bl 11 Easiest Vegetables to Grow Throughout the Year By home.howstuffworks.com Published On :: Wed, 24 Jul 2024 12:56:01 -0400 Starting your own vegetable garden can be a rewarding and delicious hobby. But choosing the right vegetables can make the difference between a bountiful harvest and a frustrating experience. If you're a beginner, you'll want to start with the easiest vegetables to grow in different seasons. Full Article
bl Lisa of Blackpink preparing for new music release By world.kbs.co.kr Published On :: 2024-06-17 Lisa of Blackpink is signaling a comeback as a solo artist. The singer uploaded a clip on social media and posted a notice on her website on how to “pre-save” her new release. It will be her first...[more...] Full Article
bl [4K] SEVENTEEN, CNBLUE, AB6IX, Billlie, SAY MY NAME, YENA, EPEX, VANNER, Xdinary Heroes, JD1 | On the way to music bank 241018 By world.kbs.co.kr Published On :: 2024-10-18 +09:00 On the morning of October 18, at Yeoido KBS HallKBS WORLD Radio filmed K-pop stars making their way to attend rehearsals for Music Bank.[more...] Full Article Economy&It
bl What to Do With Old Computers: 3 Responsible Options By computer.howstuffworks.com Published On :: Wed, 12 Jun 2024 11:58:23 -0400 After years of hard work and loyalty, some computers must finally retire. But since they can't take a pension and move to Florida, where do old computers end up? Full Article
bl Finance Minister: Trump’s Reelection Likely to Have ‘Considerable’ Impact on S. Korean Economy By world.kbs.co.kr Published On :: Thu, 07 Nov 2024 09:43:01 +0900 [Economy] : Finance Minister Choi Sang-mok said Thursday that he expects Donald Trump’s reelection to have a “considerable” impact on the South Korean economy. The minister made the remarks Wednesday in Seoul during a meeting of ministers concerned with the economy, the morning after Donald Trump won the U.S. ...[more...] Full Article Economy
bl S. Koreans View Marriage, Childrearing More Favorably than 2 Years Ago By world.kbs.co.kr Published On :: Tue, 12 Nov 2024 15:26:49 +0900 [Economy] : South Koreans appear to hold more favorable views of marriage and childrearing than they did two years ago. According to Statistics Korea on Tuesday, 52-point-five percent of some 36-thousand people aged 13 and older polled in May said people should get married, up two-point-five percentage points from ...[more...] Full Article Economy
bl KOSPI Slips below 2,500 Threshold for First Time since Black Monday in August By world.kbs.co.kr Published On :: Tue, 12 Nov 2024 17:55:50 +0900 [Economy] : South Korea’s benchmark Korea Composite Stock Price Index(KOSPI) slipped below the two-thousand-500 threshold on Tuesday for the first time since August’s “Black Monday.” The KOSPI dipped 49-point-09 points, or one-point-94 percent, on Tuesday to close at two-thousand-482-point-57. In the ...[more...] Full Article Economy
bl Deep-sea mining evidence review published - British Geological Survey By news.google.com Published On :: Mon, 31 Oct 2022 07:00:00 GMT Deep-sea mining evidence review published British Geological Survey Full Article
bl Scientific report published - British Geological Survey By news.google.com Published On :: Tue, 05 Jul 2022 11:38:32 GMT Scientific report published British Geological Survey Full Article
bl My role as a stable isotope research assistant - British Geological Survey By news.google.com Published On :: Tue, 19 Dec 2023 08:00:00 GMT My role as a stable isotope research assistant British Geological Survey Full Article
bl Trailblazing seismologist named new editor-in-chief of GJI - The Royal Astronomical Society By news.google.com Published On :: Tue, 27 Feb 2024 08:00:00 GMT Trailblazing seismologist named new editor-in-chief of GJI The Royal Astronomical Society Full Article
bl BGS geological data sets now available on Ordnance Survey hub - Ground Engineering By news.google.com Published On :: Mon, 03 Jun 2024 07:00:00 GMT BGS geological data sets now available on Ordnance Survey hub Ground Engineering Full Article
bl Washington DC among US cities most vulnerable to space weather, scientists say - The Royal Astronomical Society By news.google.com Published On :: Thu, 18 Jul 2024 07:00:00 GMT Washington DC among US cities most vulnerable to space weather, scientists say The Royal Astronomical Society Full Article
bl Delivering a sustainable urban future for Europe through geoscience - British Geological Survey By news.google.com Published On :: Wed, 08 May 2024 16:17:43 GMT Delivering a sustainable urban future for Europe through geoscience British Geological Survey Full Article
bl Mining sand sustainably in The Gambia - British Geological Survey By news.google.com Published On :: Tue, 17 Sep 2024 07:00:00 GMT Mining sand sustainably in The Gambia British Geological Survey Full Article
bl BGS to help deliver International Centre of Excellence on Sustainable Resource Management - British Geological Survey By news.google.com Published On :: Tue, 27 Feb 2024 16:32:42 GMT BGS to help deliver International Centre of Excellence on Sustainable Resource Management British Geological Survey Full Article
bl Responsible extraction in South America’s Lithium Triangle - British Geological Survey By news.google.com Published On :: Fri, 02 Aug 2024 07:00:00 GMT Responsible extraction in South America’s Lithium Triangle British Geological Survey Full Article
bl UK Minerals Yearbook 2023 now available to download - British Geological Survey By news.google.com Published On :: Tue, 04 Jun 2024 11:09:40 GMT UK Minerals Yearbook 2023 now available to download British Geological Survey Full Article
bl World Mineral Production 2018 to 2022 is now available - British Geological Survey By news.google.com Published On :: Tue, 09 Apr 2024 14:26:00 GMT World Mineral Production 2018 to 2022 is now available British Geological Survey Full Article
bl The seventh blind test of crystal structure prediction: structure generation methods By journals.iucr.org Published On :: The results of the seventh blind test of crystal structure prediction are presented, focusing on structure generation methods. Full Article text
bl The seventh blind test of crystal structure prediction: structure ranking methods By journals.iucr.org Published On :: The results of the seventh blind test of crystal structure prediction are presented, focusing on structure ranking methods. Full Article text
bl Spin reorientation and the interplay of magnetic sublattices in Er2CuMnMn4O12 By journals.iucr.org Published On :: We show that the interplay of multiple magnetic sublattices in Er2CuMnMn4O12 leads to four magnetic phase transitions characterized by the onset of ferrimagnetic order, spin-reorientation, spin canting, and the polarization of Er ions. While we elucidate numerous features of this complex magnetic system, the exact nature of the low-temperature coupling between erbium and manganese, and the origin of a k = (0, 0, ½) modulation, remain intriguing topics for future studies. Full Article text
bl Variable stoichiometry and salt-cocrystal intermediate in the multicomponents of flucytosine: structural elucidation and its impact on stability By journals.iucr.org Published On :: Five multicomponent solid forms of an antifungal drug flucytosine are reported with a hygroscopic stability study. A detailed CSD search on the cocrystal/salts of flucytosine is evaluated and correlated the structures based on bond angles and bond distances. Full Article text
bl Spin reorientation and the interplay of magnetic sublattices in Er2CuMnMn4O12 By journals.iucr.org Published On :: 2024-10-21 Through a combination of magnetic susceptibility, specific heat, and neutron powder diffraction measurements we have revealed a sequence of four magnetic phase transitions in the columnar quadruple perovskite Er2CuMnMn4O12. A key feature of the quadruple perovskite structural framework is the complex interplay of multiple magnetic sublattices via frustrated exchange topologies and competing magnetic anisotropies. It is shown that in Er2CuMnMn4O12, this phenomenology gives rise to multiple spin-reorientation transitions driven by the competition of easy-axis single ion anisotropy and the Dzyaloshinskii–Moriya interaction; both within the manganese B-site sublattice. At low temperature, one Er sublattice orders due to a finite f-d exchange field aligned parallel to its Ising axis, while the other Er sublattice remains non-magnetic until a final, symmetry-breaking phase transition into the ground state. This non-trivial low-temperature interplay of transition metal and rare-earth sublattices, as well as an observed k = (0, 0, ½) periodicity in both manganese spin canting and Er ordering, raises future challenges to develop a complete understanding of the R2CuMnMn4O12 family. Full Article text
bl Contrasting conformational behaviors of molecules XXXI and XXXII in the seventh blind test of crystal structure prediction By journals.iucr.org Published On :: 2024-10-14 Accurate modeling of conformational energies is key to the crystal structure prediction of conformational polymorphs. Focusing on molecules XXXI and XXXII from the seventh blind test of crystal structure prediction, this study employs various electronic structure methods up to the level of domain-local pair natural orbital coupled cluster singles and doubles with perturbative triples [DLPNO-CCSD(T1)] to benchmark the conformational energies and to assess their impact on the crystal energy landscapes. Molecule XXXI proves to be a relatively straightforward case, with the conformational energies from generalized gradient approximation (GGA) functional B86bPBE-XDM changing only modestly when using more advanced density functionals such as PBE0-D4, ωB97M-V, and revDSD-PBEP86-D4, dispersion-corrected second-order Møller–Plesset perturbation theory (SCS-MP2D), or DLPNO-CCSD(T1). In contrast, the conformational energies of molecule XXXII prove difficult to determine reliably, and variations in the computed conformational energies appreciably impact the crystal energy landscape. Even high-level methods such as revDSD-PBEP86-D4 and SCS-MP2D exhibit significant disagreements with the DLPNO-CCSD(T1) benchmarks for molecule XXXII, highlighting the difficulty of predicting conformational energies for complex, drug-like molecules. The best-converged predicted crystal energy landscape obtained here for molecule XXXII disagrees significantly with what has been inferred about the solid-form landscape experimentally. The identified limitations of the calculations are probably insufficient to account for the discrepancies between theory and experiment on molecule XXXII, and further investigation of the experimental solid-form landscape would be valuable. Finally, assessment of several semi-empirical methods finds r2SCAN-3c to be the most promising, with conformational energy accuracy intermediate between the GGA and hybrid functionals and a low computational cost. Full Article text
bl Assessment of the exchange-hole dipole moment dispersion correction for the energy ranking stage of the seventh crystal structure prediction blind test By journals.iucr.org Published On :: 2024-10-15 The seventh blind test of crystal structure prediction (CSP) methods substantially increased the level of complexity of the target compounds relative to the previous tests organized by the Cambridge Crystallographic Data Centre. In this work, the performance of density-functional methods is assessed using numerical atomic orbitals and the exchange-hole dipole moment dispersion correction (XDM) for the energy-ranking phase of the seventh blind test. Overall, excellent performance was seen for the two rigid molecules (XXVII, XXVIII) and for the organic salt (XXXIII). However, for the agrochemical (XXXI) and pharmaceutical (XXXII) targets, the experimental polymorphs were ranked fairly high in energy amongst the provided candidate structures and inclusion of thermal free-energy corrections from the lattice vibrations was found to be essential for compound XXXI. Based on these results, it is proposed that the importance of vibrational free-energy corrections increases with the number of rotatable bonds. Full Article text
bl Polymorph sampling with coupling to extended variables: enhanced sampling of polymorph energy landscapes and free energy perturbation of polymorph ensembles By journals.iucr.org Published On :: 2024-10-15 A novel approach to computationally enhance the sampling of molecular crystal structures is proposed and tested. This method is based on the use of extended variables coupled to a Monte Carlo based crystal polymorph generator. Inspired by the established technique of quasi-random sampling of polymorphs using the rigid molecule constraint, this approach represents molecular clusters as extended variables within a thermal reservoir. Polymorph unit-cell variables are generated using pseudo-random sampling. Within this framework, a harmonic coupling between the extended variables and polymorph configurations is established. The extended variables remain fixed during the inner loop dedicated to polymorph sampling, enforcing a stepwise propagation of the extended variables to maintain system exploration. The final processing step results in a polymorph energy landscape, where the raw structures sampled to create the extended variable trajectory are re-optimized without the thermal coupling term. The foundational principles of this approach are described and its effectiveness using both a Metropolis Monte Carlo type algorithm and modifications that incorporate replica exchange is demonstrated. A comparison is provided with pseudo-random sampling of polymorphs for the molecule coumarin. The choice to test a design of this algorithm as relevant for enhanced sampling of crystal structures was due to the obvious relation between molecular structure variables and corresponding crystal polymorphs as representative of the inherent vapor to crystal transitions that exist in nature. Additionally, it is shown that the trajectories of extended variables can be harnessed to extract fluctuation properties that can lead to valuable insights. A novel thermodynamic variable is introduced: the free energy difference between ensembles of Z' = 1 and Z' = 2 crystal polymorphs. Full Article text
bl The seventh blind test of crystal structure prediction: structure ranking methods By journals.iucr.org Published On :: 2024-10-17 A seventh blind test of crystal structure prediction has been organized by the Cambridge Crystallographic Data Centre. The results are presented in two parts, with this second part focusing on methods for ranking crystal structures in order of stability. The exercise involved standardized sets of structures seeded from a range of structure generation methods. Participants from 22 groups applied several periodic DFT-D methods, machine learned potentials, force fields derived from empirical data or quantum chemical calculations, and various combinations of the above. In addition, one non-energy-based scoring function was used. Results showed that periodic DFT-D methods overall agreed with experimental data within expected error margins, while one machine learned model, applying system-specific AIMnet potentials, agreed with experiment in many cases demonstrating promise as an efficient alternative to DFT-based methods. For target XXXII, a consensus was reached across periodic DFT methods, with consistently high predicted energies of experimental forms relative to the global minimum (above 4 kJ mol−1 at both low and ambient temperatures) suggesting a more stable polymorph is likely not yet observed. The calculation of free energies at ambient temperatures offered improvement of predictions only in some cases (for targets XXVII and XXXI). Several avenues for future research have been suggested, highlighting the need for greater efficiency considering the vast amounts of resources utilized in many cases. Full Article text
bl The seventh blind test of crystal structure prediction: structure generation methods By journals.iucr.org Published On :: 2024-12-01 A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern. The use of CSP in the prediction of likely cocrystal stoichiometry was also explored, demonstrating multiple possible approaches. Crystallographic disorder emerged as an important theme throughout the test as both a challenge for analysis and a major achievement where two groups blindly predicted the existence of disorder for the first time. Additionally, large-scale comparisons of the sets of predicted crystal structures also showed that some methods yield sets that largely contain the same crystal structures. Full Article text
bl N-representable one-electron reduced density matrix reconstruction with frozen core electrons By journals.iucr.org Published On :: 2024-03-21 Recent advances in quantum crystallography have shown that, beyond conventional charge density refinement, a one-electron reduced density matrix (1-RDM) satisfying N-representability conditions can be reconstructed using jointly experimental X-ray structure factors and directional Compton profiles (DCP) through semidefinite programming. So far, such reconstruction methods for 1-RDM, not constrained to idempotency, have been tested only on a toy model system (CO2). In this work, a new method is assessed on crystalline urea [CO(NH2)2] using static (0 K) and dynamic (50 K) artificial experimental data. An improved model, including symmetry constraints and frozen core-electron contribution, is introduced to better handle the increasing system complexity. Reconstructed 1-RDMs, deformation densities and DCP anisotropy are analysed, and it is demonstrated that the changes in the model significantly improve the reconstruction quality, even when there is insufficient information and data corruption. The robustness of the model and the strategy are thus shown to be well adapted to address the reconstruction problem from actual experimental scattering data. Full Article text
bl Permissible domain walls in monoclinic ferroelectrics. Part II. The case of MC phases By journals.iucr.org Published On :: 2024-04-29 Monoclinic ferroelectric phases are prevalent in various functional materials, most notably mixed-ion perovskite oxides. These phases can manifest as regularly ordered long-range crystallographic structures or as macroscopic averages of the self-assembled tetragonal/rhombohedral nanodomains. The structural and physical properties of monoclinic ferroelectric phases play a pivotal role when exploring the interplay between ferroelectricity, ferroelasticity, giant piezoelectricity and multiferroicity in crystals, ceramics and epitaxial thin films. However, the complex nature of this subject presents challenges, particularly in deciphering the microstructures of monoclinic domains. In Paper I [Biran & Gorfman (2024). Acta Cryst. A80, 112–128] the geometrical principles governing the connection of domain microstructures formed by pairing MAB type monoclinic domains were elucidated. Specifically, a catalog was established of `permissible domain walls', where `permissible', as originally introduced by Fousek & Janovec [J. Appl. Phys. (1969), 40, 135–142], denotes a mismatch-free connection between two monoclinic domains along the corresponding domain wall. The present article continues the prior work by elaborating on the formalisms of permissible domain walls to describe domain microstructures formed by pairing the MC type monoclinic domains. Similarly to Paper I, 84 permissible domain walls are presented for MC type domains. Each permissible domain wall is characterized by Miller indices, the transformation matrix between the crystallographic basis vectors of the domains and, crucially, the expected separation of Bragg peaks diffracted from the matched pair of domains. All these parameters are provided in an analytical form for easy and intuitive interpretation of the results. Additionally, 2D illustrations are provided for selected instances of permissible domain walls. The findings can prove valuable for various domain-related calculations, investigations involving X-ray diffraction for domain analysis and the description of domain-related physical properties. Full Article text
bl High-resolution double vision of the allosteric phosphatase PTP1B By journals.iucr.org Published On :: 2024-01-01 Protein tyrosine phosphatase 1B (PTP1B) plays important roles in cellular homeostasis and is a highly validated therapeutic target for multiple human ailments, including diabetes, obesity and breast cancer. However, much remains to be learned about how conformational changes may convey information through the structure of PTP1B to enable allosteric regulation by ligands or functional responses to mutations. High-resolution X-ray crystallography can offer unique windows into protein conformational ensembles, but comparison of even high-resolution structures is often complicated by differences between data sets, including non-isomorphism. Here, the highest resolution crystal structure of apo wild-type (WT) PTP1B to date is presented out of a total of ∼350 PTP1B structures in the PDB. This structure is in a crystal form that is rare for PTP1B, with two unique copies of the protein that exhibit distinct patterns of conformational heterogeneity, allowing a controlled comparison of local disorder across the two chains within the same asymmetric unit. The conformational differences between these chains are interrogated in the apo structure and between several recently reported high-resolution ligand-bound structures. Electron-density maps in a high-resolution structure of a recently reported activating double mutant are also examined, and unmodeled alternate conformations in the mutant structure are discovered that coincide with regions of enhanced conformational heterogeneity in the new WT structure. These results validate the notion that these mutations operate by enhancing local dynamics, and suggest a latent susceptibility to such changes in the WT enzyme. Together, these new data and analysis provide a detailed view of the conformational ensemble of PTP1B and highlight the utility of high-resolution crystallography for elucidating conformational heterogeneity with potential relevance for function. Full Article text
bl Structures of Brucella ovis leucine-, isoleucine-, valine-, threonine- and alanine-binding protein reveal a conformationally flexible peptide-binding cavity By journals.iucr.org Published On :: 2024-08-23 Brucella ovis is an etiologic agent of ovine epididymitis and brucellosis that causes global devastation in sheep, rams, goats, small ruminants and deer. There are no cost-effective methods for the worldwide eradication of ovine brucellosis. B. ovis and other protein targets from various Brucella species are currently in the pipeline for high-throughput structural analysis at the Seattle Structural Genomics Center for Infectious Disease (SSGCID), with the aim of identifying new therapeutic targets. Furthermore, the wealth of structures generated are effective tools for teaching scientific communication, structural science and biochemistry. One of these structures, B. ovis leucine-, isoleucine-, valine-, threonine- and alanine-binding protein (BoLBP), is a putative periplasmic amino acid-binding protein. BoLBP shares less than 29% sequence identity with any other structure in the Protein Data Bank. The production, crystallization and high-resolution structures of BoLBP are reported. BoLBP is a prototypical bacterial periplasmic amino acid-binding protein with the characteristic Venus flytrap topology of two globular domains encapsulating a large central cavity containing the peptide-binding region. The central cavity contains small molecules usurped from the crystallization milieu. The reported structures reveal the conformational flexibility of the central cavity in the absence of bound peptides. The structural similarity to other LBPs can be exploited to accelerate drug repurposing. Full Article text
bl Optimizing crucible geometry to improve the quality of AlN crystals by the physical vapor transport method By journals.iucr.org Published On :: The growth quality of AlN single crystals was improved by optimizing the crucible structure for Al vapor transport with the help of finite element simulation. Full Article text
bl Variable temperature studies of tetrapyridinesilver(I) hexafluorophosphate and tetrapyridinesilver(I) hexafluoroantimonate By journals.iucr.org Published On :: Structures of tetrapyridinesilver(I) hexafluorophosphate and tetrapyridine silver(I) hexafluoroantimonate are reported from data collected at 300 K and 100 K. Full Article text
bl Optimizing crucible geometry to improve the quality of AlN crystals by the physical vapor transport method By journals.iucr.org Published On :: 2024-10-16 In the conventional crucible structure for AlN crystal growth by physical vapor transport, owing to the long molecular transport path of Al vapor and the disruption of the gas flow by the presence of a deflector, the Al vapor easily forms polycrystals in the growth domain. The result is increased internal stress in the crystals and increased difficulty in growing large-sized crystals. On this basis, with the help of finite element simulations, a novel crucible structure is designed. This crucible not only optimizes the gas transport but also increases the radial gradient of the AlN crystal surface, making the enhanced growth rate in the central region more obvious. The thermal stresses between the deflector and the crystal are also reduced. High-quality AlN crystals with an FWHM of 79 arcsec were successfully grown with this structure, verifying the accuracy of finite element simulation of the growth of AlN crystals. Our work has important guiding significance for the growth of high-quality AlN crystals. Full Article text
bl Angle-resolved X-ray emission spectroscopy facility realized by an innovative spectrometer rotation mechanism at SPring-8 BL07LSU By journals.iucr.org Published On :: 2024-02-01 The X-ray emission spectrometer at SPring-8 BL07LSU has recently been upgraded with advanced modifications that enable the rotation of the spectrometer with respect to the scattering angle. This major upgrade allows the scattering angle to be flexibly changed within the range of 45–135°, which considerably simplifies the measurement of angle-resolved X-ray emission spectroscopy. To accomplish the rotation system, a sophisticated sample chamber and a highly precise spectrometer rotation mechanism have been developed. The sample chamber has a specially designed combination of three rotary stages that can smoothly move the connection flange along the wide scattering angle without breaking the vacuum. In addition, the spectrometer is rotated by sliding on a flat metal surface, ensuring exceptionally high accuracy in rotation and eliminating the need for any further adjustments during rotation. A control system that integrates the sample chamber and rotation mechanism to automate the measurement of angle-resolved X-ray emission spectroscopy has also been developed. This automation substantially streamlines the process of measuring angle-resolved spectra, making it far easier than ever before. Furthermore, the upgraded X-ray emission spectrometer can now also be utilized in diffraction experiments, providing even greater versatility to our research capabilities. Full Article text
bl Submillisecond in situ X-ray diffraction measurement system with changing temperature and pressure using diamond anvil cells at BL10XU/SPring-8 By journals.iucr.org Published On :: 2024-02-19 Recently, there has been a high demand for elucidating kinetics and visualizing reaction processes under extreme dynamic conditions, such as chemical reactions under meteorite impact conditions, structural changes under nonequilibrium conditions, and in situ observations of dynamic changes. To accelerate material science studies and Earth science fields under dynamic conditions, a submillisecond in situ X-ray diffraction measurement system has been developed using a diamond anvil cell to observe reaction processes under rapidly changing pressure and temperature conditions replicating extreme dynamic conditions. The development and measurements were performed at the high-pressure beamline BL10XU/SPring-8 by synchronizing a high-speed hybrid pixel array detector, laser heating and temperature measurement system, and gas-pressure control system that enables remote and rapid pressure changes using the diamond anvil cell. The synchronized system enabled momentary heating and rapid cooling experiments up to 5000 K via laser heating as well as the visualization of structural changes in high-pressure samples under extreme dynamic conditions during high-speed pressure changes. Full Article text
bl A differentiable simulation package for performing inference of synchrotron-radiation-based diagnostics By journals.iucr.org Published On :: 2024-02-16 The direction of particle accelerator development is ever-increasing beam quality, currents and repetition rates. This poses a challenge to traditional diagnostics that directly intercept the beam due to the mutual destruction of both the beam and the diagnostic. An alternative approach is to infer beam parameters non-invasively from the synchrotron radiation emitted in bending magnets. However, inferring the beam distribution from a measured radiation pattern is a complex and computationally expensive task. To address this challenge we present SYRIPY (SYnchrotron Radiation In PYthon), a software package intended as a tool for performing inference of synchrotron-radiation-based diagnostics. SYRIPY has been developed using PyTorch, which makes it both differentiable and able to leverage the high performance of GPUs, two vital characteristics for performing statistical inference. The package consists of three modules: a particle tracker, Lienard–Wiechert solver and Fourier optics propagator, allowing start-to-end simulation of synchrotron radiation detection to be carried out. SYRIPY has been benchmarked against SRW, the prevalent numerical package in the field, showing good agreement and up to a 50× speed improvement. Finally, we have demonstrated how SYRIPY can be used to perform Bayesian inference of beam parameters using stochastic variational inference. Full Article text
bl Scattered high-energy synchrotron radiation at the KARA visible-light diagnostic beamline By journals.iucr.org Published On :: 2024-03-26 To characterize an electron beam, visible synchrotron light is often used and dedicated beamlines at synchrotron sources are becoming a more common feature as instruments and methods for the diagnostics are, along with the accelerators, further developed. At KARA (Karlsruhe Research Accelerator), such a beamline exists and is based on a typical infrared/visible-light configuration. From experience at such beamlines no significant radiation was expected (dose rates larger than 0.5 µSv h−1). This was found not to be the case and a higher dose was measured which fortunately could be shielded to an acceptable level with 0.3 mm of aluminium foil or 2.0 mm of Pyrex glass. The presence of this radiation led to further investigation by both experiment and calculation. A custom setup using a silicon drift detector for energy-dispersive spectroscopy (Ketek GmbH) and attenuation experiments showed the radiation to be predominantly copper K-shell fluorescence and is confirmed by calculation. The measurement of secondary radiation from scattering of synchrotron and other radiation, and its calculation, is important for radiation protection, and, although a lot of experience exists and methods for radiation protection are well established, changes in machine, beamlines and experiments mean a constant appraisal is needed. Full Article text
bl Operando double-edge high-resolution X-ray absorption spectroscopy study of BiVO4 photoanodes By journals.iucr.org Published On :: 2024-04-15 High energy resolution fluorescence detected X-ray absorption spectroscopy is a powerful method for probing the electronic structure of functional materials. The X-ray penetration depth and photon-in/photon-out nature of the method allow operando experiments to be performed, in particular in electrochemical cells. Here, operando high-resolution X-ray absorption measurements of a BiVO4 photoanode are reported, simultaneously probing the local electronic states of both cations. Small but significant variations of the spectral lineshapes induced by the applied potential were observed and an explanation in terms of the occupation of electronic states at or near the band edges is proposed. Full Article text
bl A closer look at high-energy X-ray-induced bubble formation during soft tissue imaging By journals.iucr.org Published On :: 2024-04-26 Improving the scalability of tissue imaging throughput with bright, coherent X-rays requires identifying and mitigating artifacts resulting from the interactions between X-rays and matter. At synchrotron sources, long-term imaging of soft tissues in solution can result in gas bubble formation or cavitation, which dramatically compromises image quality and integrity of the samples. By combining in-line phase-contrast imaging with gas chromatography in real time, we were able to track the onset and evolution of high-energy X-ray-induced gas bubbles in ethanol-embedded soft tissue samples for tens of minutes (two to three times the typical scan times). We demonstrate quantitatively that vacuum degassing of the sample during preparation can significantly delay bubble formation, offering up to a twofold improvement in dose tolerance, depending on the tissue type. However, once nucleated, bubble growth is faster in degassed than undegassed samples, indicating their distinct metastable states at bubble onset. Gas chromatography analysis shows increased solvent vaporization concurrent with bubble formation, yet the quantities of dissolved gasses remain unchanged. By coupling features extracted from the radiographs with computational analysis of bubble characteristics, we uncover dose-controlled kinetics and nucleation site-specific growth. These hallmark signatures provide quantitative constraints on the driving mechanisms of bubble formation and growth. Overall, the observations highlight bubble formation as a critical yet often overlooked hurdle in upscaling X-ray imaging for biological tissues and soft materials and we offer an empirical foundation for their understanding and imaging protocol optimization. More importantly, our approaches establish a top-down scheme to decipher the complex, multiscale radiation–matter interactions in these applications. Full Article text
bl High-throughput and high-resolution powder X-ray diffractometer consisting of six sets of 2D CdTe detectors with variable sample-to-detector distance and innovative automation system By journals.iucr.org Published On :: 2024-06-20 The demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed. This system is combined with six sets of two-dimensional (2D) CdTe detectors for high-energy X-rays, and various automation systems, including a system for automatic switching among large sample environmental equipment, have been developed in the third experimental hutch of the insertion device beamline BL13XU at SPring-8. In this diffractometer system, high-brilliance and high-energy X-rays ranging from 16 to 72 keV are available. The powder diffraction data measured under ambient and various nonambient conditions can be analysed using Rietveld refinement and the pair distribution function. Using the 2D CdTe detectors with variable sample-to-detector distance, three types of scan modes have been established: standard, single-step and high-resolution. A major feature is the ability to measure a whole powder pattern with millisecond resolution. Equally important, this system can measure powder diffraction data with high Q exceeding 30 Å−1 within several tens of seconds. This capability is expected to contribute significantly to new research avenues using machine learning and artificial intelligence by utilizing the large amount of data obtained from high-throughput measurements. Full Article text
bl Development of a portable and cost-effective femtosecond fibre laser synchronizable with synchrotron X-ray pulses By journals.iucr.org Published On :: 2024-06-20 This study introduces a compact, portable femtosecond fibre laser system designed for synchronization with SPring-8 synchrotron X-ray pulses in a uniform filling mode. Unlike traditional titanium–sapphire mode-locked lasers, which are fixed installations, our system utilizes fibre laser technology to provide a practical alternative for time-resolved spectroscopy, striking a balance between usability, portability and cost-efficiency. Comprehensive evaluations, including pulse characterization, timing jitter and frequency stability tests revealed a centre wavelength of 1600 nm, a pulse energy of 4.5 nJ, a pulse duration of 35 fs with a timing jitter of less than 9 ps, confirming the suitability of the system for time-resolved spectroscopic studies. This development enhances the feasibility of experiments that combine synchrotron X-rays and laser pulses, offering significant scientific contributions by enabling more flexible and diverse research applications. Full Article text
bl GIWAXS experimental methods at the NFPS-BL17B beamline at Shanghai Synchrotron Radiation Facility By journals.iucr.org Published On :: 2024-06-25 The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials. Full Article text
bl VUV absorption spectra of water and nitrous oxide by a double-duty differentially pumped gas filter By journals.iucr.org Published On :: 2024-07-23 The differentially pumped rare-gas filter at the end of the VUV beamline of the Swiss Light Source has been adapted to house a windowless absorption cell for gases. Absorption spectra can be recorded from 7 eV to up to 21 eV photon energies routinely, as shown by a new water and nitrous oxide absorption spectrum. By and large, the spectra agree with previously published ones both in terms of resonance energies and absorption cross sections, but that of N2O exhibits a small shift in the { ilde{f D}} band and tentative fine structures that have not yet been fully described. This setup will facilitate the measurement of absorption spectra in the VUV above the absorption edge of LiF and MgF2 windows. It will also allow us to carry out condensed-phase measurements on thin liquid sheets and solid films. Further development options are discussed, including the recording of temperature-dependent absorption spectra, a stationary gas cell for calibration measurements, and the improvement of the photon energy resolution. Full Article text
bl Double-edge scan wavefront metrology and its application in crystal diffraction wavefront measurements By journals.iucr.org Published On :: 2024-07-29 Achieving diffraction-limited performance in fourth-generation synchrotron radiation sources demands monochromator crystals that can preserve the wavefront across an unprecedented extensive range. There is an urgent need for techniques of absolute crystal diffraction wavefront measurement. At the Beijing Synchrotron Radiation Facility (BSRF), a novel edge scan wavefront metrology technique has been developed. This technique employs a double-edge tracking method, making diffraction-limited level absolute crystal diffraction wavefront measurement a reality. The results demonstrate an equivalent diffraction surface slope error below 70 nrad (corresponding to a wavefront phase error of 4.57% λ) r.m.s. within a nearly 6 mm range for a flat crystal in the crystal surface coordinate. The double-edge structure contributes to exceptional measurement precision for slope error reproducibility, achieving levels below 15 nrad (phase error reproducibility < λ/100) even at a first-generation synchrotron radiation source. Currently, the measurement termed double-edge scan (DES) has already been regarded as a critical feedback mechanism in the fabrication of next-generation crystals. Full Article text
bl Investigating the missing-wedge problem in small-angle X-ray scattering tensor tomography across real and reciprocal space By journals.iucr.org Published On :: 2024-08-28 Small-angle-scattering tensor tomography is a technique for studying anisotropic nanostructures of millimetre-sized samples in a volume-resolved manner. It requires the acquisition of data through repeated tomographic rotations about an axis which is subjected to a series of tilts. The tilt that can be achieved with a typical setup is geometrically constrained, which leads to limits in the set of directions from which the different parts of the reciprocal space map can be probed. Here, we characterize the impact of this limitation on reconstructions in terms of the missing wedge problem of tomography, by treating the problem of tensor tomography as the reconstruction of a three-dimensional field of functions on the unit sphere, represented by a grid of Gaussian radial basis functions. We then devise an acquisition scheme to obtain complete data by remounting the sample, which we apply to a sample of human trabecular bone. Performing tensor tomographic reconstructions of limited data sets as well as the complete data set, we further investigate and validate the missing wedge problem by investigating reconstruction errors due to data incompleteness across both real and reciprocal space. Finally, we carry out an analysis of orientations and derived scalar quantities, to quantify the impact of this missing wedge problem on a typical tensor tomographic analysis. We conclude that the effects of data incompleteness are consistent with the predicted impact of the missing wedge problem, and that the impact on tensor tomographic analysis is appreciable but limited, especially if precautions are taken. In particular, there is only limited impact on the means and relative anisotropies of the reconstructed reciprocal space maps. Full Article text
bl The soft X-ray spectromicroscopy beamline BL08U1A upgrade at SSRF By journals.iucr.org Published On :: 2024-08-22 Beamline BL08U1A is a soft X-ray spectromicroscopy beamline at Shanghai Synchrotron Radiation Facility (SSRF) that exhibits the capabilities of high spatial resolution (30 nm) and high energy resolving power (over 104). As a first-generation beamline of SSRF, owing to its continuous operation over the last ten years, an urgent upgrade of the equipment including the monochromator was deemed necessary. The upgrade work included the overall construction of the monochromator and replacement of the mirrors upstream and downstream of the monochromator. Based on its original skeleton, two elliptically cylinder mirrors were designed to focus the beam horizontally, which can increase the flux density by about three times on the exit slits. Meanwhile, the application of variable-line-space gratings in the monochromator demonstrates the dual functions of dispersing and focusing on the exit slits which can decrease abberations dramatically. After the upgrade of the main components of the beamline, the energy range is 180–2000 eV, the energy resolving power reaches 16333 @ 244 eV and 12730 @ 401 eV, and the photon flux measured in the experimental station is over 2.45 × 109 photons s−1 (E/ΔE = 6440 @ 244 eV). Full Article text
bl Multivalent hydrogen-bonded architectures directed by self-complementarity between [Cu(2,2'-biimidazole)] and malonate building blocks By journals.iucr.org Published On :: 2024-08-19 The synthesis and structural characterization of four novel supramolecular hydrogen-bonded arrangements based on self-assembly from molecular `[Cu(2,2'-biimidazole)]' modules and malonate anions are presented, namely, tetrakis(2,2'-biimidazole)di-μ-chlorido-dimalonatotricopper(II) pentahydrate, [Cu3(C3H2O4)2Cl2(C6H6N4)4]·5H2O or [Cu(H2biim)2(μ-Cl)Cu0.5(mal)]2·5H2O, aqua(2,2'-biimidazole)malonatocopper(II) dihydrate, [Cu(C3H2O4)(C6H6N4)(H2O)]·2H2O or [Cu(H2biim)(mal)(H2O)]·2H2O, bis[aquabis(2,2'-biimidazole)copper(II)] dimalonatodiperchloratocopper(II) 2.2-hydrate, [Cu(C6H6N4)2(H2O)]2[Cu(C3H2O4)(ClO4)2]·2.2H2O or [Cu(H2biim)2(H2O)]2[Cu(mal)2(ClO4)2]·2.2H2O, and bis(2,2'-biimidazole)copper(II) bis[bis(2,2'-biimidazole)(2-carboxyacetato)malonatocopper(II)] tridecahydrate, [Cu(C6H6N4)2][Cu(C3H2O4)(C3H3O4)(C6H6N4)2]·13H2O or [Cu(H2biim)2][Cu(H2biim)2(Hmal)(mal)]2·13H2O. These assemblies are characterized by self-complementary donor–acceptor molecular interactions, demonstrating a recurrent and distinctive pattern of hydrogen-bonding preferences among the carboxylate, carboxylic acid and N—H groups of the coordinated 2,2'-biimidazole and malonate ligands. Additionally, coordination of the carboxylate group with the metallic centre helps sustain remarkable supramolecular assemblies, such as layers, helices, double helix columns or 3D channeled architectures, including mixed-metal complexes, into a single structure. Full Article text