Blood Protein Might Predict Future Diabetes, Cancer Risk
Title: Blood Protein Might Predict Future Diabetes, Cancer Risk
Category: Health News
Created: 8/5/2022 12:00:00 AM
Last Editorial Review: 8/5/2022 12:00:00 AM
Title: Blood Protein Might Predict Future Diabetes, Cancer Risk
Category: Health News
Created: 8/5/2022 12:00:00 AM
Last Editorial Review: 8/5/2022 12:00:00 AM
Antifolates are important for chemotherapy in non–small cell lung cancer (NSCLC). They mainly rely on reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) to enter cells. PCFT is supposed to be the dominant transporter of the two in tumors, as it operates optimally at acidic pH and has limited transport activity at physiological pH, whereas RFC operates optimally at neutral pH. In this study, we found RFC showed a slightly pH-dependent uptake of antifolates, with similar affinity values at pH 7.4 and 6.5. PCFT showed a highly pH-dependent uptake of antifolates, with an optimum pH of 6.0 for pemetrexed and 5.5 for methotrexate. The Michaelis-Menten constant (Km) value of PCFT for pemetrexed at pH 7.4 was more than 10 times higher than that at pH 6.5. Interestingly, we found that antifolate accumulations mediated by PCFT at acidic pH were significantly affected by the efflux transporter, breast cancer resistance protein (BCRP). The highest pemetrexed concentration was observed at pH 7.0–7.4 after a 60-minute accumulation in PCFT-expressing cells, which was further evidenced by the cytotoxicity of pemetrexed, with the IC50 value of pemetrexed at pH 7.4 being one-third of that at pH 6.5. In addition, the in vivo study indicated that increasing PCFT and RFC expression significantly enhanced the antitumor efficacy of pemetrexed despite the high expression of BCRP. These results suggest that both RFC and PCFT are important for antifolates accumulation in NSCLC, although there is an acidic microenvironment and high BCRP expression in tumors.
Evaluating the role of reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) on antifolates accumulation in non–small cell lung cancer (NSCLC) is necessary for new drug designs. By using cell models, we found both RFC and PCFT were important for antifolates accumulation in NSCLC. Breast cancer resistance protein (BCRP) significantly affected PCFT-mediated antifolates accumulation at acidic pH but not RFC-mediated pemetrexed accumulation at physiological pH. High expression of PCFT or RFC enhanced the cytotoxicity and antitumor effect of pemetrexed.
Solute carrier family 6 member 19 (SLC6A19) inhibitors are being studied as therapeutic agents for phenylketonuria. In this work, a potent SLC6A19 inhibitor (RA836) elevated rat kidney uremic toxin indoxyl sulfate (IDS) levels by intensity (arbitrary unit) of 13.7 ± 7.7 compared with vehicle 0.3 ± 0.1 (P = 0.01) as determined by tissue mass spectrometry imaging analysis. We hypothesized that increased plasma and kidney levels of IDS could be caused by the simultaneous inhibition of both Slc6a19 and a kidney IDS transporter responsible for excretion of IDS into urine. To test this, we first confirmed the formation of IDS through tryptophan metabolism by feeding rats a Trp-free diet. Inhibiting Slc6a19 with RA836 led to increased IDS in these rats. Next, RA836 and its key metabolites were evaluated in vitro for inhibiting kidney transporters such as organic anion transporter (OAT)1, OAT3, and breast cancer resistance protein (BCRP). RA836 inhibits BCRP with an IC50 of 0.045 μM but shows no significant inhibition of OAT1 or OAT3. Finally, RA836 analogs with either potent or no inhibition of SLC6A19 and/or BCRP were synthesized and administered to rats fed a normal diet. Plasma and kidney samples were collected to quantify IDS using liquid chromatography–mass spectrometry. Neither a SLC6A19 inactive but potent BCRP inhibitor nor a SLC6A19 active but weak BCRP inhibitor raised IDS levels, whereas compounds inhibiting both transporters caused IDS accumulation in rat plasma and kidney, supporting the hypothesis that rat Bcrp contributes to the excretion of IDS. In summary, we identified that inhibiting Slc6a19 increases IDS formation, while simultaneously inhibiting Bcrp results in IDS accumulation in the kidney and plasma.
This is the first publication to decipher the mechanism for accumulation of indoxyl sulfate (IDS) (a uremic toxin) in rats via inhibition of both Slc6a19 and Bcrp. Specifically, inhibition of Slc6a19 in the gastrointestinal track increases IDS formation, and inhibition of Bcrp in the kidney blocks IDS excretion. Therefore, we should avoid inhibiting both solute carrier family 6 member 19 and breast cancer resistance protein simultaneously in humans to prevent accumulation of IDS, a known risk factor for cardiovascular disease, psychic anxiety, and mortality in chronic kidney disease patients.
Protein abundance data of drug-metabolizing enzymes and transporters (DMETs) are useful for scaling in vitro and animal data to humans for accurate prediction and interpretation of drug clearance and toxicity. Targeted DMET proteomics that relies on synthetic stable isotope-labeled surrogate peptides as calibrators is routinely used for the quantification of selected proteins; however, the technique is limited to the quantification of a small number of proteins. Although the global proteomics-based total protein approach (TPA) is emerging as a better alternative for large-scale protein quantification, the conventional TPA does not consider differential sequence coverage by identifying unique peptides across proteins. Here, we optimized the TPA approach by correcting protein abundance data by the sequence coverage, which was applied to quantify 54 DMETs for characterization of 1) differential tissue DMET abundance in the human liver, kidney, and intestine, and 2) interindividual variability of DMET proteins in individual intestinal samples (n = 13). Uridine diphosphate-glucuronosyltransferase 2B7 (UGT2B7), microsomal glutathione S-transferases (MGST1, MGST2, and MGST3) carboxylesterase 2 (CES2), and multidrug resistance-associated protein 2 (MRP2) were expressed in all three tissues, whereas, as expected, four cytochrome P450s (CYP3A4, CYP3A5, CYP2C9, and CYP4F2), UGT1A1, UGT2B17, CES1, flavin-containing monooxygenase 5, MRP3, and P-glycoprotein were present in the liver and intestine. The top three DMET proteins in individual tissues were: CES1>CYP2E1>UGT2B7 (liver), CES2>UGT2B17>CYP3A4 (intestine), and MGST1>UGT1A6>MGST2 (kidney). CYP3A4, CYP3A5, UGT2B17, CES2, and MGST2 showed high interindividual variability in the intestine. These data are relevant for enhancing in vitro to in vivo extrapolation of drug absorption and disposition and can be used to enhance the accuracy of physiologically based pharmacokinetic prediction of systemic and tissue concentration of drugs.
This study quantified the abundance and compositions of drug-metabolizing enzymes and transporters in pooled human liver, intestine, and kidney microsomes as well as individual intestinal microsomes using an optimized global proteomics approach. The data revealed large intertissue differences in the abundance of these proteins and high intestinal interindividual variability in the levels of cytochrome P450s (e.g., CYP3A4 and CYP3A5), uridine diphosphate-glucuronosyltransferase 2B17, carboxylesterase 2, and microsomal glutathione S-transferase 2. These data are applicable for the prediction of first-pass metabolism and tissue-specific drug clearance.
Although acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages toward an anti-inflammatory phenotype, yet signaling pathways regulated by macrophage-FABP5 have not been systematically profiled. We leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow-derived macrophages (BMDMs). Stable isotope labeling by amino acids-based analysis of M1 and M2 polarized wild-type and FABP5 knockout BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Toll-like receptor 2 (TLR2) emerged as a novel target of FABP5 and pharmacological FABP5 inhibition blunted TLR2-mediated activation of downstream pathways, ascribing a novel role for FABP5 in TLR2 signaling. This study represents a comprehensive characterization of the impact of FABP5 deletion on the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered pathways implicated in inflammatory responses, macrophage function, and TLR2 signaling. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling.
This research offers a comprehensive analysis of fatty acid binding protein 5 (FABP5) in macrophages during inflammatory response. The authors employed quantitative proteomic and phosphoproteomic approaches to investigate this utilizing bone marrow-derived macrophages that were M1 and M2 polarized using lipopolysaccharide with interferon and interleukin-4, respectively. This revealed multiple pathways related to inflammation that were differentially regulated due to the absence of FABP5. These findings underscore the potential therapeutic significance of macrophage-FABP5 as a candidate for addressing inflammatory-related diseases.
Chronic hypertension leads to injury and fibrosis in major organs. Fibroblast activation protein (FAP) is one of key molecules in tissue fibrosis, and 68Ga-labeled FAP inhibitor-46 (FAPI46) PET is a recently developed method for evaluating FAP. The aim of this study was to evaluate FAP expression and fibrosis in a hypertension model and to test the feasibility of 68Ga-FAPI46 PET in hypertension. Methods: Hypertension was induced in mice by angiotensin II infusion for 4 wk. 68Ga-FAPI46 biodistribution studies and PET scanning were conducted at 1, 2, and 4 wk after hypertension modeling, and uptake in the major organs was measured. The FAP expression and fibrosis formation of the heart and kidney tissues were analyzed and compared with 68Ga-FAPI46 uptake. Subgroups of the hypertension model underwent angiotensin receptor blocker administration and high-dose FAPI46 blocking, for comparison. As a preliminary human study, 68Ga-FAPI46 PET images of lung cancer patients were analyzed and compared between hypertension and control groups. Results: Uptake of 68Ga-FAPI46 in the heart and kidneys was significantly higher in the hypertension group than in the sham group as early as week 1 and decreased after week 2. The uptake was specifically blocked in the high-dose blocking study. Immunohistochemistry also revealed FAP expression in both heart and kidney tissues. However, overt fibrosis was observed in the heart, whereas it was absent from the kidneys. The angiotensin receptor blocker–treated group showed lower uptake in the heart and kidneys than did the hypertension group. In the pilot human study, renal uptake of 68Ga-FAPI46 significantly differed between the hypertension and control groups. Conclusion: In hypertension, FAP expression is increased in the heart and kidneys from the early phases and decreases over time. FAP expression appears to represent fibrosis activity preceding or underlying fibrotic tissue formation. 68Ga-FAPI46 PET has potential as an effective imaging method for evaluating FAP expression in progressive fibrosis by hypertension.
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1–10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems.
The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Computer simulations of how influenza A moves through human mucus found it is ideally configured to slide through the sticky stuff on its way to infecting cells
Computer simulations of how influenza A moves through human mucus found it is ideally configured to slide through the sticky stuff on its way to infecting cells
A study has found that proteins from meat and milk help prevent small intestine tumors by acting as protective antigens.
Protein bars, shakes, and powders are gaining popularity among adults, and many teens are following suit (!--ref1--). According to the University of Michigan Health C.
Cholesterol are of two types namely high-density lipoprotein cholesterol (HDL) and low-density lipoprotein cholesterol (LDL). HDL or good cholesterol
Mini-proteins are engineered protein capsule, bcapable of delivering targeted radiation dose directly to tumor cells expressing Nectin-4/b. Nectin-4
Lipoprotein(a) is a lipid particle and a common genetic cause of cardiovascular diseases. 20% of the world population carries this genetic risk factor (!--ref1--).
Using cryo-electron microscopy the atomic structure of the "APOBEC3G-Vif complex" has been unveiled by scientists (!--ref1--). h2 What is APOBEC3G
A recent discovery led by the University of Maryland could pave the way for new and enhanced treatments for Hutchinson-Gilford progeria syndrome (HGPS),
An international research team led by the University of Toronto has created an effective system using the iC. elegans/i nematode to identify compounds that can halt the growth of amyloid proteins.
A sensational medical discovery has been reported in Kurnool, where a four-year-old boy was detected with Lipoprotein Glomerulopathy (LPG), a disease
Low intake of essential nutrients can disrupt metabolism and increase the risk of insulin resistance
The platform supports different types of biomolecules, including monoclonal antibodies, biosimilars, bispecifics, antibody-drug conjugates, and other recombinant proteins