ed Tetra-n-butylammonium orotate monohydrate: knowledge-based comparison of the results of accurate and lower-resolution analyses and a non-routine disorder refinement By scripts.iucr.org Published On :: 2019-10-08 The title hydrated molecular salt (systematic name: tetra-n-butylammonium 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate monohydrate), C16H36N+·C5H3N2O4−·H2O, crystallizes with N—H⋯O and O—H⋯O hydrogen-bonded double-stranded antiparallel ribbons consisting of the hydrophilic orotate monoanions and water molecules, separated by the bulky hydrophobic cations. The hydrophobic and hydrophilic regions of the structure are joined by weaker non-classical C—H⋯O hydrogen bonds. An accurate structure analysis conducted at T = 100 K is compared to a lower-resolution less accurate determination using data measured at T = 295 K. The results of both analyses are evaluated using a knowledge-based approach, and it is found that the less accurate room-temperature structure analysis provides geometric data that are similar to those derived from the accurate low-temperature analysis, with both sets of results consistent with previously analyzed structures. A minor disorder of one methyl group in the cation at low temperature was found to be slightly more complex at room temperature; while still involving a minor fraction of the structure, the disorder at room temperature was found to require a non-routine treatment, which is described in detail. Full Article text
ed Unexpected reactions of NHC*—CuI and —AgI bromides with potassium thio- or selenocyanate By scripts.iucr.org Published On :: 2019-10-22 The reactions of N-heterocyclic carbene CuI and AgI halides with potassium thio- or selenocyanate gave unexpected products. The attempted substitution reaction of bromido(1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene)silver (NHC*—Ag—Br) with KSCN yielded bis[bis(1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene)silver(I)] tris(thiocyanato)argentate(I) diethyl ether disolvate, [Ag(C29H24N2)2][Ag(NCS)3]·2C4H10O or [NHC*2Ag]2[Ag(SCN)3]·2Et2O, (1), while reaction with KSeCN led to bis(μ-1,3-dibenzyl-4,5-diphenyl-2-selenoimidazole-κ2Se:Se)bis[bromido(1,3-dibenzyl-4,5-diphenyl-2-selenoimidazole-κSe)silver(I)] dichloromethane hexasolvate, [Ag2Br2(C29H24N2Se)4]·6CH2Cl2 or (NHC*Se)4Ag2Br2·6CH2Cl2, (2), via oxidation of the NHC* fragment to 2-selenoimidazole. This oxidation was observed again in the reaction of NHC*—Cu—Br with KSeCN, yielding catena-poly[[[(1,3-dibenzyl-4,5-diphenyl-2-selenoimidazole-κSe)copper(I)]-μ-cyanido-κ2C:N] acetonitrile monosolvate], {[Cu(CN)(C29H24N2Se)]·C2H3N}n or NHC*Se—CuCN·CH3CN, (3). Compound (1) represents an organic/inorganic salt with AgI in a linear coordination in each of the two cations and in a trigonal coordination in the anion, accompanied by diethyl ether solvent molecules. The tri-blade boomerang-shaped complex anion [Ag(SCN)3]2− present in (1) is characterized by X-ray diffraction for the first time. Compound (2) comprises an isolated centrosymmetric molecule with AgI in a distorted tetrahedral BrSe3 coordination, together with dichloromethane solvent molecules. Compound (3) exhibits a linear polymeric 1∞[Cu—C≡N—Cu—] chain structure with a selenoimidazole moiety additionally coordinating to each CuI atom, and completed by acetonitrile solvent molecules. Electron densities associated with an additional ether solvent molecule in (1) and two additional dichloromethane solvent molecules in (2) were removed with the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. Full Article text
ed The first structural characterization of the protonated azacyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane] bis(per& By scripts.iucr.org Published On :: 2019-10-22 The asymmetric unit of the title compound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane-κ4N1,N5,N8,N12] bis(perchlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated perchlorate anion and two perchlorate ions as counter-anions. The metal ion is coordinated in a tetragonally distorted octahedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the perchlorate anion and the carbonyl O atom of the protonated carboxylic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxylate and average 2.62 (7) Å for disordered perchlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carboxylic acid group of the cation to a neighbouring complex unit results in the formation of infinite chains running along the b-axis direction, which are crosslinked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the perchlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts. Full Article text
ed Crystal structures of two solvated 2-aryl-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-ones By scripts.iucr.org Published On :: 2019-10-22 The synthesis and crystal structures of 2-(4-fluorophenyl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one toluene hemisolvate (1), C19H13FN2OS·0.5C7H8, and 2-(4-nitrophenyl)-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one isopropanol 0.25-solvate 0.0625-hydrate (2), C19H13N3O3S·0.25C3H7O·0.0625H2O, are reported. Both are racemic mixtures (centrosymmetric crystal structures) of the individual compounds and incorporate solvent molecules in their structures. Compound 2 has four thiazine molecules in the asymmetric unit. All the thiazine rings in this study show an envelope pucker, with the C atom bearing the substituted phenyl ring displaced from the other atoms. The phenyl and aryl rings in each of the molecules are roughly orthogonal to each other, with dihedral angles of about 75°. The extended structures of 1 and 2 are consolidated by C—H⋯O and C—H⋯N(π), as well as T-type (C—H⋯π) interactions. Parallel aromatic ring interactions (π–π stacking) are observed only in 2. Full Article text
ed Crystal structures and hydrogen-bonding analysis of a series of solvated ammonium salts of molybdenum(II) chloride clusters By scripts.iucr.org Published On :: 2019-10-22 Charge-assisted hydrogen bonding plays a significant role in the crystal structures of solvates of ionic compounds, especially when the cation or cations are primary ammonium salts. We report the crystal structures of four ammonium salts of molybdenum halide cluster solvates where we observe significant hydrogen bonding between the solvent molecules and cations. The crystal structures of bis(anilinium) octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate, (C6H8N)2[Mo6Cl8Cl6]·4C3H7NO, (I), p-phenylenediammonium octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide hexasolvate, (C6H10N2)[Mo6Cl8Cl6]·6C3H7NO, (II), N,N'-(1,4-phenylene)bis(propan-2-iminium) octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate acetone trisolvate, (C12H18N2)[Mo6Cl8Cl6]·3C3H6O, (III), and 1,1'-dimethyl-4,4'-bipyridinium octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate, (C12H14N2)[Mo6Cl8Cl6]·4C3H7NO, (IV), are reported and described. In (I), the anilinium cations and N,N-dimethylformamide (DMF) solvent molecules form a cyclic R42(8) hydrogen-bonded motif centered on a crystallographic inversion center with an additional DMF molecule forming a D(2) interaction. The p-phenylenediammonium cation in (II) forms three D(2) interactions between the three N—H bonds and three independent N,N-dimethylformamide molecules. The dication in (III) is a protonated Schiff base solvated by acetone molecules. Compound (IV) contains a methyl viologen dication with N,N-dimethylformamide molecules forming close contacts with both aromatic and methyl H atoms. Full Article text
ed Crystal structures of the two isomeric hydrogen-bonded cocrystals 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1) and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) By scripts.iucr.org Published On :: 2019-10-22 The structures of two isomeric compounds of 5-nitroquinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1), (I), and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each compound, the acid and base molecules are held together by an O—H⋯N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond, forming a tape structure along [1overline{2}0]. The tapes are stacked into a layer parallel to the ab plane via N—O⋯π interactions between the nitro group of the base molecule and the quinoline ring system. The layers are further linked by other C—H⋯O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1overline{1}0] via C—H⋯O hydrogen bonds. The ribbons are further linked via another C—H⋯O hydrogen bond, forming a layer parallel to (110). Weak π–π interactions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitroquinoline molecules of the two compounds mapped over shape index and dnorm were generated to visualize the weak intermolecular interactions. Full Article text
ed Different packing motifs mediated by weak interactions and polymorphism in the crystal structures of five 2-(benzylidene)benzosuberone derivatives By scripts.iucr.org Published On :: 2019-10-29 The syntheses and crystal structures of five 2-benzylidene-1-benzosuberone [1-benzosuberone is 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one] derivatives, viz. 2-(4-methoxybenzylidene)-1-benzosuberone, C19H18O2, (I), 2-(4-ethoxybenzylidene)-1-benzosuberone, C20H20O2, (II), 2-(4-benzylbenzylidene)-1-benzosuberone, C25H22O2, (III), 2-(4-chlorobenzylidene)-1-benzosuberone, C18H15ClO, (IV) and 2-(4-cyanobenzylidene)-1-benzosuberone, C19H15NO, (V), are described. The conformations of the benzosuberone fused six- plus seven-membered ring fragments are very similar in each case, but the dihedral angles between the fused benzene ring and the pendant benzene ring differ somewhat, with values of 23.79 (3) for (I), 24.60 (4) for (II), 33.72 (4) for (III), 29.93 (8) for (IV) and 21.81 (7)° for (V). Key features of the packing include pairwise C—H⋯O hydrogen bonds for (II) and (IV), and pairwise C—H⋯N hydrogen bonds for (V), which generate inversion dimers in each case. The packing for (I) and (III) feature C—H⋯O hydrogen bonds, which lead to [010] and [100] chains, respectively. Weak C—H⋯π interactions consolidate the structures and weak aromatic π–π stacking is seen in (II) [centroid–centroid separation = 3.8414 (7) Å] and (III) [3.9475 (7) Å]. A polymorph of (I) crystallized from a different solvent has been reported previously [Dimmock et al. (1999) J. Med. Chem. 42, 1358–1366] in the same space group but with a packing motif based on inversion dimers resembling that seen in (IV) in the present study. The Hirshfeld surfaces and fingerprint plots for (I) and its polymorph are compared and structural features of the 2-benzylidene-1-benzosuberone family of phases are surveyed. Full Article text
ed The `super acid' BF3H2O stabilized by 1,4-dioxane: new preparative aspects and the crystal structure of BF3H2O·C4H8O2 By scripts.iucr.org Published On :: 2019-10-31 Highly Brønsted-acidic boron trifluoride monohydrate, a widely used `super acid-catalyst', is a colourless fuming liquid that releases BF3 at room temperature. Compared to the liquid components, i.e. boron trifluoride monohydrate and 1,4-dioxane, their 1:1 adduct, BF3H2O·C4H8O2, is a solid with pronounced thermal stability (m.p. 401–403 K). The crystal structure of the long-time-stable easy-to-handle and weighable compound is reported along with new preparative aspects and the results of 1H, 11B, 13C and 19F spectroscopic investigations, particularly documenting its high Brønsted acidity in acetonitrile solution. The remarkable stability of solid BF3H2O·C4H8O2 is attributed to the chain structure established by O—H⋯O hydrogen bonds of exceptional strength {O2⋯H1—O1 [O⋯O = 2.534 (3) Å] and O1—H1⋯O3i [2.539 (3) Å] in the concatenating unit >O2⋯H1—O1—H2⋯O3i<}, taking into account the molecular (non-ionic) character of the structural moieties. Indirectly, this structural feature documents the outstanding acidification of the H2O molecule bound to BF3 and reflects the super acid nature of BF3H2O. In detail, the C22(7) zigzag chain system of hydrogen bonding in the title structure is characterized by the double hydrogen-bond donor and double (κO,κO') hydrogen-bond acceptor functionality of the aqua ligand and dioxane molecule, respectively, the almost equal strength of both hydrogen bonds, the approximatety linear arrangement of the dioxane O atoms and the two neighbouring water O atoms. Furthermore, the approximately planar arrangement of B, F and O atoms in sheets perpendicular to the c axis of the orthorhombic unit cell is a characteristic structural feature. Full Article text
ed An iridium complex with an unsupported Ir—Zn bond: diiodido(η5-pentamethylcyclopentadienyl)bis(trimethylphosphane)iridiumzinc(Ir—Zn) benzene hemisolvate By scripts.iucr.org Published On :: 2019-11-05 The title compound, [IrZnI2(C10H15)(C3H9P)2]·0.5C6H6 or [Cp*(PMe3)2Ir]-[ZnI2] (Cp* = cyclo-C5Me5) was obtained and characterized as its benzene solvate [Cp*(PMe3)2Ir]-[ZnI2]·0.5C6H6. The bimetallic complex in this structure contains the Lewis-acidic fragment ZnI2 bonded to the Lewis-basic fragment Cp*(PMe3)2Ir, with an Ir—Zn bond distance of 2.452 (1) Å. The compound was obtained by reacting [Cp*(PMe3)IrI2] with 2-Ad2Zn (2-Ad = 2-adamantyl), resulting in the reduction of the IrIII complex and formation of the IrI–ZnII adduct. The crystal studied was a twin by non-merohedry with a refined BASF parameter of 0.223 (1). Full Article text
ed Crystal structures of two coordination isomers of copper(II) 4-sulfobenzoic acid hexahydrate and two mixed silver/potassium 4-sulfobenzoic acid salts By scripts.iucr.org Published On :: 2019-10-31 A reaction of copper(II) carbonate and potassium 4-sulfobenzoic acid in water acidified with hydrochloric acid yielded two crystalline products. Tetraaquabis(4-carboxybenzenesulfonato)copper(II) dihydrate, [Cu(O3SC6H4CO2H)2(H2O)4]·2H2O, (I), crystallizes in the triclinic space group Poverline{1} with the Cu2+ ions located on centers of inversion. Each copper ion is coordinated to four water molecules in a square plane with two sulfonate O atoms in the apical positions of a Jahn–Teller-distorted octahedron. The carboxylate group is protonated and not involved in coordination to the metal ions. The complexes pack so as to create a layered structure with alternating inorganic and organic domains. The packing is reinforced by several O—H⋯O hydrogen bonds involving coordinated and non-coordinated water molecules, the carboxylic acid group and the sulfonate group. Hexaaquacopper(II) 4-carboxybenzenesulfonate, [Cu(H2O)6](O3SC6H4CO2H)2, (II), also crystallizes in the triclinic space group Poverline{1} with Jahn–Teller-distorted octahedral copper(II) aqua complexes on the centers of inversion. As in (I), the carboxylate group on the anion is protonated and the structure consists of alternating layers of inorganic cations and organic anions linked by O—H⋯O hydrogen bonds. A reaction of silver nitrate and potassium 4-sulfobenzoic acid in water also resulted in two distinct products that have been structurally characterized. An anhydrous silver potassium 4-carboxybenzenesulfonate salt, [Ag0.69K0.31](O3SC6H4CO2H), (III), crystallizes in the monoclinic space group C2/c. There are two independent metal sites, one fully occupied by silver ions and the other showing a 62% K+/38% Ag+ (fixed) ratio, refined in two slightly different positions. The coordination environments of the metal ions are composed primarily of sulfonate O atoms, with some participation by the non-protonated carboxylate O atoms in the disordered site. As in the copper compounds, the cations and anions cleanly segregate into alternating layers. A hydrated mixed silver potassium 4-carboxybenzenesulfonate salt dihydrate, [Ag0.20K0.80](O3SC6H4CO2H)·2H2O, (IV), crystallizes in the monoclinic space group P21/c with the Ag+ and K+ ions sharing one unique metal site coordinated by two water molecules and six sulfonate O atoms. The packing in (IV) follows the dominant motif of alternating inorganic and organic layers. The protonated carboxylate groups do not interact with the cations directly, but do participate in hydrogen bonds with the coordinated water molecules. (IV) is isostructural with pure potassium 4-sulfobenzoic acid dihydrate. Full Article text
ed Organically pillared layer framework of [Eu(NH2–BDC)(ox)(H3O)] By scripts.iucr.org Published On :: 2019-11-08 The non-porous three-dimensional structure of poly[(μ5-2-aminobenzene-1,4-dicarboxylato)(μ6-oxalato)(oxomium)europium(III)], [Eu(C8H5NO4)(C2O4)(H3O)]n or [EuIII(NH2–BDC)(ox)(H3O)]n (NH2–BDC2− = 2-aminoterephthalate and ox2− = oxalate) is constructed from two-dimensional layers of EuIII–carboxylate–oxalate, which are connected by NH2–BDC2− pillars. The basic structural unit of the layer is an edge-sharing dimer of TPRS-{EuIIIO9}, which is assembled through the ox2− moiety. The intralayer void is partially occupied by TPR-{EuIIIO6} motifs. Weak C—H⋯O and strong, classical intramolecular N—H⋯O and intermolecular O—H⋯O hydrogen-bonding interactions, as well as weak π–π stacking interactions, affix the organic pillars within the framework. The two-dimensional layer can be simplified to a uninodal 4-connected sql/Shubnikov tetragonal plane net with point symbol {44.62}. Full Article text
ed (μ-Di-tert-butylsilanediolato)bis[bis(η5-cyclopentadienyl)methylzirconium] By scripts.iucr.org Published On :: 2019-11-08 The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methylene complex resulted in decomposition. The crystal structure of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclopentadienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy. Full Article text
ed Crystal structures and Hirshfeld surface analyses of (E)-N'-benzylidene-2-oxo-2H-chromene-3-carbohydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide: lattice ene By scripts.iucr.org Published On :: 2019-11-29 In the paper by Gomes et al. [Acta Cryst. (2019), E75, 1403–1410], there was an error and omission in the author and affiliation list. Full Article text
ed Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrob By scripts.iucr.org Published On :: 2019-11-08 The title compound, C9H7.5NO·C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto–enol tautomerization in the base molecule. The co-crystal is 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1), C7H4ClNO4·C9H7NO, and the salt is 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate, C9H8NO+·C7H3ClNO4−. In the compound, the acid and base molecules are held together by a short hydrogen bond [O⋯O = 2.4393 (15) Å], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid–base units are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via π–π interactions [centroid–centroid distances = 3.5504 (8)–3.9010 (11) Å]. The layers are further linked by another C—H⋯O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and dnorm were generated to visualize the intermolecular interactions. Full Article text
ed Structure refinement of (NH4)3Al2(PO4)3 prepared by ionothermal synthesis in phosphonium based ionic liquids – a redetermination By scripts.iucr.org Published On :: 2019-11-19 After crystallization during ionothermal syntheses in phosphonium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [triammonium dialuminum tris(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004). Nature, 430, 1012–1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms. Full Article text
ed The varied structures of cobalt(II)–pyridine (py)–sulfate: [Co(SO4)(py)4]n, [Co2(SO4)2(py)6]n, and [Co3(SO4)3(py)11]n By scripts.iucr.org Published On :: 2019-11-19 The solid-state structures of two cobalt–pyridine–sulfate compounds, namely catena-poly[[tetrakis(pyridine-κN)cobalt(II)]-μ-sulfato-κ2O:O'], [Co(SO4)(C5H5N)4]n, (1), and catena-poly[[tetrakis(pyridine-κN)cobalt(II)]-μ-sulfato-κ3O:O',O''-[bis(pyridine-κN)cobalt(II)]-μ-sulfato-κ3O,O':O'']n, [Co2(SO4)2(C5H5N)6]n, (2), are reported. Compound (1) displays a polymeric structure, with infinite chains of CoII cations adopting octahedral N4O2 coordination environments that involve four pyridine ligands and two bridging sulfate ions. Compound (2) is also polymeric with infinite chains of CoII cations. The first Co center has an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. The second Co center has an octahedral N2O4 coordination environment that involves two pyridine ligands and two bridging sulfate ions that chelate the Co atom. The structure of (2) was refined as a two-component inversion twin. Full Article text
ed N,N'-Bis(pyridin-3-ylmethyl)ethanediamide monohydrate: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-01 The molecular structure of the title bis-pyridyl substituted diamide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methylene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intramolecular amide-N—H⋯O(carbonyl) hydrogen bonds are formed, each closing an S(5) loop. Supramolecular tapes are formed in the crystal via amide-N—H⋯O(carbonyl) hydrogen bonds and ten-membered {⋯HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water molecules via water-O—H⋯N(pyridyl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methylene-C—H⋯O(water) and methylene-C—H⋯π(pyridyl) interactions, give rise to a layer parallel to (10overline{1}); the layers stack without directional interactions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding interactions, and to the significant influence of the water molecule of crystallization upon the molecular packing. The analysis also indicates the contribution of methylene-C—H⋯O(carbonyl) and pyridyl-C—H⋯C(carbonyl) contacts to the stability of the inter-layer region. The calculated interaction energies are consistent with importance of significant electrostatic attractions in the crystal. Full Article text
ed Syntheses and crystal structures of three [M(acac)2(TMEDA)] complexes (M = Mn, Fe and Zn) By scripts.iucr.org Published On :: 2020-01-01 The complexes bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')manganese(II), [Mn(C5H7O2)2(C6H16N2)], bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')iron(II), [Fe(C5H7O2)2(C6H16N2)], and bis(acetylacetonato-κ2O,O')(N,N,N',N'-tetramethylethylenediamine-κ2N,N')zinc(II), [Zn(C5H7O2)2(C6H16N2)], were synthesized from the reaction of the corresponding metal acetylacetonates [M(acac)2(H2O)2] with N,N,N',N'-tetramethylethylenediamine (TMEDA) in toluene. Each of the complexes displays a central metal atom which is nearly octahedrally surrounded by two chelating acac and one chelating TMEDA ligand, resulting in an N2O4 coordination set. Despite the chemical similarity of the complex units, the packing patterns for compounds 1–3 are different and thus the crystal structures are not isotypic. Full Article text
ed Crystal and molecular structures of a binuclear mixed ligand complex of silver(I) with thiocyanate and 1H-1,2,4-triazole-5(4H)-thione By scripts.iucr.org Published On :: 2020-01-01 The complete molecule of the binuclear title complex, bis[μ-1H-1,2,4-triazole-5(4H)-thione-κ2S:S]bis{(thiocyanato-κS)[1H-1,2,4-triazole-5(4H)-thione-κS]silver(I)}, [Ag2(SCN)2(C2H3N3S)4], is generated by crystallographic inversion symmetry. The independent triazole-3-thione ligands employ the exocyclic-S atoms exclusively in coordination. One acts as a terminal S-ligand and the other in a bidentate (μ2) bridging mode to provide a link between two AgI centres. Each AgI atom is also coordinated by a terminal S-bound thiocyanate ligand, resulting in a distorted AgS4 tetrahedral coordination geometry. An intramolecular N—H⋯S(thiocyanate) hydrogen bond is noted. In the crystal, amine-N—H⋯S(thione), N—H⋯N(triazolyl) and N—H⋯N(thiocyanate) hydrogen bonds give rise to a three-dimensional architecture. The packing is consolidated by triazolyl-C—H⋯S(thiocyanate), triazolyl-C—H⋯N(thiocyanate) and S⋯S [3.2463 (9) Å] interactions as well as face-to-face π–π stacking between the independent triazolyl rings [inter-centroid separation = 3.4444 (15) Å]. An analysis of the calculated Hirshfeld surfaces shows the three major contributors are due to N⋯H/H⋯N, S⋯H/H⋯S and C⋯H/H⋯C contacts, at 35.8, 19.4 and 12.7%, respectively; H⋯H contacts contribute only 7.6% to the overall surface. Full Article text
ed Crystal structure and Hirshfeld surface analysis of a copper(II) complex with ethylenediamine and non-coordinated benzoate By scripts.iucr.org Published On :: 2020-01-01 In the title compound, diaquabis(ethylenediamine-κ2N,N')copper(II) bis(2-nitrobenzoate), [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, two diaquabis(ethylenediamine)copper(II) cations and four nitrobenzoate anions are present in the asymmetric unit. All four anions are `whole-molecule' disordered over two sets of sites. The major components have refined occupancies of 0.572 (13), 0.591 (9), 0.601 (9) and 0.794 (10). The CuII ions exhibit slightly distorted octahedral geometries. In the crystal, cations and anions are connected to each other via N—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (200). The intermolecular contacts in the crystal were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are O⋯H/H⋯O (42.9%), followed by H⋯H (35.7%), C⋯H/H⋯C (14.2%), C⋯C (2.9%), C⋯O/O⋯C (2.2%), N⋯H/H⋯N (0.9%) and N⋯O/O⋯N (0.3%). Full Article text
ed The 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and benzoic acid: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-01 The crystal and molecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide molecule has a (+)-antiperiplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid molecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hydroxy-O—H⋯N(pyridyl) hydrogen bonds between the benzoic acid molecules and the pyridyl residues of the diamide leads to a three-molecule aggregate. Centrosymmetrically related aggregates assemble into a six-molecule aggregate via amide-N—H⋯O(amide) hydrogen bonds through a 10-membered {⋯HNC2O}2 synthon. These are linked into a supramolecular tape via amide-N—H⋯O(carbonyl) hydrogen bonds and 22-membered {⋯HOCO⋯NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methylene-C—H⋯O(amide) and pyridyl-C—H⋯O(carbonyl). These interactions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces. Full Article text
ed Synthesis and crystal structure of a mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4 By scripts.iucr.org Published On :: 2020-01-03 A mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4 (calcium strontium molybdate), was synthesized by a flux method and its crystal structure was solved using single-crystal X-ray diffraction (SC-XRD) data. The compound crystallized in the I41/a space group as with a typical CaMoO4 powellite, but with larger unit-cell parameters and unit-cell volume as a result of the partial incorporation of larger Sr cations into the Ca sites within the crystal. The unit cell and volume were well fitted with the trendline calculated from literature values, and the powder X-ray diffraction (P-XRD) pattern of the ground crystal is in good agreement with the calculated pattern from the solved structure. Full Article text
ed Crystal structure of the deuterated heptahydrate of potassium phosphate, K3PO4·7D2O By scripts.iucr.org Published On :: 2020-01-10 Deuterated potassium orthophosphate heptahydrate, K3PO4·7D2O, crystallizes in the Sohnke space group P21, and its absolute structure was determined from 2017 Friedel pairs [Flack parameter 0.004 (16)]. Each of the three crystallographically unique K+ cations is surrounded by six water molecules and one oxygen atom from the orthophosphate group, using a threshold for K—O bonds of 3.10 Å. The highly irregular coordination polyhedra are linked by corner- and edge-sharing into a three-dimensional network that is consolidated by an intricate network of O—D⋯O hydrogen bonds of medium strength. Full Article text
ed The first coordination compound of deprotonated 2-bromonicotinic acid: crystal structure of a dinuclear paddle-wheel copper(II) complex By scripts.iucr.org Published On :: 2020-01-17 A copper(II) dimer with the deprotonated anion of 2-bromonicotinic acid (2-BrnicH), namely, tetrakis(μ-2-bromonicotinato-κ2O:O')bis[aquacopper(II)](Cu—Cu), [Cu2(H2O)2(C6H3BrNO2)4] or [Cu2(H2O)2(2-Brnic)4], (1), was prepared by the reaction of copper(II) chloride dihydrate and 2-bromonicotinic acid in water. The copper(II) ion in 1 has a distorted square-pyramidal coordination environment, achieved by four carboxylate O atoms in the basal plane and the water molecule in the apical position. The pair of symmetry-related copper(II) ions are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6470 (11) Å] via four O,O'-bridging 2-bromonicotinate ligands in the syn-syn coordination mode. In the extended structure of 1, the cluster molecules are assembled into an infinite two-dimensional hydrogen-bonded network lying parallel to the (001) plane via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of various hydrogen-bond ring motifs: dimeric R22(8) and R22(16) loops and a tetrameric R44(16) loop. The Hirshfeld surface analysis was also performed in order to better illustrate the nature and abundance of the intermolecular contacts in the structure of 1. Full Article text
ed An indenide-tethered N-heterocyclic stannylene By scripts.iucr.org Published On :: 2020-01-21 The structure of (μ-1κN:2(η2),κ2N,N'-(2-{[2,6-bis(propan-2-yl)phenyl]azanidyl}ethyl)[2-(1H-inden-1-yl)ethyl]azanido)(1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O)lithiumtin, [LiSn(C8H16O4)(C25H31N2)], at 100 K has monoclinic (P21/n) symmetry. Analysis of the coordination of the Sn to the indenyl ring shows that the Sn interacts in an η2 fashion. A database survey showed that whilst this coordination mode is unusual for Ge and Pb compounds, Sn displays a wider range of coordination modes to cyclopentadienyl ligands and their derivatives. Full Article text
ed Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmethyl)ethanediamide and 4-chlorobenzoic acid By scripts.iucr.org Published On :: 2020-01-21 The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half molecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two molecules of 4-chlorobenzoic acid (CBA), each in general positions. Each 4LH2 molecule has a (+)antiperiplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 molecules. The anti conformation of the carbonyl groups enables the formation of intramolecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA molecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-molecule aggregates are formed via carboxylic acid-O—H⋯N(pyridyl) hydrogen bonding. These are connected into a supramolecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methylene-C—H⋯O(carbonyl) and CBA-C—H⋯O(amide) interactions. As revealed by a more detailed analysis of the molecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O interactions which provide interaction energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supramolecular tape. Full Article text
ed Crystal structure of the mixed methanol and ethanol solvate of bis{3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazidato}zinc(II) By scripts.iucr.org Published On :: 2020-02-06 The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex molecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimethoxy-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π–π interactions between the planar ligand moieties, which are further connected by C⋯O and C⋯C interactions. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) interactions. Full Article text
ed A new pseudopolymorph of perchlorinated neopentasilane: the benzene monosolvate Si(SiCl3)4·C6H6 By scripts.iucr.org Published On :: 2020-01-31 A new pseudopolymorph of dodecachloropentasilane, namely a benzene monosolvate, Si5Cl12·C6H6, is described. There are two half molecules of each kind in the asymmetric unit. Both Si5Cl12 molecules are completed by crystallographic twofold symmetry. One of the benzene molecules is located on a twofold rotation axis with two C—H groups located on this rotation axis. The second benzene molecule has all atoms on a general position: it is disordered over two equally occupied orientations. No directional interactions beyond normal van der Waals contacts occur in the crystal. Full Article text
ed Crystal structure of imidazo[1,5-a]pyridinium-based hybrid salt (C13H12N3)2[MnCl4] By scripts.iucr.org Published On :: 2020-02-06 A new organic–inorganic hybrid salt [L]2[MnCl4] (I) where L+ is the 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, is built of discrete organic cations and tetrachloridomanganate(II) anions. The L+ cation was formed in situ in the oxidative cyclocondensation of 2-pyridinecarbaldehyde and CH3NH2·HCl in methanol. The structure was refined as a two-component twin using PLATON (Spek, 2020) to de-twin the data. The twin law (−1 0 0 0 − 1 0 0.5 0 1) was applied in the refinement where the twin component fraction refined to 0.155 (1). The compound crystallizes in the space group P21/c with two crystallographically non-equivalent cations in the asymmetric unit, which possess similar structural conformations. The fused pyridinium and imidazolium rings of the cations are virtually coplanar [dihedral angles are 0.89 (18) and 0.78 (17)°]; the pendant pyridyl rings are twisted by 36.83 (14) and 36.14 (13)° with respect to the planes of the remaining atoms of the cations. The tetrahedral MnCl42– anion is slightly distorted with the Mn—Cl distances falling in the range 2.3469 (10)–2.3941 (9) Å. The distortion value of 0.044 relative to the ideal tetrahedron was obtained by continuous shape measurement (CShM) analysis. In the crystal, the cations and anions form separate stacks propagating along the a-axis direction. The organic cations display weak π–π stacking. The anions, which are stacked identically one above the other, demonstrate loose packing; the minimum Mn⋯Mn separation in the cation stack is approximately 7.49 Å. The investigation of the fluorescent properties of a powdered sample of (I) showed no emission. X-band EPR data for (I) at 293 and 77 K revealed broad fine structure signals, indicating moderate zero-field splitting. Full Article text
ed Bulky 2,6-disubstituted aryl siloxanes and a disilanamine By scripts.iucr.org Published On :: 2020-02-06 The crystal structures of 5-bromo-1,3-di-tert-butyl-2-[(trimethylsilyl)oxy]benzene, C17H29BrOSi, (I), 1,3-di-tert-butyl-2-[(trimethylsilyl)oxy]benzene, C17H30OSi, (II), and N-(2,6-diisopropylphenyl)-1,1,1-trimethyl-N-(trimethylsilyl)silanamine, C18H35NSi2, (III), are reported. Compound (I) crystallizes in space group P21/c with Z' = 1, (II) in Pnma with Z' = 0.5 and (III) in Cmcm with Z' = 0.25. Consequently, the molecules of (II) are constrained by m and those of (III) by m2m site symmetries. Despite this, both (I) and (II) are distorted towards mild boat conformations, as is typical of 2,6-di-tert-butyl-substituted phenyl compounds, reflecting the high local steric pressure of the flanking alkyl groups. Compound (III) by contrast is planar and symmetric, and this lack of distortion is compatible with the lower steric pressure of the flanking 2,6-diisopropyl substituents. Full Article text
ed The crystal structures and Hirshfeld surface analyses of a cadmium(II) and a zinc(II) mononuclear complex of the new tetrakis-substituted pyrazine ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis By scripts.iucr.org Published On :: 2020-02-18 The whole molecule of the cadmium(II) complex, diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II), [CdI2(C36H40N6)], (I), of the ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline) (L), is generated by a twofold rotation symmetry; the twofold axis bisects the cadmium atom and the nitrogen atoms of the pyrazine ring. The ligand coordinates in a mono-tridentate manner and the cadmium atom has a fivefold CdN3I2 coordination environment with a distorted shape. In the zinc(II) complex, dichlorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate, [ZnCl2(C36H40N6)]·0.6CH2Cl2, (II), ligand L also coordinates in a mono-tridentate manner and the zinc atom has a fivefold ZnN3Cl2 coordination environment with a distorted shape. It crystallized as a partial dichloromethane solvate. In the crystal of I, the complex molecules are linked by weak C—H⋯I contacts, forming ribbons propagating along [100]. In the crystal of II, the complex molecules are linked by a series of C—H⋯π interactions, forming layers lying parallel to the (1overline{1}1) plane. In the crystals of both compounds there are metal–halide⋯π(pyrazine) contacts present. The Hirshfeld analyses confirm the importance of the C—H⋯halide contacts in the crystal packing of both compounds. Full Article text
ed Phosphorescent mono- and diiridium(III) complexes cyclometalated by fluorenyl- or phenyl-pyridino ligands with bulky substituents, as prospective OLED dopants By scripts.iucr.org Published On :: 2020-02-18 The crystal structures of tris[9,9-dihexyl-2-(5-methoxypyridin-2-yl-κN)-9H-fluoren-3-yl-κC3]iridium pentane monosolvate, [Ir(C31H38NO)3]·C5H12, (I), di-μ2-chlorido-bis{bis[2-(5-fluoropyridin-2-yl)-9,9-dihexyl-9H-fluoren-3-yl]iridium} pentane 0.3-solvate, [Ir2(C30H35FN)4Cl2]·0.3C5H12, (II), di-μ2-cyanato-bis{bis[9,9-dihexyl-2-(5-methoxypyridin-2-yl)-9H-fluoren-1-yl]iridium} pentane monosolvate, [Ir2(C31H38NO)4(NCO)2(NCO)2]·C5H12, (III), and {μ-N,N'-bis[3,5-bis(trifluoromethyl)phenyl]oxamidato}bis(bis{2-[4-(2,4,6-trimethylphenyl)pyridin-2-yl]phenyl-κ2C1,N'}iridium)–chlorobenzene–pentane (1/2.3/0.4), [Ir2(C20H19N)4(C18H6F12N2O2)]·2.3C6H5Cl·0.4C5H12, (IV), synthesized in the quest for organic light-emitting devices, were determined. The bis-μ2-chloro and bis-μ2-cyanato complexes have ΔΔ and ΛΛ configurations of the distorted octahedral Ir centres in racemic crystals, whereas the oxamido complex has a centrosymmetric (meso) structure with the ΔΛ configuration. The bridging oxamido moiety has a nearly planar anti geometry. All structures show substantial disorder of both host molecules and solvents of crystallization. Full Article text
ed Crystal structure of a two-dimensional metal–organic framework assembled from lithium(I) and γ-cyclodextrin By scripts.iucr.org Published On :: 2020-02-14 The crystal structure of the polymeric title compound, catena-poly[[[diaqualithium]-μ-γ-cyclodextrin(1−)-[aqualithium]-μ-γ-cyclodextrin(1−)] pentadecahydrate], {[Li2(C48H79O40)2(H2O)3]·15H2O}n, consists of deprotonated γ-cyclodextrin (CD) molecules assembled by lithium ions into metal–organic ribbons that are cross-linked by multiple O—H⋯O hydrogen bonds into sheets extending parallel to (0overline11). Within a ribbon, one Li+ ion is coordinated by one deprotonated hydroxyl group of the first γ-CD torus and by one hydroxyl group of the second γ-CD torus as well as by two water molecules. The other Li+ ion is coordinated by one deprotonated hydroxyl and by one hydroxyl group of the second γ-CD torus, by one hydroxyl group of the first γ-CD torus as well as by one water molecule. The coordination spheres of both Li+ cations are distorted tetrahedral. The packing of the structure constitute channels along the a axis. Parts of the hydroxymethyl groups in cyclodextrin molecules as well as water molecules show two-component disorder. Electron density associated with additional disordered solvent molecules inside the cavities was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON. These solvent molecules are not considered in the given chemical formula and other crystal data. Five out of the sixteen hydroxymethyl groups and one water molecule are disordered over two sets of sites. Full Article text
ed Structural, Hirshfeld and DFT studies of conjugated D–π–A carbazole chalcone crystal By scripts.iucr.org Published On :: 2020-02-18 A new conjugated carbazole chalcone compound, (E)-3-[4-(9,9a-dihydro-8aH-carbazol-9-yl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (CPNC), C27H18N2O3, was synthesized using a Claisen–Schmidt condensation reaction. CPNC crystallizes in the monoclinic non-centrosymmetric space group Cc and adopts an s-cis conformation with respect to the ethylenic double bonds (C=O and C=C). The crystal packing features C—H⋯O and C—H⋯π interactions whose percentage contribution was quantified by Hirshfeld surface analysis. Quantum chemistry calculations including geometrical optimization and molecular electrostatic potential (MEP) were analysed by density functional theory (DFT) with a B3LYP/6–311 G++(d,p) basis set. Full Article text
ed Crystal structures and Hirshfeld surface analyses of two new tetrakis-substituted pyrazines and a degredation product By scripts.iucr.org Published On :: 2020-02-18 The two new tetrakis-substituted pyrazines, 1,1',1'',1'''-(pyrazine-2,3,5,6-tetrayl) tetrakis(N,N-dimethylmethanamine), C16H32N6, (I) and N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline), C36H40N6, (II), both crystallize with half a molecule in the asymmetric unit; the whole molecules are generated by inversion symmetry. There are weak intramolecular C—H⋯N hydrogen bonds present in both molecules and in (II) the pendant N-methylaniline rings are linked by a C—H⋯π interaction. The degredation product, N,N'-[(6-phenyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine-2,3-diyl)bis(methylene)]bis(N-methylaniline), C28H29N5, (III), was obtained several times by reacting (II) with different metal salts. Here, the 6-phenyl ring is almost coplanar with the planar pyrrolo[3,4-b]pyrazine unit (r.m.s. deviation = 0.029 Å), with a dihedral angle of 4.41 (10)° between them. The two N-methylaniline rings are inclined to the planar pyrrolo[3,4-b]pyrazine unit by 88.26 (10) and 89.71 (10)°, and to each other by 72.56 (13)°. There are also weak intramolecular C—H⋯N hydrogen bonds present involving the pyrazine ring and the two N-methylaniline groups. In the crystal of (I), there are no significant intermolecular contacts present, while in (II) molecules are linked by a pair of C—H⋯π interactions, forming chains along the c-axis direction. In the crystal of (III), molecules are linked by two pairs of C—H⋯π interactions, forming inversion dimers, which in turn are linked by offset π–π interactions [intercentroid distance = 3.8492 (19) Å], forming ribbons along the b-axis direction. Full Article text
ed A binuclear CuII/CaII thiocyanate complex with a Schiff base ligand derived from o-vanillin and ammonia By scripts.iucr.org Published On :: 2020-02-21 The new heterometallic complex, aqua-1κO-bis(μ2-2-iminomethyl-6-methoxyphenolato-1κ2O1,O6:2κ2O1,N)bis(thiocyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thiocyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear molecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and pentagonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water molecules and thiocyanate groups form a supramolecular chain with a zigzag-shaped calcium skeleton. Full Article text
ed Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis(3-carboxypropyl)tetramethyldisiloxane anions in different degrees of deprotonation By scripts.iucr.org Published On :: 2020-02-25 The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxylate in a slightly tetragonally distorted trans-NiN4O2 octahedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxylate O atoms, thus forming a three-dimensional supramolecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carboxylic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1overline{1}1) plane. Full Article text
ed Unexpected formation of a co-crystal containing the chalcone (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one and the keto–enol tautomer (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophe By scripts.iucr.org Published On :: 2020-03-03 The title crystal structure is assembled from the superposition of two molecular structures, (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one, C12H9ClOS2 (93%), and (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1-ol, C12H11ClOS2 (7%), 0.93C12H9ClOS2·0.07C12H11ClOS2. Both were obtained from the reaction of 3-methylthiophene-2-carbaldehyde and 1-(5-chlorothiophen-2-yl)ethanone. In the extended structure of the major chalcone component, molecules are linked by a combination of C—H⋯O/S, Cl⋯Cl, Cl⋯π and π–π interactions, leading to a compact three-dimensional supramolecular assembly. Full Article text
ed Redetermination of the crystal structure of R5Si4 (R = Pr, Nd) from single-crystal X-ray diffraction data By scripts.iucr.org Published On :: 2020-03-10 The crystal structures of praseodymium silicide (5/4), Pr5Si4, and neodymium silicide (5/4), Nd5Si4, were redetermined using high-quality single-crystal X-ray diffraction data. The previous structure reports of Pr5Si4 were only based on powder X-ray diffraction data [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189–194; Yang et al., (2003). J. Alloys Compd. 263, 146–153]. On the other hand, the structure of Nd5Si4 has been determined from powder data [neutron; Cadogan et al., (2002). J. Phys. Condens. Matter, 14, 7191–7200] and X-ray [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189–194; Yang et al., (2003). J. Alloys Compd. 263, 146–153] and single-crystal data with isotropic atomic displacement parameters [Roger et al., (2006). J. Alloys Compd. 415, 73–84]. In addition, the anisotropic atomic displacement parameters for all atomic sites have been determined for the first time. These compounds are confirmed to have the tetragonal Zr5Si4-type structure (space group: P41212), as reported previously (Smith et al., 1967). The structure is built up by distorted body-centered cubes consisting of Pr(Nd) atoms, which are linked to each other by edge-sharing to form a three-dimensional framework. This framework delimits zigzag channels in which the silicon dimers are situated. Full Article text
ed A redetermination of the crystal structure of the mannitol complex NH4[Mo2O5(C6H11O6)]·H2O: hydrogen-bonding scheme and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-03-10 The redetermined structure [for the previous study, see: Godfrey & Waters (1975). Cryst. Struct. Commun. 4, 5–8] of ammonium μ-oxido-μ-[1,5,6-trihydroxyhexane-2,3,4-tris(olato)]bis[dioxidomolybdenum(V)] monohydrate, NH4[Mo2(C6H11O6)O5]·H2O, was obtained from an attempt to prepare a glutamic acid complex from the [Co2Mo10H4O38]6− anion. Subsequent study indicated the complex arose from a substantial impurity of mannitol in the glutamic acid sample used. All hydrogen atoms have been located in the present study and the packing displays N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis was also performed. Full Article text
ed The first coordination compound of 6-fluoronicotinate: the crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoronicotinate and 4,4'-bipyridine By scripts.iucr.org Published On :: 2020-03-10 A one-dimensional nickel(II) coordination polymer with the mixed ligands 6-fluoronicotinate (6-Fnic) and 4,4'-bipyridine (4,4'-bpy), namely, catena-poly[[diaquabis(6-fluoropyridine-3-carboxylato-κO)nickel(II)]-μ-4,4'-bipyridine-κ2N:N'] trihydrate], {[Ni(6-Fnic)2(4,4'-bpy)(H2O)2]·3H2O}n, (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-fluoronicotinic acid (C6H4FNO2) and 4,4'-bipyridine (C10H8N2) in a mixture of water and ethanol. The nickel(II) ion in 1 is octahedrally coordinated by the O atoms of two water molecules, two O atoms from O-monodentate 6-fluoronicotinate ligands and two N atoms from bridging 4,4'-bipyridine ligands, forming a trans isomer. The bridging 4,4'-bipyridine ligands connect symmetry-related nickel(II) ions into infinite one-dimensional polymeric chains running in the [1overline{1}0] direction. In the extended structure of 1, the polymeric chains and lattice water molecules are connected into a three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of distinct hydrogen-bond ring motifs: octameric R88(24) and hexameric R86(16) loops. Full Article text
ed Cis versus trans arrangement of dithiocarbazate ligands in bis-chelated Ni and Cu complexes By scripts.iucr.org Published On :: 2020-04-21 The structures are described of two bis-chelated metal complexes of nickel(II) and copper(II) with S-n-hexyl 3-(1-phenylethylidene)dithiocarbazate Schiff bases in a cis configuration, namely, bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II), [Ni(C15H21N2S2)2], and bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]copper(II), [Cu(C15H21N2S2)2]. In both complexes, the metals have distorted square-planar geometries. A search in the Cambridge Structural Database [Groom et al. (2016). Acta Cryst. B72, 171–179] for bis-chelated nickel(II) and copper(II) complexes with similar Schiff bases retrieved 55 and 36 hits for the two metals, respectively. An analysis of the geometrical parameters of complexes showing cis and trans configurations is reported and the values compared with those for the complexes described in this work. Full Article text
ed Functionalized 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-substituted-phenyl)prop-2-en-1-ones: synthetic pathway, and the structures of six examples By scripts.iucr.org Published On :: 2020-04-21 Five examples each of 3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-ones and the corresponding 1-(4-azidophenyl)-3-(5-aryloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones have been synthesized in a highly efficient manner, starting from a common source precursor, and structures have been determined for three examples of each type. In each of 3-[5-(2-chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one, C28H21ClN2O3, (Ib), the isomeric 3-[5-(2-chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yloxy)phenyl]prop-2-en-1-one, (Ic), and 3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one, C32H24N2O3, (Ie), the molecules are linked into chains of rings, formed by two independent C—H⋯O hydrogen bonds in (Ib) and by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in each of (Ic) and (Ie). There are no direction-specific intermolecular interactions in the structure of 1-(4-azidophenyl)-3-[3-methyl-5-(2-methylphenoxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C26H21N5O2, (IIa). In 1-(4-azidophenyl)-3-[5-(2,4-dichlorophenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C25H17Cl2N5O2, (IId), the dichlorophenyl group is disordered over two sets of atomic sites having occupancies 0.55 (4) and 0.45 (4), and the molecules are linked by a single C—H⋯O hydrogen bond to form cyclic, centrosymmetric R22(20) dimers. Similar dimers are formed in 1-(4-azidophenyl)-3-[3-methyl-5-(naphthalen-2-yloxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C29H21N5O2, (IIe), but here the dimers are linked into a chain of rings by two independent C—H..π(arene) hydrogen bonds. Comparisons are made between the molecular conformations within both series of compounds. Full Article text
ed Structure of a push–pull olefin prepared by ynamine hydroboration with a borandiol ester By scripts.iucr.org Published On :: 2020-04-21 N-[(Z)-2-(2H-1,3,2-Benzodioxaborol-2-yl)-2-phenylethenyl]-N-(propan-2-yl)aniline, C23H22BNO2, contains a C=C bond that is conjugated with a donor and an acceptor group. An analysis that included similar push–pull olefins revealed that bond lengths in their B—C=C—N core units correlate with the perceived acceptor and donor strength of the groups. The two phenyl groups in the molecule are rotated with respect to the plane that contains the BCCN atoms, and are close enough for significant π-stacking. Definite characterization of the title compound demonstrates, for the first time in a reliable way, that hydroboration of ynamines with borandiol esters is feasible. Compared to olefin hydroboration with borane, the ynamine substrate is activated enough to undergo reaction with the less active hydroboration reagent catecholborane. Full Article text
ed Hydrogen-bonding patterns in 2,2-bis(4-methylphenyl)hexafluoropropane pyridinium and ethylenediammonium salt crystals By scripts.iucr.org Published On :: 2020-04-24 The crystal structures of two salt crystals of 2,2-bis(4-methylphenyl)hexafluoropropane (Bmphfp) with amines, namely, dipyridinium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoic acid, 2C5H6N+·C17H8F6O42−·C17H10F6O4, (1), and a monohydrated ethylenediammonium salt ethane-1,2-diaminium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate monohydrate, C2H10N22+·C17H8F6O42−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z' = 2 and in space group Pbca with Z' = 1. The crystals of compound 1 contain neutral and anionic Bmphfp molecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp molecules, which form a complex three-dimensional hydrogen-bonded network with the ethylenediamine and water molecules. Full Article text
ed Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185. By scripts.iucr.org Published On :: 2020-04-14 Full Article text
ed 3D-printed holders for in meso in situ fixed-target serial X-ray crystallography By scripts.iucr.org Published On :: 2020-04-23 The in meso in situ serial X-ray crystallography method was developed to ease the handling of small fragile crystals of membrane proteins and for rapid data collection on hundreds of microcrystals directly in the growth medium without the need for crystal harvesting. To facilitate mounting of these in situ samples on a goniometer at cryogenic or at room temperatures, two new 3D-printed holders have been developed. They provide for cubic and sponge phase sample stability in the X-ray beam and are compatible with sample-changing robots. The holders can accommodate a variety of window material types, as well as bespoke samples for diffraction screening and data collection at conventional macromolecular crystallography beamlines. They can be used for convenient post-crystallization treatments such as ligand and heavy-atom soaking. The design, assembly and application of the holders for in situ serial crystallography are described. Files for making the holders using a 3D printer are included as supporting information. Full Article text
ed Optimization of crystallization of biological macromolecules using dialysis combined with temperature control By scripts.iucr.org Published On :: 2020-05-05 A rational way to find the appropriate conditions to grow crystal samples for bio-crystallography is to determine the crystallization phase diagram, which allows precise control of the parameters affecting the crystal growth process. First, the nucleation is induced at supersaturated conditions close to the solubility boundary between the nucleation and metastable regions. Then, crystal growth is further achieved in the metastable zone – which is the optimal location for slow and ordered crystal expansion – by modulation of specific physical parameters. Recently, a prototype of an integrated apparatus for the rational optimization of crystal growth by mapping and manipulating temperature–precipitant–concentration phase diagrams has been constructed. Here, it is demonstrated that a thorough knowledge of the phase diagram is vital in any crystallization experiment. The relevance of the selection of the starting position and the kinetic pathway undertaken in controlling most of the final properties of the synthesized crystals is shown. The rational crystallization optimization strategies developed and presented here allow tailoring of crystal size and diffraction quality, significantly reducing the time, effort and amount of expensive protein material required for structure determination. Full Article text
ed Equatorial aberration of powder diffraction data collected with an Si strip X-ray detector by a continuous-scan integration method By scripts.iucr.org Published On :: 2020-05-05 Exact and approximate mathematical formulas of equatorial aberration for powder diffraction data collected with an Si strip X-ray detector in continuous-scan integration mode are presented. An approximate formula is applied to treat the experimental data measured with a commercial powder diffractometer. Full Article text
ed Calculation of total scattering from a crystalline structural model based on experimental optics parameters By scripts.iucr.org Published On :: 2020-05-05 Total scattering measurements enable understanding of the structural disorder in crystalline materials by Fourier transformation of the total structure factor, S(Q), where Q is the magnitude of the scattering vector. In this work, the direct calculation of total scattering from a crystalline structural model is proposed. To calculate the total scattering intensity, a suitable Q-broadening function for the diffraction profile is needed because the intensity and the width depend on the optical parameters of the diffraction apparatus, such as the X-ray energy resolution and divergence, and the intrinsic parameters. X-ray total scattering measurements for CeO2 powder were performed at beamline BL04B2 of the SPring-8 synchrotron radiation facility in Japan for comparison with the calculated S(Q) under various optical conditions. The evaluated Q-broadening function was comparable to the full width at half-maximum of the Bragg peaks in the experimental total scattering pattern. The proposed calculation method correctly accounts for parameters with Q dependence such as the atomic form factor and resolution function, enables estimation of the total scattering factor, and facilitates determination of the reduced pair distribution function for both crystalline and amorphous materials. Full Article text