 19 resolution-dependent features associated with electron density and two associated with the local chemical environment to a two-dimensional score space that is independent of resolution. Peaks are classified based on the relative frequencies with which four different classes of solvent (including water) are observed within a given region of this score space as determined by large-scale sampling of solvent models in the Protein Data Bank. Designed to classify peaks generated from difference density maxima, PeakProbe also incorporates functionality for identifying peaks associated with model errors or clusters of peaks likely to correspond to multi-atom solvent, and for the validation of existing solvent models using solvent-omit electron-density maps. When tasked with classifying peaks into one of four distinct solvent classes, PeakProbe achieves greater than 99% accuracy for both peaks derived directly from the atomic coordinates of existing solvent models and those based on difference density maxima. While the program is still under development, a fully functional version is publicly available. PeakProbe makes extensive use of cctbx libraries, and requires a PHENIX licence and an up-to-date phenix.python environment for execution. Full Article text