cte

Suspected serial arsonist arrested in Snyder

Snyder law enforcement officials last week arrested Daniel Allen Jr.




cte

Why choose phones with antibacterial surfaces?

In recent times, there has been a greater focus on hygiene in the workplace, likely spurred on by the COVID pandemic. While some germs are completely harmless, others can cause unpleasant illnesses. The chances of a germ surviving largely depends on the type of species, the surface where it is present, and other factors such as ambient temperature or solar radiation.




cte

Global survey of security pros finds 87% of organisations impacted by cyber threats they couldn’t detect or neutralise last year

Red Canary, the managed detection and response (MDR) provider, has released a new report, Security Operations Trends Report, providing insight into critical challenges facing modern cybersecurity teams. Partnering with independent research company Coleman Parkes, Red Canary surveyed 700 security leaders from the US, UK, New Zealand, Australia and Nordics. 




cte

Descartes’ Study Reveals Nearly 90% of Consumers’ Sustainable Home Delivery Choices Are Impacted by Economic Pressure

Descartes Systems Group has released findings from its 2024 Home Delivery Sustainability Report: The Environmentally Conscious Consumer Under Pressure survey, which examined online consumer sentiment of retailers’ sustainability practices around their delivery operations.




cte

Serial returners projected to account for £6.6bn of online returns in the UK in 2024

A silent crisis of ‘serial returns’ is eroding retail profit margins as uncovered in the Annual Returns Benchmark Report 2024* conducted by returns specialist ZigZag, in partnership with Retail Economics, accounting for 1 in 10 (11% of) online shoppers that make returns, are generating a quarter (24%) of all online non-food returns.




cte

Harnessing the power of connected data

Special Technology Report on Mobile Computing /Automatic Identification and Data Capture (AIDC).

RetailTechnologyReview.com.com spoke with leading spokespeople within the vendor and analyst community about current trends and developments within the automatic identification & data capture (AIDC)/mobile computing solutions space, including those related to modern supply chain challenges and omnichannel.




cte

New Look and ZigZag Global team up to introduce convenient drop-off kiosks at selected stores

New Look has rolled out return kiosks in partnership with ZigZag Global, provider of technology-driven retail returns solutions, across a selection of New Look stores.




cte

American infected with both COVID-19 and monkeypox at the same time

An American from California simultaneously contracted the coronavirus and monkeypox, reports NBC. Mitcho Thompson, from the town of Sebastopol, told the TV channel that he tested positive for COVID-19 at the end of June, and soon after noticed red spots on his back, legs, arms and neck. "The doctor was absolutely certain that I had monkeypox and that I had both," Thompson said.




cte

American University School of Communication Student Gabe Castro-Root is Selected for Exclusive Antarctic Expedition

American University's School of Communication (SOC) announced today that seasoned student journalist Gabe Castro-Root was selected to join an expedition to Antarctica where he will be reporting on the expedition.




cte

Abductees’ Families Call Off Anti-Pyongyang Balloon Launch in Border City

[Inter-Korea] :
A group representing families of South Koreans abducted by North Korea called off plans to send anti-Pyongyang propaganda leaflets north of the border, amid opposition from residents and the presence of law enforcement officers. Choi Seong-ryong, the head of the association, announced the decision Thursday ...

[more...]





cte

Exploiting fourth-generation synchrotron radiation for enzyme and photoreceptor characterization

(Time-resolved) macromolecular crystallography at the new ESRF-ID29 beamline is described.




cte

Density functional theory investigation of the phase transition, elastic and thermal characteristics for AuMTe2(M = Ga, In) chalcopyrite compounds

This study presents the first theoretical predictions of the phase transitions, elastic properties, and thermal behavior of AuMTe2 (M = Ga, In) chalcopyrite compounds. Using density functional theory and the quasi-harmonic Debye model, key mechanical and thermodynamic properties are analyzed, offering insights valuable for future experimental validation.




cte

Structural and biochemical characterization of the M405S variant of Desulfovibrio vulgaris formate dehydrogenase

Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation.




cte

Preliminary X-ray diffraction and ligand-binding analyses of the N-terminal domain of hypothetical protein Rv1421 from Mycobacterium tuberculosis H37Rv

Mycobacterium tuberculosis can reside and persist in deep tissues; latent tuberculosis can evade immune detection and has a unique mechanism to convert it into active disease through reactivation. M. tuberculosis Rv1421 (MtRv1421) is a hypothetical protein that has been proposed to be involved in nucleotide binding-related metabolism in cell-growth and cell-division processes. However, due to a lack of structural information, the detailed function of MtRv1421 remains unclear. In this study, a truncated N-terminal domain (NTD) of MtRv1421, which contains a Walker A/B-like motif, was purified and crystallized using PEG 400 as a precipitant. The crystal of MtRv1421-NTD diffracted to a resolution of 1.7 Å and was considered to belong to either the C-centered monoclinic space group C2 or the I-centered orthorhombic space group I222, with unit-cell parameters a = 124.01, b = 58.55, c = 84.87 Å, β = 133.12° or a = 58.53, b = 84.86, c = 90.52 Å, respectively. The asymmetric units of the C2 or I222 crystals contained two or one monomers, respectively. In terms of the binding ability of MtRv1421-NTD to various ligands, uridine diphosphate (UDP) and UDP-N-acetylglucosamine significantly increased the melting temperature of MtRv1421-NTD, which indicates structural stabilization through the binding of these ligands. Altogether, the results reveal that a UDP moiety may be required for the interaction of MtRv1421-NTD as a nucleotide-binding protein with its ligand.




cte

The structure of a pectin-active family 1 polysaccharide lyase from the marine bacterium Pseudoalteromonas fuliginea

Pseudoalteromonas fuliginea sp. PS47 is a recently identified marine bacterium that has extensive enzymatic machinery to metabolize polysaccharides, including a locus that targets pectin-like substrates. This locus contains a gene (locus tag EU509_03255) that encodes a pectin-degrading lyase, called PfPL1, that belongs to polysaccharide lyase family 1 (PL1). The 2.2 Å resolution X-ray crystal structure of PfPL1 reveals the compact parallel β-helix fold of the PL1 family. The back side of the core parallel β-helix opposite to the active site is a meandering set of five α-helices joined by lengthy loops. A comparison of the active site with those of other PL1 enzymes suggests a catalytic mechanism that is independent of metal ions, such as Ca2+, but that substrate recognition may require metal ions. Overall, this work provides the first structural insight into a pectinase of marine origin and the first structure of a PL1 enzyme in subfamily 2.




cte

Crystal structure of guanosine 5'-monophosphate synthetase from the thermophilic bacterium Thermus thermophilus HB8

Guanosine 5'-monophosphate (GMP) synthetase (GuaA) catalyzes the last step of GMP synthesis in the purine nucleotide biosynthetic pathway. This enzyme catalyzes a reaction in which xanthine 5'-monophosphate (XMP) is converted to GMP in the presence of Gln and ATP through an adenyl-XMP intermediate. A structure of an XMP-bound form of GuaA from the domain Bacteria has not yet been determined. In this study, the crystal structure of an XMP-bound form of GuaA from the thermophilic bacterium Thermus thermophilus HB8 (TtGuaA) was determined at a resolution of 2.20 Å and that of an apo form of TtGuaA was determined at 2.10 Å resolution. TtGuaA forms a homodimer, and the monomer is composed of three domains, which is a typical structure for GuaA. Disordered regions in the crystal structure were obtained from the AlphaFold2-predicted model structure, and a model with substrates (Gln, XMP and ATP) was constructed for molecular-dynamics (MD) simulations. The structural fluctuations of the TtGuaA dimer as well as the interactions between the active-site residues were analyzed by MD simulations.




cte

Characterization and calibration of DECTRIS PILATUS3 X CdTe 2M high-Z hybrid pixel detector for high-precision powder diffraction measurements

The performance of a high-Z photon-counting detector for powder diffraction measurements at high (>50 keV) energies is characterized, and the appropriate corrections are described in order to obtain data of higher quality than have previously been obtained from 2D detectors in these energy ranges.




cte

Similarity score for screening phase-retrieved maps in X-ray diffraction imaging – characterization in reciprocal space

X-ray diffraction imaging (XDI) is utilized for visualizing the structures of non-crystalline particles in material sciences and biology. In the structural analysis, phase-retrieval (PR) algorithms are applied to the diffraction amplitude data alone to reconstruct the electron density map of a specimen particle projected along the direction of the incident X-rays. However, PR calculations may not lead to good convergence because of a lack of diffraction patterns in small-angle regions and Poisson noise in X-ray detection. Therefore, the PR calculation is still a bottleneck for the efficient application of XDI in the structural analyses of non-crystalline particles. For screening maps from hundreds of trial PR calculations, we have been using a score and measuring the similarity between a pair of retrieved maps. Empirically, probable maps approximating the particle structures gave a score smaller than a threshold value, but the reasons for the effectiveness of the score are still unclear. In this study, the score is characterized in terms of the phase differences between the structure factors of the retrieved maps, the usefulness of the score in screening the maps retrieved from experimental diffraction patterns is demonstrated, and the effective resolution of similarity-score-selected maps is discussed.




cte

In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy

The use of hard X-ray transmission nano- and microdiffraction to perform in situ stress and strain measurements during deformation has recently been demonstrated and used to investigate many thin film systems. Here a newly commissioned sample environment based on a commercially available nanoindenter is presented, which is available at the NanoMAX beamline at the MAX IV synchrotron. Using X-ray nanoprobes of around 60–70 nm at 14–16 keV and a scanning step size of 100 nm, we map the strains, stresses, plastic deformation and fracture during nanoindentation of industrial coatings with thicknesses in the range of several micrometres, relatively strong texture and large grains. The successful measurements of such challenging samples illustrate broad applicability. The sample environment is openly accessible for NanoMAX beamline users through the MAX IV sample environment pool, and its capability can be further extended for specific purposes through additional available modules.




cte

Investigation of structural and reflective characteristics of short-period Mo/B4C multilayer X-ray mirrors

The results of a study of the structural and reflective characteristics of short-period multilayer X-ray mirrors based on Mo/B4C at wavelengths 1.54 Å, 9.89 Å and 17.59 Å are presented. The period of the samples varied in the range 8–35 Å. The average widths of the interfaces were ∼3.5 and 2.2 Å at one and the other boundaries, with a tendency for weak growth with any decrease in the period. The interlayer roughness was ∼1 Å. The research results indicate promising prospects for the use of multilayer Mo/B4C mirrors for synchrotron applications.




cte

ForMAX – a beamline for multiscale and multimodal structural characterization of hierarchical materials

The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small- and wide-angle X-ray scattering with full-field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research.




cte

Characterization of silicon pore optics for the NewAthena X-ray observatory in the PTB laboratory at BESSY II

The New Advanced Telescope for High ENergy Astrophysics (NewAthena) will be the largest space-based X-ray observatory ever built. It will have an effective area above 1.1 m2 at 1 keV, which corresponds to a polished mirror surface of about 300 m2 due to the grazing incidence. As such a mirror area is not achievable with an acceptable mass even with nested shells, silicon pore optics (SPO) technology will be utilized. In the PTB laboratory at BESSY II, two dedicated beamlines are in use for their characterization with monochromatic radiation at 1 keV and a low divergence well below 2 arcsec: the X-ray Pencil Beam Facility (XPBF 1) and the X-ray Parallel Beam Facility (XPBF 2.0), where beam sizes up to 8 mm × 8 mm are available while maintaining low beam divergence. This beamline is used for characterizing mirror stacks and controlling the focusing properties of mirror modules (MMs) – consisting of four mirror stacks – during their assembly at the beamline. A movable CCD based camera system 12 m from the MM registers the direct and the reflected beams. The positioning of the detector is verified by a laser tracker. The energy-dependent reflectance in double reflection through the pores of an MM with an Ir coating was measured at the PTB four-crystal monochromator beamline in the photon energy range 1.75 keV to 10 keV, revealing the effects of the Ir M edges. The measured reflectance properties are in agreement with the design values to achieve the envisaged effective area.




cte

X-ray scattering based scanning tomography for imaging and structural characterization of cellulose in plants

X-ray and neutron scattering have long been used for structural characterization of cellulose in plants. Due to averaging over the illuminated sample volume, these measurements traditionally overlooked the compositional and morphological heterogeneity within the sample. Here, a scanning tomographic imaging method is described, using contrast derived from the X-ray scattering intensity, for virtually sectioning the sample to reveal its internal structure at a resolution of a few micrometres. This method provides a means for retrieving the local scattering signal that corresponds to any voxel within the virtual section, enabling characterization of the local structure using traditional data-analysis methods. This is accomplished through tomographic reconstruction of the spatial distribution of a handful of mathematical components identified by non-negative matrix factorization from the large dataset of X-ray scattering intensity. Joint analysis of multiple datasets, to find similarity between voxels by clustering of the decomposed data, could help elucidate systematic differences between samples, such as those expected from genetic modifications, chemical treatments or fungal decay. The spatial distribution of the microfibril angle can also be analyzed, based on the tomographically reconstructed scattering intensity as a function of the azimuthal angle.




cte

New achievements in orbital angular momentum beam characterization using a Hartmann wavefront sensor and the Kirkpatrick–Baez active optical system KAOS

Advances in physics have been significantly driven by state-of-the-art technology, and in photonics and X-ray science this calls for the ability to manipulate the characteristics of optical beams. Orbital angular momentum (OAM) beams hold substantial promise in various domains such as ultra-high-capacity optical communication, rotating body detection, optical tweezers, laser processing, super-resolution imaging etc. Hence, the advancement of OAM beam-generation technology and the enhancement of its technical proficiency and characterization capabilities are of paramount importance. These endeavours will not only facilitate the use of OAM beams in the aforementioned sectors but also extend the scope of applications in diverse fields related to OAM beams. At the FERMI Free-Electron Laser (Trieste, Italy), OAM beams are generated either by tailoring the emission process on the undulator side or, in most cases, by coupling a spiral zone plate (SZP) in tandem with the refocusing Kirkpatrick–Baez active optic system (KAOS). To provide a robust and reproducible workflow to users, a Hartmann wavefront sensor (WFS) is used for both optics tuning and beam characterization. KAOS is capable of delivering both tightly focused and broad spots, with independent control over vertical and horizontal magnification. This study explores a novel non-conventional `near collimation' operational mode aimed at generating beams with OAM that employs the use of a lithographically manufactured SZP to achieve this goal. The article evaluates the mirror's performance through Hartmann wavefront sensing, offers a discussion of data analysis methodologies, and provides a quantitative analysis of these results with ptychographic reconstructions.




cte

In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy. Corrigendum

Errors in variable subscripts, equations and Fig. 8 in Section 3.2 of the article by Lotze et al. [(2024). J. Synchrotron Rad. 31, 42–52] are corrected.




cte

Characterizing electron-collecting CdTe for use in a 77 ns burst-rate imager

The Keck-PAD (pixel array detector) was developed at Cornell as a burst-rate imager capable of recording images from successive electron bunches (153 ns period) from the Advanced Photon Source (APS). Both Si and hole-collecting Schottky CdTe have been successfully bonded to this ASIC (application-specific integrated circuit) and used with this frame rate. The facility upgrades at the APS will lower the bunch period to 77 ns, which will require modifications to the Keck-PAD electronics to image properly at this reduced period. In addition, operation at high X-ray energies will require a different sensor material having a shorter charge collection time. For the target energy of 40 keV for this project, simulations have shown that electron-collecting CdTe should allow >90% charge collection within 35 ns. This collection time will be sufficient to sample the signal from one frame and prepare for the next. 750 µm-thick electron-collecting Schottky CdTe has been obtained from Acrorad and bonded to two different charge-integrating ASICs developed at Cornell, the Keck-PAD and the CU-APS-PAD. Carrier mobility has been investigated using the detector response to single X-ray bunches at the Cornell High Energy Synchrotron Source and to a pulsed optical laser. The tests indicate that the collection time will meet the requirements for 77 ns imaging.




cte

Synthesis, characterization and structural analysis of com­plexes from 2,2':6',2''-terpyridine derivatives with transition metals

The synthesis and structural characterization of three families of coordination com­plexes synthesized from 4'-phenyl-2,2':6',2''-terpyridine (8, Ph-TPY), 4'-(4-chloro­phen­yl)-2,2':6',2''-terpyridine (9, ClPh-TPY) and 4'-(4-meth­oxy­phen­yl)-2,2':6',2''-terpyridine (10, MeOPh-TPY) ligands with the divalent metals Co2+, Fe2+, Mn2+ and Ni2+ are reported. The com­pounds were synthesized from a 1:2 mixture of the metal and ligand, resulting in a series of com­plexes with the general formula [M(R-TPY)2](ClO4)2 (where M = Co2+, Fe2+, Mn2+ and Ni2+, and R-TPY = Ph-TPY, ClPh-TPY and MeOPh-TPY). The general formula and structural and supra­molecular features were determinated by single-crystal X-ray diffraction for bis­(4'-phenyl-2,2':6',2''-terpyridine)­nickel(II) bis­(per­chlo­rate), [Ni(C21H15N3)2](ClO4)2 or [Ni(Ph-TPY)2](ClO4)2, bis­[4'-(4-meth­oxy­phen­yl)-2,2':6',2''-terpyridine]­manganese(II) bis­(per­chlo­rate), [Mn(C22H17N3O)2](ClO4)2 or [Mn(MeOPh-TPY)2](ClO4)2, and bis­(4'-phenyl-2,2':6',2''-ter­py­ridine)­manganese(II) bis­(per­chlo­rate), [Mn(C21H15N3)2](ClO4)2 or [Mn(Ph-TPY)2](ClO4)2. In all three cases, the com­plexes present distorted octa­hedral coordination polyhedra and the crystal packing is determined mainly by weak C—H⋯π inter­actions. All the com­pounds (except for the Ni derivatives, for which FT–IR, UV–Vis and thermal analysis are reported) were fully characterized by spectroscopic (FT–IR, UV–Vis and NMR spectroscopy) and thermal (TGA–DSC, thermogravimetric analysis–differential scanning calorimetry) methods.




cte

Synthesis, spectroscopic and crystallographic characterization of various cymantrenyl thio­ethers [Mn{C5HxBry(SMe)z}(PPh3)(CO)2]

Starting from [Mn(C5H4Br)(PPh3)(CO)2] (1a), the cymantrenyl thio­ethers [Mn(C5H4SMe)(PPh3)(CO)2] (1b) and [Mn{C5H4–nBr(SMe)n}(PPh3)(CO)2] (n = 1 for com­pound 2, n = 2 for 3 and n = 3 for 4) were obtained, using either n-butyllithium (n-BuLi), lithium diiso­propyl­amide (LDA) or lithium tetra­methyl­piperidide (LiTMP) as base, followed by electrophilic quenching with MeSSMe. Stepwise consecutive reaction of [Mn(C5Br5)(PPh3)(CO)2] with n-BuLi and MeSSMe led finally to [Mn{C5(SMe)5}(PPh3)(CO)2] (11), only the fifth com­plex to be reported containing a perthiol­ated cyclo­penta­dienyl ring. The mol­ecular and crystal structures of 1b, 3, 4 and 11 were determined and were studied for the occurrence of S⋯S and S⋯Br inter­actions. It turned out that although some inter­actions of this type occurred, they were of minor importance for the arrangement of the mol­ecules in the crystal.




cte

3-[(Benzo-1,3-dioxol-5-yl)amino]-4-meth­oxy­cyclo­but-3-ene-1,2-dione: polymorphism and twinning of a precursor to an anti­mycobacterial squaramide

The title compound, 3-[(benzo-1,3-dioxol-5-yl)amino]-4-meth­oxy­cyclo­but-3-ene-1,2-dione, C12H9NO5 (3), is a precursor to an anti­mycobacterial squaramide. Block-shaped crystals of a monoclinic form (3-I, space group P21/c, Z = 8, Z' = 2) and needle-shaped crystals of a triclinic form (3-II, space group P-1, Z = 4, Z' = 2) were found to crystallize concomitantly. In both crystal forms, R22(10) dimers assemble through N—H⋯O=C hydrogen bonds. These dimers are formed from crystallographically unique mol­ecules in 3-I, but exhibit crystallographic Ci symmetry in 3-II. Twinning by pseudomerohedry was encountered in the crystals of 3-II. The conformations of 3 in the solid forms 3-I and 3-II are different from one another but are similar for the unique mol­ecules in each polymorph. Density functional theory (DFT) calculations on the free mol­ecule of 3 indicate that a nearly planar conformation is preferred.




cte

2,4-Di­aryl­pyrroles: synthesis, characterization and crystallographic insights

Three 2,4-di­aryl­pyrroles were synthesized starting from 4-nitro­butano­nes and the crystal structures of two derivatives were analysed. These are 4-(4-meth­oxy­phen­yl)-2-(thio­phen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromo­phen­yl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without sub­stituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray diffraction analysis. Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic space group Poverline{1} with Z = 6. Thus, herein we report the first crystal structure of a nitrosyl pyrrole. Inter­estingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with inter­stitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins.




cte

Crystal structures of two unexpected products of vicinal di­amines left to crystallize in acetone

Herein we report the crystal structures of two ben­zo­di­az­e­pines obtained by reacting N,N'-(4,5-di­amino-1,2-phenyl­ene)bis­(4-methyl­ben­zene­sul­fon­am­ide) (1) or 4,5-(4-methyl­ben­zene­sul­fon­am­ido)­ben­zene-1,2-diaminium dichloride (1·2HCl) with acetone, giving 2,2,4-trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pine, C26H30N4O4S2 (2), and 2,2,4-tri­methyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pin-1-ium chloride 0.3-hydrate, C26H31N4O4S2+·Cl−·0.3H2O (3). Compounds 2 and 3 were first obtained in attempts to recrystallize 1 and 1·2HCl using acetone as solvent. This solvent reacted with the vicinal di­amines present in the mol­ecular structures, forming a 5H-1,5-ben­zo­di­az­e­pine ring. In the crystal structure of 2, the seven-membered ring of ben­zo­di­az­e­pine adopts a boat-like conformation, while upon protonation, observed in the crystal structure of 3, it adopts an envelope-like conformation. In both crystalline com­pounds, the tosyl­amide N atoms are not in resonance with the arene ring, mainly due to hy­dro­gen bonds and steric hindrance caused by the large vicinal groups in the aromatic ring. At a supra­molecular level, the crystal structure is maintained by a combination of hy­dro­gen bonds and hydro­phobic inter­actions. In 2, amine-to-tosyl N—H⋯O and amide-to-imine N—H⋯N hy­dro­gen bonds can be observed. In contrast, in 3, the chloride counter-ion and water mol­ecule result in most of the hy­dro­gen bonds being of the amide-to-chloride and ammonium-to-chloride N—H⋯Cl types, while the amine inter­acts with the tosyl group, as seen in 2. In conclusion, we report the synthesis of 1, 1·2HCl and 2, as well as their chemical characterization. For 2, two synthetic methods are described, i.e. solvent-mediated crystallization and synthesis via a more efficient and cleaner route as a polycrystalline material. Salt 3 was only obtained as presented, with only a few crystals being formed.




cte

Multivalent hy­dro­gen-bonded architectures directed by self-com­plementarity between [Cu(2,2'-bi­imid­az­ole)] and malonate building blocks

The synthesis and structural characterization of four novel supra­molecular hy­dro­gen-bonded arrangements based on self-assembly from mol­ecular `[Cu(2,2'-bi­imid­az­ole)]' modules and malonate anions are pre­sent­ed, namely, tetra­kis­(2,2'-bi­imid­az­ole)di-μ-chlorido-dimal­on­atotricopper(II) penta­hydrate, [Cu3(C3H2O4)2Cl2(C6H6N4)4]·5H2O or [Cu(H2biim)2(μ-Cl)Cu0.5(mal)]2·5H2O, aqua­(2,2'-bi­imid­az­ole)­mal­on­atocopper(II) dihydrate, [Cu(C3H2O4)(C6H6N4)(H2O)]·2H2O or [Cu(H2biim)(mal)(H2O)]·2H2O, bis­[aqua­bis­(2,2'-bi­imid­az­ole)­cop­per(II)] di­mal­on­atodi­perchloratocopper(II) 2.2-hydrate, [Cu(C6H6N4)2(H2O)]2[Cu(C3H2O4)(ClO4)2]·2.2H2O or [Cu(H2biim)2(H2O)]2[Cu(mal)2(ClO4)2]·2.2H2O, and bis­(2,2'-bi­imid­az­ole)­copper(II) bis­[bis­(2,2'-bi­imid­az­ole)(2-carb­oxy­acetato)mal­on­atocopper(II)] tridecahydrate, [Cu(C6H6N4)2][Cu(C3H2O4)(C3H3O4)(C6H6N4)2]·13H2O or [Cu(H2biim)2][Cu(H2biim)2(Hmal)(mal)]2·13H2O. These as­sem­blies are characterized by self-com­plementary donor–acceptor mol­ecular inter­actions, demonstrating a recurrent and distinctive pattern of hy­dro­gen-bonding preferences among the carboxyl­ate, carb­oxy­lic acid and N—H groups of the coordinated 2,2'-bi­imid­az­ole and malonate ligands. Additionally, co­or­din­ation of the carboxyl­ate group with the metallic centre helps sustain re­mark­able supra­molecular assemblies, such as layers, helices, double helix columns or 3D channeled architectures, including mixed-metal com­plexes, into a single structure.




cte

AlphaFold-assisted structure determination of a bacterial protein of unknown function using X-ray and electron crystallography

Macromolecular crystallography generally requires the recovery of missing phase information from diffraction data to reconstruct an electron-density map of the crystallized molecule. Most recent structures have been solved using molecular replacement as a phasing method, requiring an a priori structure that is closely related to the target protein to serve as a search model; when no such search model exists, molecular replacement is not possible. New advances in computational machine-learning methods, however, have resulted in major advances in protein structure predictions from sequence information. Methods that generate predicted structural models of sufficient accuracy provide a powerful approach to molecular replacement. Taking advantage of these advances, AlphaFold predictions were applied to enable structure determination of a bacterial protein of unknown function (UniProtKB Q63NT7, NCBI locus BPSS0212) based on diffraction data that had evaded phasing attempts using MIR and anomalous scattering methods. Using both X-ray and micro-electron (microED) diffraction data, it was possible to solve the structure of the main fragment of the protein using a predicted model of that domain as a starting point. The use of predicted structural models importantly expands the promise of electron diffraction, where structure determination relies critically on molecular replacement.




cte

The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria

Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.




cte

Characterization of novel mevalonate kinases from the tardigrade Ramazzottius varieornatus and the psychrophilic archaeon Methanococcoides burtonii

Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases.




cte

The crystal structure of Shethna protein II (FeSII) from Azotobacter vinelandii suggests a domain swap

The Azotobacter vinelandii FeSII protein forms an oxygen-resistant complex with the nitrogenase MoFe and Fe proteins. FeSII is an adrenodoxin-type ferredoxin that forms a dimer in solution. Previously, the crystal structure was solved [Schlesier et al. (2016), J. Am. Chem. Soc. 138, 239–247] with five copies in the asymmetric unit. One copy is a normal adrenodoxin domain that forms a dimer with its crystallographic symmetry mate. The other four copies are in an `open' conformation with a loop flipped out exposing the 2Fe–2S cluster. The open and closed conformations were interpreted as oxidized and reduced, respectively, and the large conformational change in the open configuration allowed binding to nitrogenase. Here, the structure of FeSII was independently solved in the same crystal form. The positioning of the atoms in the unit cell is similar to the earlier report. However, the interpretation of the structure is different. The `open' conformation is interpreted as the product of a crystallization-induced domain swap. The 2Fe–2S cluster is not exposed to solvent, but in the crystal its interacting helix is replaced by the same helix residues from a crystal symmetry mate. The domain swap is complicated, as it is unusual in being in the middle of the protein rather than at a terminus, and it creates arrangements of molecules that can be interpreted in multiple ways. It is also cautioned that crystal structures should be interpreted in terms of the contents of the entire crystal rather than of one asymmetric unit.




cte

Crystallographic fragment-binding studies of the Mycobacterium tuberculosis trifunctional enzyme suggest binding pockets for the tails of the acyl-CoA substrates at its active sites and a potential substrate-channeling path between them

The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2β2 tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site. These studies also identified three additional CoA binding sites on the surface of MtTFE that are different from the active sites. It has been proposed that one of these additional sites could be of functional relevance for the substrate channeling (by surface crawling) of reaction intermediates between the three active sites. Here, 226 fragments were screened in a crystallographic fragment-binding study of MtTFE crystals, resulting in the structures of 16 MtTFE–fragment complexes. Analysis of the 121 fragment-binding events shows that the ECH active site is the `binding hotspot' for the tested fragments, with 41 binding events. The mode of binding of the fragments bound at the active sites provides additional insight into how the long-chain acyl moiety of the substrates can be accommodated at their proposed binding pockets. In addition, the 20 fragment-binding events between the active sites identify potential transient binding sites of reaction intermediates relevant to the possible channeling of substrates between these active sites. These results provide a basis for further studies to understand the functional relevance of the latter binding sites and to identify substrates for which channeling is crucial.




cte

Structural studies of β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus

β-Glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharo­lyticus (Bgl1) has been denoted as having an attractive catalytic profile for various industrial applications. Bgl1 catalyses the final step of in the decomposition of cellulose, an unbranched glucose polymer that has attracted the attention of researchers in recent years as it is the most abundant renewable source of reduced carbon in the biosphere. With the aim of enhancing the thermostability of Bgl1 for a broad spectrum of biotechnological processes, it has been subjected to structural studies. Crystal structures of Bgl1 and its complex with glucose were determined at 1.47 and 1.95 Å resolution, respectively. Bgl1 is a member of glycosyl hydrolase family 1 (GH1 superfamily, EC 3.2.1.21) and the results showed that the 3D structure of Bgl1 follows the overall architecture of the GH1 family, with a classical (β/α)8 TIM-barrel fold. Comparisons of Bgl1 with sequence or structural homologues of β-glucosidase reveal quite similar structures but also unique structural features in Bgl1 with plausible functional roles.




cte

The success rate of processed predicted models in molecular replacement: implications for experimental phasing in the AlphaFold era

The availability of highly accurate protein structure predictions from AlphaFold2 (AF2) and similar tools has hugely expanded the applicability of molecular replacement (MR) for crystal structure solution. Many structures can be solved routinely using raw models, structures processed to remove unreliable parts or models split into distinct structural units. There is therefore an open question around how many and which cases still require experimental phasing methods such as single-wavelength anomalous diffraction (SAD). Here, this question is addressed using a large set of PDB depositions that were solved by SAD. A large majority (87%) could be solved using unedited or minimally edited AF2 predictions. A further 18 (4%) yield straightforwardly to MR after splitting of the AF2 prediction using Slice'N'Dice, although different splitting methods succeeded on slightly different sets of cases. It is also found that further unique targets can be solved by alternative modelling approaches such as ESMFold (four cases), alternative MR approaches such as ARCIMBOLDO and AMPLE (two cases each), and multimeric model building with AlphaFold-Multimer or UniFold (three cases). Ultimately, only 12 cases, or 3% of the SAD-phased set, did not yield to any form of MR tested here, offering valuable hints as to the number and the characteristics of cases where experimental phasing remains essential for macromolecular structure solution.




cte

Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae

The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.




cte

RCSB Protein Data Bank: supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.




cte

A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging

Ultra-intense, ultra-fast X-ray free-electron lasers (XFELs) enable the imaging of single protein molecules under ambient temperature and pressure. A crucial aspect of structure reconstruction involves determining the relative orientations of each diffraction pattern and recovering the missing phase information. In this paper, we introduce a predicted model-aided algorithm for orientation determination and phase retrieval, which has been tested on various simulated datasets and has shown significant improvements in the success rate, accuracy and efficiency of XFEL data reconstruction.




cte

Structural characterization of TIR-domain signalosomes through a combination of structural biology approaches

The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches.




cte

A predicted model-aided one-step classification–multireconstruction algorithm for X-ray free-electron laser single-particle imaging

Ultrafast, high-intensity X-ray free-electron lasers can perform diffraction imaging of single protein molecules. Various algorithms have been developed to determine the orientation of each single-particle diffraction pattern and reconstruct the 3D diffraction intensity. Most of these algorithms rely on the premise that all diffraction patterns originate from identical protein molecules. However, in actual experiments, diffraction patterns from multiple different molecules may be collected simultaneously. Here, we propose a predicted model-aided one-step classification–multireconstruction algorithm that can handle mixed diffraction patterns from various molecules. The algorithm uses predicted structures of different protein molecules as templates to classify diffraction patterns based on correlation coefficients and determines orientations using a correlation maximization method. Tests on simulated data demonstrated high accuracy and efficiency in classification and reconstruction.




cte

Structure of MltG from Mycobacterium abscessus reveals structural plasticity between composed domains

MltG, a membrane-bound lytic transglycosyl­ase, has roles in terminating glycan polymerization in peptidoglycan and incorporating glycan chains into the cell wall, making it significant in bacterial cell-wall biosynthesis and remodeling. This study provides the first reported MltG structure from Mycobacterium abscessus (maMltG), a superbug that has high antibiotic resistance. Our structural and biochemical analyses revealed that MltG has a flexible peptidoglycan-binding domain and exists as a monomer in solution. Further, the putative active site of maMltG was disclosed using structural analysis and sequence comparison. Overall, this study contributes to our understanding of the transglycosyl­ation reaction of the MltG family, aiding the design of next-generation antibiotics targeting M. abscessus.




cte

Synthesis, structural and spectroscopic characterization of defect-rich forsterite as a representative phase of Martian regolith

Regolith draws intensive research attention because of its importance as the basis for fabricating materials for future human space exploration. Martian regolith is predicted to consist of defect-rich crystal structures due to long-term space weathering. The present report focuses on the structural differences between defect-rich and defect-poor forsterite (Mg2SiO4) – one of the major phases in Martian regolith. In this work, forsterites were synthesized using reverse strike co-precipitation and high-energy ball milling (BM). Subsequent post-processing was also carried out using BM to enhance the defects. The crystal structures of the samples were characterized by X-ray powder diffraction and total scattering using Cu and synchrotron radiation followed by Rietveld refinement and pair distribution function (PDF) analysis, respectively. The structural models were deduced by density functional theory assisted PDF refinements, describing both long-range and short-range order caused by defects. The Raman spectral features of the synthetic forsterites complement the ab initio simulation for an in-depth understanding of the associated structural defects.




cte

Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography

OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond–millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied pico­second–millisecond spectroscopic intermediates.




cte

Synthesis and characterization of an organic–inorganic hybrid crystal: 2[Co(en)3](V4O13)·4H2O

Organic–inorganic hybrid crystals have diverse functionalities, for example in energy storage and luminescence, due to their versatile structures. The synthesis and structural characterization of a new cobalt–vanadium-containing compound, 2[Co(en)3]3+(V4O13)6−·4H2O (1) is presented. The crystal structure of 1, consisting of [Co(en)3]3+ complexes and chains of corner-sharing (VO4) tetrahedra, was solved by single-crystal X-ray diffraction in the centrosymmetric space group P1. Phase purity of the bulk material was confirmed by infrared spectroscopy, scanning electron microscopy, elemental analysis and powder X-ray diffraction. The volume expansion of 1 was found to be close to 1% in the reported temperature range from 100 to 300 K, with a volume thermal expansion coefficient of 56 (2) × 10−6 K−1. The electronic band gap of 1 is 2.30 (1) eV, and magnetic susceptibility measurements showed that the compound exhibits a weak paramagnetic response down to 1.8 K, probably due to minor CoII impurities (<1%) on the CoIII site.




cte

A comprehensive characterization of thiophosgene in the solid state

Thio­phosgene is one of the principal C=S building blocks in synthetic chemistry. At room temperature, thio­phosgene is a red liquid. While its properties in the liquid and gaseous states are well known, a comprehensive characterization of thio­phosgene in its solid state is presented here. Differential scanning calorimetry shows that thio­phosgene forms a supercooled melt before rapidly crystallizing. Its melting point is 231.85 K (−41.3 °C). At 80 K, thio­phosgene crystallizes in space group P63/m [No. 174, a = b = 5.9645 (2), c = 6.2835 (3) Å, V = 193.59 (2) Å3]. The molecule shows a distinct rotational disorder: all S and Cl positions are of mixed occupancy and the disorder does not resolve at temperatures as low as 10 K, as was shown by neutron powder diffraction. Infrared, Raman and inelastic neutron scattering spectra were collected and assigned with the aid of quantum chemical calculations. A larger ordered structural model allowed for better agreement between the measured and calculated spectra, further indicating that disorder is an inherent feature of solid-state thio­phosgene.