rog

Die Pyroxen-Andesite des Cserhat : eine petrographische und geologische Studie. Im Auftrage der Kgl. Ungarischen Naturwissenschaftlichen Gesellschaft / bearbeitet von Franz Schafarzik.

Budapest : Franklin-Verein, 1895.




rog

Die soziale Bekämpfung der Tuberkulose als Volkskrankheit in Europa und Amerika. Denkschrift, der Tuberkulose-Kommission der Pirogoff-Gesellschaft Russischer Aerzte vorgelegt und dem VIII. Pirogoff-Aerztekongress gewidmet / von Philipp M.Blumenthal.

Berlin : Hirschwald, 1905.




rog

Diseases in animals (tick fever) : progress report on teh reproductive forms of the micro-organism of tick fever, with some observations on the relationships and nomenclature of that disease (16th December, 1897) / by J. Sidney Hunt.

[Place of publication not identified] : [publisher not identified], [1897?]




rog

A dissertation on the best mode of treating spasmodic cholera ; with a view of its history and progress, from its origin in India, in 1817 down to the present time ; together with an appendix, containing a review of Dr McCormac's pamphlet, &c / by

London : Longman, Rees, Orme, Brown, and Green, 1834.




rog

Du traitement de l’éclampsie puerpérale par l’hydrate de chloral / par Gustave Froger.

Paris : V. Adrien Delahaye, 1879.




rog

What Happened to Students Left Behind as Florida Expanded Its Voucher Program?

The nation's largest tax-credit scholarship program doesn't seem to have hurt the academics of students who remain in public schools, a new study shows.




rog

The Anaiwan Language Revival Program

Over a period of 18 months, we worked with a reference group of nine language custodians from across NSW and the ACT to




rog

After Four Years, Progress Reported by 'Reconnecting McDowell'

Academic and health offerings have increased in McDowell County, W.Va., due to a private-public partnership.




rog

New Breed of After-School Programs Embrace English-Learners

A handful of districts and other groups are reshaping the after-school space to provide a wide range of social and linguistic supports for newcomer students.




rog

Michigan Administrator Tapped to Oversee Federal Special Education Programs

Laurie VanderPloeg, a longtime special education administrator, will take over the office of special education programs starting in November.




rog

New Breed of After-School Programs Embrace English-Learners

A handful of districts and other groups are reshaping the after-school space to provide a wide range of social and linguistic supports for newcomer students.




rog

Report on Harrogate visit / by L. S. P. Davidson.

England : Harrogate Corporation, Wells and Baths Department, 1945.




rog

Tierische Drogen im 18. Jahrhundert im Spiegel offizineller und nicht offizineller Literatur und ihre Bedeutung in der Gegenwart / Katja Susanne Moosmann ; mit einem Geleitwort von Christoph Friedrich.

Stuttgart : In Kommission: Wissenschaftliche Verlagsgesellschaft, 2019.




rog

Narcotic antagonists : naltrexone : progress report / editors, Demetrios Julius, Pierre Renault.

Rockville, Maryland : U.S. Dept. of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse and Mental Health Administration, 1976.




rog

Contemporary research in pain and analgesia, 1983 / editors, Roger M. Brown, Theodore M. Pinkert, Jacqueline P. Ludford.

Rockville, Maryland : National Institute on Drug Abuse, 1983.




rog

Neuroscience methods in drug abuse research / editors, Roger M. Brown, David P. Friedman, Yuth Nimit.

Rockville, Maryland : National Institute of Drug Abuse, 1985.




rog

Opiate receptor subtypes and brain function / editors, Roger M. Brown, Doris H. Clouet, David P. Friedman.

Rockville, Maryland : National Institute on Drug Abuse, 1986.




rog

Treatment process in methadone, residential, and outpatient drug free programs / Margaret Allison, Robert L. Hubbard, J. Valley Rachal.

Rockville, Maryland : National Institute on Drug Abuse, 1985.




rog

An evaluation of the California civil addict program / by William H. McGlothlin, M. Douglas Anglin, Bruce D. Wilson.

Rockville, Maryland : National Institute on Drug Abuse, 1977.




rog

Drug abuse treatment evaluation : strategies, progress, and prospects / editors Frank M. Tims, Jacqueline P. Ludford.

Springfield, Virginia. : National Technical Information Service, 1984.




rog

Evaluating drug information programs / Panel on the Impact of Information on Drug Use and Misuse, National Research Council ; prepared for National Institute of Mental Health.

Springfield, Virginia : National Technical Information Service, 1973.




rog

A survey of alcohol and drug abuse programs in the railroad industry / [Lyman C. Hitchcock, Mark S. Sanders ; Naval Weapons Support Center].

Washington, D.C. : Department of Transportation, Federal Railroad Administration, 1976.




rog

Evaluation of treatment programs for abusers of nonopiate drugs : problems and approaches. Volume 3 / Wynne Associates for Division of Research, National Institute on Drug Abuse, Alcohol, Drug Abuse and Mental Health Administration, Department of Health,

Washington, D.C. : Wynne Associates, [1974]




rog

O problema do abuso de drogas prevenção através investigação, pesquisa e educação / Murillo de Macedo Pereira, Vera Kühn de Macedo Pereira.

São Paulo : Governo do Estado de Sao Paulo, Secretaria da Segurança Pública, 1975.




rog

A pesquisa sobre o problema do abuso de drogas / Murillo de Macedo Pereira.

São Paulo : Serviço Grafíco da Secretaria da Segurança Pública, 1976.




rog

Evaluation of the 'progress' pilot projects "from recovery into work" / by Stephen Burniston, Jo Cutter, Neil Shaw, Michael Dodd.

York : York Consulting, 2001.




rog

Weighted Message Passing and Minimum Energy Flow for Heterogeneous Stochastic Block Models with Side Information

We study the misclassification error for community detection in general heterogeneous stochastic block models (SBM) with noisy or partial label information. We establish a connection between the misclassification rate and the notion of minimum energy on the local neighborhood of the SBM. We develop an optimally weighted message passing algorithm to reconstruct labels for SBM based on the minimum energy flow and the eigenvectors of a certain Markov transition matrix. The general SBM considered in this paper allows for unequal-size communities, degree heterogeneity, and different connection probabilities among blocks. We focus on how to optimally weigh the message passing to improve misclassification.




rog

Mosquito Control Program




rog

Reliability estimation in a multicomponent stress-strength model for Burr XII distribution under progressive censoring

Raj Kamal Maurya, Yogesh Mani Tripathi.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 345--369.

Abstract:
We consider estimation of the multicomponent stress-strength reliability under progressive Type II censoring under the assumption that stress and strength variables follow Burr XII distributions with a common shape parameter. Maximum likelihood estimates of the reliability are obtained along with asymptotic intervals when common shape parameter may be known or unknown. Bayes estimates are also derived under the squared error loss function using different approximation methods. Further, we obtain exact Bayes and uniformly minimum variance unbiased estimates of the reliability for the case common shape parameter is known. The highest posterior density intervals are also obtained. We perform Monte Carlo simulations to compare the performance of proposed estimates and present a discussion based on this study. Finally, two real data sets are analyzed for illustration purposes.




rog

A Bayesian sparse finite mixture model for clustering data from a heterogeneous population

Erlandson F. Saraiva, Adriano K. Suzuki, Luís A. Milan.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 323--344.

Abstract:
In this paper, we introduce a Bayesian approach for clustering data using a sparse finite mixture model (SFMM). The SFMM is a finite mixture model with a large number of components $k$ previously fixed where many components can be empty. In this model, the number of components $k$ can be interpreted as the maximum number of distinct mixture components. Then, we explore the use of a prior distribution for the weights of the mixture model that take into account the possibility that the number of clusters $k_{mathbf{c}}$ (e.g., nonempty components) can be random and smaller than the number of components $k$ of the finite mixture model. In order to determine clusters we develop a MCMC algorithm denominated Split-Merge allocation sampler. In this algorithm, the split-merge strategy is data-driven and was inserted within the algorithm in order to increase the mixing of the Markov chain in relation to the number of clusters. The performance of the method is verified using simulated datasets and three real datasets. The first real data set is the benchmark galaxy data, while second and third are the publicly available data set on Enzyme and Acidity, respectively.




rog

Simple tail index estimation for dependent and heterogeneous data with missing values

Ivana Ilić, Vladica M. Veličković.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 1, 192--203.

Abstract:
Financial returns are known to be nonnormal and tend to have fat-tailed distribution. Also, the dependence of large values in a stochastic process is an important topic in risk, insurance and finance. In the presence of missing values, we deal with the asymptotic properties of a simple “median” estimator of the tail index based on random variables with the heavy-tailed distribution function and certain dependence among the extremes. Weak consistency and asymptotic normality of the proposed estimator are established. The estimator is a special case of a well-known estimator defined in Bacro and Brito [ Statistics & Decisions 3 (1993) 133–143]. The advantage of the estimator is its robustness against deviations and compared to Hill’s, it is less affected by the fluctuations related to the maximum of the sample or by the presence of outliers. Several examples are analyzed in order to support the proofs.




rog

Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A Multi-Agent Deep Reinforcement Learning Approach. (arXiv:2003.02157v2 [physics.soc-ph] UPDATED)

In recent years, multi-access edge computing (MEC) is a key enabler for handling the massive expansion of Internet of Things (IoT) applications and services. However, energy consumption of a MEC network depends on volatile tasks that induces risk for energy demand estimations. As an energy supplier, a microgrid can facilitate seamless energy supply. However, the risk associated with energy supply is also increased due to unpredictable energy generation from renewable and non-renewable sources. Especially, the risk of energy shortfall is involved with uncertainties in both energy consumption and generation. In this paper, we study a risk-aware energy scheduling problem for a microgrid-powered MEC network. First, we formulate an optimization problem considering the conditional value-at-risk (CVaR) measurement for both energy consumption and generation, where the objective is to minimize the loss of energy shortfall of the MEC networks and we show this problem is an NP-hard problem. Second, we analyze our formulated problem using a multi-agent stochastic game that ensures the joint policy Nash equilibrium, and show the convergence of the proposed model. Third, we derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based asynchronous advantage actor-critic (A3C) algorithm with shared neural networks. This method mitigates the curse of dimensionality of the state space and chooses the best policy among the agents for the proposed problem. Finally, the experimental results establish a significant performance gain by considering CVaR for high accuracy energy scheduling of the proposed model than both the single and random agent models.




rog

Progress in botany.

9783030363277 (electronic bk.)





rog

A semiparametric modeling approach using Bayesian Additive Regression Trees with an application to evaluate heterogeneous treatment effects

Bret Zeldow, Vincent Lo Re III, Jason Roy.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1989--2010.

Abstract:
Bayesian Additive Regression Trees (BART) is a flexible machine learning algorithm capable of capturing nonlinearities between an outcome and covariates and interactions among covariates. We extend BART to a semiparametric regression framework in which the conditional expectation of an outcome is a function of treatment, its effect modifiers, and confounders. The confounders are allowed to have unspecified functional form, while treatment and effect modifiers that are directly related to the research question are given a linear form. The result is a Bayesian semiparametric linear regression model where the posterior distribution of the parameters of the linear part can be interpreted as in parametric Bayesian regression. This is useful in situations where a subset of the variables are of substantive interest and the others are nuisance variables that we would like to control for. An example of this occurs in causal modeling with the structural mean model (SMM). Under certain causal assumptions, our method can be used as a Bayesian SMM. Our methods are demonstrated with simulation studies and an application to dataset involving adults with HIV/Hepatitis C coinfection who newly initiate antiretroviral therapy. The methods are available in an R package called semibart.




rog

Austin-Area District Looks for Digital/Blended Learning Program; Baltimore Seeks High School Literacy Program

The Round Rock Independent School District in Texas is looking for a digital curriculum and blended learning program. Baltimore is looking for a comprehensive high school literacy program.

The post Austin-Area District Looks for Digital/Blended Learning Program; Baltimore Seeks High School Literacy Program appeared first on Market Brief.



  • Purchasing Alert
  • Curriculum / Digital Curriculum
  • Educational Technology/Ed-Tech
  • Learning Management / Student Information Systems
  • Procurement / Purchasing / RFPs

rog

Additive Multivariate Gaussian Processes for Joint Species Distribution Modeling with Heterogeneous Data

Jarno Vanhatalo, Marcelo Hartmann, Lari Veneranta.

Source: Bayesian Analysis, Volume 15, Number 2, 415--447.

Abstract:
Species distribution models (SDM) are a key tool in ecology, conservation and management of natural resources. Two key components of the state-of-the-art SDMs are the description for species distribution response along environmental covariates and the spatial random effect that captures deviations from the distribution patterns explained by environmental covariates. Joint species distribution models (JSDMs) additionally include interspecific correlations which have been shown to improve their descriptive and predictive performance compared to single species models. However, current JSDMs are restricted to hierarchical generalized linear modeling framework. Their limitation is that parametric models have trouble in explaining changes in abundance due, for example, highly non-linear physical tolerance limits which is particularly important when predicting species distribution in new areas or under scenarios of environmental change. On the other hand, semi-parametric response functions have been shown to improve the predictive performance of SDMs in these tasks in single species models. Here, we propose JSDMs where the responses to environmental covariates are modeled with additive multivariate Gaussian processes coded as linear models of coregionalization. These allow inference for wide range of functional forms and interspecific correlations between the responses. We propose also an efficient approach for inference with Laplace approximation and parameterization of the interspecific covariance matrices on the Euclidean space. We demonstrate the benefits of our model with two small scale examples and one real world case study. We use cross-validation to compare the proposed model to analogous semi-parametric single species models and parametric single and joint species models in interpolation and extrapolation tasks. The proposed model outperforms the alternative models in all cases. We also show that the proposed model can be seen as an extension of the current state-of-the-art JSDMs to semi-parametric models.




rog

A Tale of Two Parasites: Statistical Modelling to Support Disease Control Programmes in Africa

Peter J. Diggle, Emanuele Giorgi, Julienne Atsame, Sylvie Ntsame Ella, Kisito Ogoussan, Katherine Gass.

Source: Statistical Science, Volume 35, Number 1, 42--50.

Abstract:
Vector-borne diseases have long presented major challenges to the health of rural communities in the wet tropical regions of the world, but especially in sub-Saharan Africa. In this paper, we describe the contribution that statistical modelling has made to the global elimination programme for one vector-borne disease, onchocerciasis. We explain why information on the spatial distribution of a second vector-borne disease, Loa loa, is needed before communities at high risk of onchocerciasis can be treated safely with mass distribution of ivermectin, an antifiarial medication. We show how a model-based geostatistical analysis of Loa loa prevalence survey data can be used to map the predictive probability that each location in the region of interest meets a WHO policy guideline for safe mass distribution of ivermectin and describe two applications: one is to data from Cameroon that assesses prevalence using traditional blood-smear microscopy; the other is to Africa-wide data that uses a low-cost questionnaire-based method. We describe how a recent technological development in image-based microscopy has resulted in a change of emphasis from prevalence alone to the bivariate spatial distribution of prevalence and the intensity of infection among infected individuals. We discuss how statistical modelling of the kind described here can contribute to health policy guidelines and decision-making in two ways. One is to ensure that, in a resource-limited setting, prevalence surveys are designed, and the resulting data analysed, as efficiently as possible. The other is to provide an honest quantification of the uncertainty attached to any binary decision by reporting predictive probabilities that a policy-defined condition for action is or is not met.




rog

Two-Sample Instrumental Variable Analyses Using Heterogeneous Samples

Qingyuan Zhao, Jingshu Wang, Wes Spiller, Jack Bowden, Dylan S. Small.

Source: Statistical Science, Volume 34, Number 2, 317--333.

Abstract:
Instrumental variable analysis is a widely used method to estimate causal effects in the presence of unmeasured confounding. When the instruments, exposure and outcome are not measured in the same sample, Angrist and Krueger ( J. Amer. Statist. Assoc. 87 (1992) 328–336) suggested to use two-sample instrumental variable (TSIV) estimators that use sample moments from an instrument-exposure sample and an instrument-outcome sample. However, this method is biased if the two samples are from heterogeneous populations so that the distributions of the instruments are different. In linear structural equation models, we derive a new class of TSIV estimators that are robust to heterogeneous samples under the key assumption that the structural relations in the two samples are the same. The widely used two-sample two-stage least squares estimator belongs to this class. It is generally not asymptotically efficient, although we find that it performs similarly to the optimal TSIV estimator in most practical situations. We then attempt to relax the linearity assumption. We find that, unlike one-sample analyses, the TSIV estimator is not robust to misspecified exposure model. Additionally, to nonparametrically identify the magnitude of the causal effect, the noise in the exposure must have the same distributions in the two samples. However, this assumption is in general untestable because the exposure is not observed in one sample. Nonetheless, we may still identify the sign of the causal effect in the absence of homogeneity of the noise.




rog

Genomic Analysis of Reactive Astrogliosis

Jennifer L. Zamanian
May 2, 2012; 32:6391-6410
Neurobiology of Disease




rog

Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome

Irune Diaz-Aparicio
Feb 12, 2020; 40:1453-1482
Development Plasticity Repair




rog

Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry

Brian Zingg
Apr 15, 2020; 40:3250-3267
Systems/Circuits




rog

Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex

Michele Bellesi
May 24, 2017; 37:5263-5273
Cellular




rog

Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor Cells, and Postmitotic Neurons in Developing Neocortex

Chris Englund
Jan 5, 2005; 25:247-251
BRIEF COMMUNICATION




rog

Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation

HG Kuhn
Mar 15, 1996; 16:2027-2033
Articles




rog

Afterschool Program Instructors




rog

a frog saying "get out" - :frogon:






rog

Academy launches online events programme