inc

Crystal structure of catena-poly[[[bis­(3-oxo-1,3-di­phenyl­prop-1-enolato-κ2O,O')zinc(II)]-μ2-tris­[4-(pyridin-3-yl)phen­yl]amine-κ2N:N'] tetra­hydro­furan monosolvate]

The reaction of bis­(3-oxo-1,3-di­phenyl­prop-1-enolato-κ2O,O')zinc(II), [Zn(dbm)2], with tris­[4-(pyridin-3-yl)phen­yl]amine (T3PyA) in tetra­hydro­furan (THF) afforded the title crystalline coordination polymer, {[Zn(C15H11O2)2(C33H24N4)]·C4H8O}n. The asymmetric unit contains two independent halves of Zn(dbm)2, one T3PyA and one THF. Each ZnII atom is located on an inversion centre and adopts an elongated octa­hedral coordination geometry, ligated by four O atoms of two dbm ligands in equatorial positions and by two N atoms of pyridine moieties from two different bridging T3PyA ligands in axial positions. The crystal packing shows a one-dimensional polymer chain in which the two pyridyl groups of the T3PyA ligand bridge two independent Zn atoms of Zn(dbm)2. In the crystal, the coordination polymer chains are linked via C—H⋯π inter­actions into a sheet structure parallel to (010). The sheets are cross-linked via further C—H⋯π inter­actions into a three-dimensional network. The solvate THF mol­ecule shows disorder over two sets of atomic sites having occupancies of 0.631 (7) and 0.369 (7).




inc

Crystal structure and DFT study of a zinc xanthate complex

In the title compound, bis­(2-meth­oxy­ethyl xanthato-κS)(N,N,N',N'-tetra­methyl­ethylenedi­amine-κ2N,N')zinc(II) acetone hemisolvate, [Zn(C4H7O2S2)2(C6H16N2)]·0.5C3H6O, the ZnII ion is coordinated by two N atoms of the N,N,N',N'-tetra­methyl­ethylenedi­amine ligand and two S atoms from two 2-meth­oxy­ethyl xanthate ligands. The amine ligand is disordered over two orientations and was modelled with refined occupancies of 0.538 (6) and 0.462 (6). The mol­ecular structure features two C—H⋯O and two C—H⋯S intra­molecular inter­actions. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯S hydrogen bonds, forming a three-dimensional supra­molecular architecture. The mol­ecular structure was optimized using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level. The smallest HOMO–LUMO energy gap (3.19 eV) indicates the suitability of this crystal for optoelectronic applications. The mol­ecular electrostatic potential (MEP) further identifies the positive, negative and neutral electrostatic potential regions of the mol­ecules. Half a mol­ecule of disordered acetone was removed with the solvent-mask procedure in OLEX2 [Dolomanov et al. (2009). J. Appl. Cryst. 42, 339–341] and this contribition is included in the formula.




inc

An iridium complex with an unsupported Ir—Zn bond: di­iodido­(η5-penta­methyl­cyclo­penta­dien­yl)bis­(tri­methyl­phosphane)iridiumzinc(Ir—Zn) benzene hemisolvate

The title compound, [IrZnI2(C10H15)(C3H9P)2]·0.5C6H6 or [Cp*(PMe3)2Ir]-[ZnI2] (Cp* = cyclo-C5Me5) was obtained and characterized as its benzene solvate [Cp*(PMe3)2Ir]-[ZnI2]·0.5C6H6. The bimetallic complex in this structure contains the Lewis-acidic fragment ZnI2 bonded to the Lewis-basic fragment Cp*(PMe3)2Ir, with an Ir—Zn bond distance of 2.452 (1) Å. The compound was obtained by reacting [Cp*(PMe3)IrI2] with 2-Ad2Zn (2-Ad = 2-adamant­yl), resulting in the reduction of the IrIII complex and formation of the IrI–ZnII adduct. The crystal studied was a twin by non-merohedry with a refined BASF parameter of 0.223 (1).




inc

Crystal structure and Hirshfeld surface analysis of a zinc xanthate complex containing the 2,2'-bi­pyridine ligand

In the title compound, (2,2'-bi­pyridine-κ2N,N')bis­(2-meth­oxy­ethyl xanthato-κS)zinc(II), [Zn(C4H7O2S2)2(C10H8N2)], the ZnII ion is coordinated to two N atoms of the 2,2'-bi­pyridine ligand and two S atoms from two 2-meth­oxy­ethyl xanthate ligands. The ZnII ion lies on a crystallographic twofold rotation axis and has distorted tetra­hedral coordination geometry. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along the a-axis direction. Weak intra­molecular C—H⋯S hydrogen bonds are also observed. The inter­molecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (36.3%), followed by S⋯H/H⋯S (24.7%), C⋯H/H⋯C (15.1%), O⋯H/H⋯O (14.4%), N⋯H/H⋯N (4.1%) and C⋯C (2.9%).




inc

Crystal structure of the mixed methanol and ethanol solvate of bis­{3,4,5-trimeth­oxy-N'-[1-(pyridin-2-yl)ethyl­idene]benzohydrazidato}zinc(II)

The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex mol­ecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimeth­oxy-N'-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π–π inter­actions between the planar ligand moieties, which are further connected by C⋯O and C⋯C inter­actions. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) inter­actions.




inc

Crystal structure of {4-[10,15,20-tris­(4-meth­oxy­phen­yl)porphyrin-5-yl]benzyl 2-diazo­acetato}­zinc(II)

In the title compound, [Zn(C50H36N6O5)], the ZnII cation is chelated by four pyrrole N atoms of the porphyrinate anion and coordinated by a symmetry-generated keto O atom of the diazo­ester group in a distorted square-pyramidal geometry. The mean Zn—N(pyrrole) bond length is 2.058 Å and the Zn—O(diazo­ester) bond length is 2.179 (4) Å. The zinc cation is displaced by 0.2202 (13) Å from the N4C20 mean plane of the porphyrinate anion toward the O atom; the involvement of this atom leads to a [100] polymeric chain in the crystal.




inc

The crystal structures and Hirshfeld surface analyses of a cadmium(II) and a zinc(II) mononuclear complex of the new tetrakis-substituted pyrazine ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis

The whole mol­ecule of the cadmium(II) complex, di­iodido­{N,N',N'',N'''-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline)-κ3N2,N1,N6}cadmium(II), [CdI2(C36H40N6)], (I), of the ligand N,N',N'',N'''-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline) (L), is generated by a twofold rotation symmetry; the twofold axis bis­ects the cadmium atom and the nitro­gen atoms of the pyrazine ring. The ligand coordinates in a mono-tridentate manner and the cadmium atom has a fivefold CdN3I2 coordination environment with a distorted shape. In the zinc(II) complex, dichlorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline)-κ3N2,N1,N6}zinc(II) di­chloro­methane 0.6-solvate, [ZnCl2(C36H40N6)]·0.6CH2Cl2, (II), ligand L also coordinates in a mono-tridentate manner and the zinc atom has a fivefold ZnN3Cl2 coordination environment with a distorted shape. It crystallized as a partial di­chloro­methane solvate. In the crystal of I, the complex mol­ecules are linked by weak C—H⋯I contacts, forming ribbons propagating along [100]. In the crystal of II, the complex mol­ecules are linked by a series of C—H⋯π inter­actions, forming layers lying parallel to the (1overline{1}1) plane. In the crystals of both compounds there are metal–halide⋯π(pyrazine) contacts present. The Hirshfeld analyses confirm the importance of the C—H⋯halide contacts in the crystal packing of both compounds.




inc

Plasmodium vivax and human hexokinases share similar active sites but display distinct quaternary architectures

Malaria is a devastating disease caused by a protozoan parasite. It affects over 300 million individuals and results in over 400 000 deaths annually, most of whom are young children under the age of five. Hexokinase, the first enzyme in glucose metabolism, plays an important role in the infection process and represents a promising target for therapeutic intervention. Here, cryo-EM structures of two conformational states of Plasmodium vivax hexokinase (PvHK) are reported at resolutions of ∼3 Å. It is shown that unlike other known hexokinase structures, PvHK displays a unique tetrameric organization (∼220 kDa) that can exist in either open or closed quaternary conformational states. Despite the resemblance of the active site of PvHK to its mammalian counterparts, this tetrameric organization is distinct from that of human hexokinases, providing a foundation for the structure-guided design of parasite-selective antimalarial drugs.




inc

Structures of the substrate-binding protein YfeA in apo and zinc-reconstituted holo forms

In the structural biology of bacterial substrate-binding proteins (SBPs), a growing number of comparisons between substrate-bound and substrate-free forms of metal atom-binding (cluster A-I) SBPs have revealed minimal structural differences between forms. These observations contrast with SBPs that bind substrates such as amino acids or nucleic acids and may undergo >60° rigid-body rotations. Substrate transfer in these SBPs is described by a Venus flytrap model, although this model may not apply to all SBPs. In this report, structures are presented of substrate-free (apo) and reconstituted substrate-bound (holo) YfeA, a polyspecific cluster A-I SBP from Yersinia pestis. It is demonstrated that an apo cluster A-I SBP can be purified by fractionation when co-expressed with its cognate transporter, adding an alternative strategy to the mutagenesis or biochemical treatment used to generate other apo cluster A-I SBPs. The apo YfeA structure contains 111 disordered protein atoms in a mobile helix located in the flexible carboxy-terminal lobe. Metal binding triggers a 15-fold reduction in the solvent-accessible surface area of the metal-binding site and reordering of the 111 protein atoms in the mobile helix. The flexible lobe undergoes a 13.6° rigid-body rotation that is driven by a spring-hammer metal-binding mechanism. This asymmetric rigid-body rotation may be unique to metal atom-binding SBPs (i.e. clusters A-I, A-II and D-IV).




inc

Classification of grazing-incidence small-angle X-ray scattering patterns by convolutional neural network

Convolutional neural networks are useful for classifying grazing-incidence small-angle X-ray scattering patterns. They are also useful for classifying real experimental data.




inc

GIDVis: a comprehensive software tool for geometry-independent grazing-incidence X-ray diffraction data analysis and pole-figure calculations

GIDVis is a software package based on MATLAB specialized for, but not limited to, the visualization and analysis of grazing-incidence thin-film X-ray diffraction data obtained during sample rotation around the surface normal. GIDVis allows the user to perform detector calibration, data stitching, intensity corrections, standard data evaluation (e.g. cuts and integrations along specific reciprocal-space directions), crystal phase analysis etc. To take full advantage of the measured data in the case of sample rotation, pole figures can easily be calculated from the experimental data for any value of the scattering angle covered. As an example, GIDVis is applied to phase analysis and the evaluation of the epitaxial alignment of pentacene­quinone crystallites on a single-crystalline Au(111) surface.




inc

Improving grazing-incidence small-angle X-ray scattering–computed tomography images by total variation minimization

Grazing-incidence small-angle X-ray scattering (GISAXS) coupled with computed tomography (CT) has enabled the visualization of the spatial distribution of nanostructures in thin films. 2D GISAXS images are obtained by scanning along the direction perpendicular to the X-ray beam at each rotation angle. Because the intensities at the q positions contain nanostructural information, the reconstructed CT images individually represent the spatial distributions of this information (e.g. size, shape, surface, characteristic length). These images are reconstructed from the intensities acquired at angular intervals over 180°, but the total measurement time is prolonged. This increase in the radiation dosage can cause damage to the sample. One way to reduce the overall measurement time is to perform a scanning GISAXS measurement along the direction perpendicular to the X-ray beam with a limited interval angle. Using filtered back-projection (FBP), CT images are reconstructed from sinograms with limited interval angles from 3 to 48° (FBP-CT images). However, these images are blurred and have a low image quality. In this study, to optimize the CT image quality, total variation (TV) regularization is introduced to minimize sinogram image noise and artifacts. It is proposed that the TV method can be applied to downsampling of sinograms in order to improve the CT images in comparison with the FBP-CT images.




inc

BornAgain: software for simulating and fitting grazing-incidence small-angle scattering

BornAgain is a free and open-source multi-platform software framework for simulating and fitting X-ray and neutron reflectometry, off-specular scattering, and grazing-incidence small-angle scattering (GISAS). This paper concentrates on GISAS. Support for reflectometry and off-specular scattering has been added more recently, is still under intense development and will be described in a later publication. BornAgain supports neutron polarization and magnetic scattering. Users can define sample and instrument models through Python scripting. A large subset of the functionality is also available through a graphical user interface. This paper describes the software in terms of the realized non-functional and functional requirements. The web site https://www.bornagainproject.org/ provides further documentation.




inc

Disorder in La1−xBa1+xGaO4−x/2 ionic conductor: resolving the pair distribution function through insight from first-principles modeling

Ba excess in LaBaGaO4 triggers ionic conductivity together with structural disorder. A direct correlation is found between the density functional theory model energy and the pair distribution function fit residual.




inc

GIWAXS-SIIRkit: Scattering Intensity, Indexing, and Refraction Calculation Toolkit for Grazing Incidence Wide Angle X-ray Scattering of Organic Materials

A software package for Grazing Incident Wide Angle X-ray Scattering (GIWAXS) geared toward weakly ordered materials, including: scattering intensity normalization/uncertainty, scattering pattern indexing, and refractive shift correction.




inc

Fossils of tiny cupuladriid colonies reveal extinction can lag more than one million years after its cause

A new Smithsonian study that examines 10 million years of the evolution of tiny coral-like organisms called cupuladriid bryzoans has revealed that some species of this organism lingered on earth for more than one million years after the event that ultimately caused their extinction: the rising of the Isthmus of Panama.

The post Fossils of tiny cupuladriid colonies reveal extinction can lag more than one million years after its cause appeared first on Smithsonian Insider.




inc

Genetic surprise: Magnificent frigatebird living on Galapagos Islands is distinct species

Researchers at the Smithsonian Conservation Biology Institute conducted three different kinds of genetics tests and all yielded the same result—the Galapagos seabirds have been genetically different from the magnificent frigatebirds elsewhere for more than half a million years.

The post Genetic surprise: Magnificent frigatebird living on Galapagos Islands is distinct species appeared first on Smithsonian Insider.




inc

“Billy club” leaf beetle has been hiding in Smithsonian collections since 1959

A new species of Brazilian leaf beetle named Cachiporra extremaglobosa, (which translated means the “extremely globular billy club leaf beetle,”) was recently discovered by scientists at the Smithsonian’s National Museum of Natural History.

The post “Billy club” leaf beetle has been hiding in Smithsonian collections since 1959 appeared first on Smithsonian Insider.




inc

Methods for calculating species extinction rates overestimate extinction, says Smithsonian scientist

The most widely used methods for calculating species extinction rates are "fundamentally flawed" and overestimate extinction rates by as much as 160 percent, life scientists report May 19 in the journal Nature.

The post Methods for calculating species extinction rates overestimate extinction, says Smithsonian scientist appeared first on Smithsonian Insider.




inc

Fossil skull of an extinct toothed whale excavated from Panamanian sediments

A scientist from the Smithsonian Tropical Research Institute uses a pick to dislodge the fossil skull of an extinct toothed whale from sediments on the […]

The post Fossil skull of an extinct toothed whale excavated from Panamanian sediments appeared first on Smithsonian Insider.




inc

New study reveals desert tortoise is actually two distinct species

A new study shows that the desert tortoise, thought to be a single species for the last 150 years, is in fact two separate and distinct species, based on DNA evidence and biological and geographical distinctions.

The post New study reveals desert tortoise is actually two distinct species appeared first on Smithsonian Insider.




inc

Zoo celebrates birth of two Micronesian kingfishers, a species extinct in the wild

The Zoo’s Smithsonian Conservation Biology Institute in Front Royal, Va., is celebrating the recent hatching of two Micronesian kingfisher (Todiramphus c. cinnamominus) chicks, a female and male, born July 25 and Aug. 20, respectively.

The post Zoo celebrates birth of two Micronesian kingfishers, a species extinct in the wild appeared first on Smithsonian Insider.




inc

New 20-foot extinct species of crocodile discovered in Colombian coal mine

University of Florida and Smithsonian Tropical Research Institute scientists describe a new 20-foot extinct species of crocodile discovered in the same Colombian coal mine with Titanoboa, the world’s largest snake.

The post New 20-foot extinct species of crocodile discovered in Colombian coal mine appeared first on Smithsonian Insider.




inc

Fossil feathers from a Hawaiian cave help reveal lineage of extinct, flightless ibis

Ornithologists Carla Dove and Storrs Olson used 700- to 1,100-year-old feathers from a long extinct species of Hawaiian ibis to help determine the bird’s place in the ibis family tree. The feathers are the only known plumage of any of the prehistorically extinct birds that once inhabited the Hawaiian Islands.

The post Fossil feathers from a Hawaiian cave help reveal lineage of extinct, flightless ibis appeared first on Smithsonian Insider.




inc

Two new species of extinct camels discovered in Panama Canal excavations

The discovery of two new extinct camel species by scientists from the University of Florida and the Smithsonian is casting new light on the history of the tropics, a region containing more than half the world's biodiversity and some of its most important ecosystems.

The post Two new species of extinct camels discovered in Panama Canal excavations appeared first on Smithsonian Insider.




inc

Giant prehistoric turtle from Colombia chomped everything in sight–including crocodiles!

The specimen’s skull measures 24 centimeters, roughly the size of a regulation NFL football. The shell which was recovered nearby – and is believed to belong to the same species – measures 172 centimeters, or about 5 feet 7 inches, long.

The post Giant prehistoric turtle from Colombia chomped everything in sight–including crocodiles! appeared first on Smithsonian Insider.





inc

Today’s domestic turkeys are genetically distinct from wild ancestors

What scientists found was that the domestic turkey that ends up on the dinner table exhibits less genetic variation than its ancestral wild counterparts, which were first domesticated in 800 B.C..

The post Today’s domestic turkeys are genetically distinct from wild ancestors appeared first on Smithsonian Insider.




inc

Yellow pigment in penguin feathers is chemically distinct, spectroscopic studies reveal

Recent spectroscopic analysis of macaroni penguin (Eudyptes chrysolophus) crest feathers and king penguin (Aptenodytes patagonicus) neck feathers have shown they contain a yellow pigment that […]

The post Yellow pigment in penguin feathers is chemically distinct, spectroscopic studies reveal appeared first on Smithsonian Insider.




inc

Losing large mammals increases human risk from rodent-borne diseases

Save the Rhinos! Save the Elephants! Save the humans?! It seems strange to be connecting our own fate to that of wildlife but new research […]

The post Losing large mammals increases human risk from rodent-borne diseases appeared first on Smithsonian Insider.




inc

Too valuable to lose: Extinct relative reveals rarity of last two remaining monk seal species

A newly released study focusing on an extinct species, the Caribbean monk seal (Monachus tropicalis), has revealed just how evolutionarily unique its only two living […]

The post Too valuable to lose: Extinct relative reveals rarity of last two remaining monk seal species appeared first on Smithsonian Insider.




inc

Urban landscapes becoming increasingly bird-unfriendly

Tasty and easy to find, the heath hen was a favorite dish of America’s colonial settlers. This beautiful little bird, however, was no match for […]

The post Urban landscapes becoming increasingly bird-unfriendly appeared first on Smithsonian Insider.





inc

Did mystery worms cause world’s first mass extinction?

Contrary to popular imagery, massive volcanic eruptions or an asteroid impact may not have been the cause of the world’s first mass extinction. Rather, some […]

The post Did mystery worms cause world’s first mass extinction? appeared first on Smithsonian Insider.





inc

New Study Helps Smithsonian Scientists Prioritize Frogs at Risk of Extinction

Scientists at the Smithsonian Institution and partners have published a paper that will help them save Panamanian frog species from extinction due to a deadly […]

The post New Study Helps Smithsonian Scientists Prioritize Frogs at Risk of Extinction appeared first on Smithsonian Insider.




inc

Carotenoid pigments make extinct duck a rare bird indeed

The pink-headed duck was no lucky duck. In 1948 a single specimen of this waterfowl, Rhodonessa caryophyllacea, was donated to the Division of Birds of […]

The post Carotenoid pigments make extinct duck a rare bird indeed appeared first on Smithsonian Insider.




inc

In face of mass extinctions, Smithsonian’s Global Genome Initiative quietly saves world’s DNA

It is rare but not entirely uncommon to see a manatee swimming in the Atlantic waters of Maryland and Virginia. This one was dead, however, […]

The post In face of mass extinctions, Smithsonian’s Global Genome Initiative quietly saves world’s DNA appeared first on Smithsonian Insider.




inc

Smithsonian Discovery: 46-million-year-old beetle had zinc jaws

Remember the scene in Moonraker where Robert Kiel, as the steel-toothed character Jaws, bites through a tram cable that sends Roger Moore’s James Bond sprawling? […]

The post Smithsonian Discovery: 46-million-year-old beetle had zinc jaws appeared first on Smithsonian Insider.




inc

Extinct-in-the-Wild Antelope Return to the Grasslands of Chad

Thirty years after the scimitar-horned oyrx were driven to extinction, the desert antelope will return to the last-known place it existed: Chad’s Sahelian grasslands. The […]

The post Extinct-in-the-Wild Antelope Return to the Grasslands of Chad appeared first on Smithsonian Insider.




inc

New Species of Extinct River Dolphin Discovered in Smithsonian Collection

A fossil that has been in the collection of the Smithsonian’s National Museum of Natural History since it was discovered in 1951 is today helping […]

The post New Species of Extinct River Dolphin Discovered in Smithsonian Collection appeared first on Smithsonian Insider.




inc

Surprise: Distinctive new surgeonfish species makes an improbable debut

Sometimes there’s just no telling what will turn up at the local market. Fish biologist Jeff Williams of the Smithsonian’s National Museum of Natural History […]

The post Surprise: Distinctive new surgeonfish species makes an improbable debut appeared first on Smithsonian Insider.




inc

Indestructible jaws from ancient, extinct porcupine fish reveal new species

Covered in sharp spines, when harassed the porcupine fish inflates like a balloon. Think of a small soccer ball bristling all over with nails. Most predators […]

The post Indestructible jaws from ancient, extinct porcupine fish reveal new species appeared first on Smithsonian Insider.




inc

Scientists discover common sea nettle jellyfish is actually two distinct species

Chances are, if you’ve been stung by a jellyfish along the Chesapeake Bay it was by a sea nettle jellyfish–one of the most common and […]

The post Scientists discover common sea nettle jellyfish is actually two distinct species appeared first on Smithsonian Insider.




inc

With voices joined in chorus, giant otter families create a distinct sound signature

With a non-stop babble of hums, grunts and shrill squeals as they argue over fish and defend their territories, the Amazon’s giant otters are one […]

The post With voices joined in chorus, giant otter families create a distinct sound signature appeared first on Smithsonian Insider.





inc

Windows Server 2016: Audio In/Out through Remote Desktop to Thinclients




inc

After a nearly 20-year search, this Jamaican bird is probably extinct

The Jamaican golden swallow was last seen in 1982. From 1994 to 2012, Smithsonian ornithologist Gary Graves combed the island of Jamaica to document several […]

The post After a nearly 20-year search, this Jamaican bird is probably extinct appeared first on Smithsonian Insider.




inc

An efficient method for indexing grazing-incidence X-ray diffraction data of epitaxially grown thin films

Crystal structure identification of thin organic films entails a number of technical and methodological challenges. In particular, if molecular crystals are epitaxially grown on single-crystalline substrates a complex scenario of multiple preferred orientations of the adsorbate, several symmetry-related in-plane alignments and the occurrence of unknown polymorphs is frequently observed. In theory, the parameters of the reduced unit cell and its orientation can simply be obtained from the matrix of three linearly independent reciprocal-space vectors. However, if the sample exhibits unit cells in various orientations and/or with different lattice parameters, it is necessary to assign all experimentally obtained reflections to their associated individual origin. In the present work, an effective algorithm is described to accomplish this task in order to determine the unit-cell parameters of complex systems comprising different orientations and polymorphs. This method is applied to a polycrystalline thin film of the conjugated organic material 6,13-pentacene­quinone (PQ) epitaxially grown on an Ag(111) surface. All reciprocal vectors can be allocated to unit cells of the same lattice constants but grown in various orientations [sixfold rotational symmetry for the contact planes (102) and (102)]. The as-determined unit cell is identical to that reported in a previous study determined for a fibre-textured PQ film. Preliminary results further indicate that the algorithm is especially effective in analysing epitaxially grown crystallites not only for various orientations, but also if different polymorphs are present in the film.




inc

See what connections your Mac is making via Terminal [script included]