mit

Systems and methods for intermittently colored yarn

Intermittently colored yarns having an intermittent and random dye spacing pattern, and systems and methods of making the same, are disclosed. Such intermittently colored yarns exhibit higher quality and lower manufacturing costs over the known intermittently colored yarns. The intermittent coloring takes place while the yarn is in caterpillar form. Carpets made from such intermittently colored yarns exhibit enhanced aesthetics over carpets made from known intermittently colored yarns. Alternatively, a stain resist, colorless base dye, or bleaching agent can be applied in the same intermittent and random spacing pattern to the intermittently colored yarns prior to subsequent dyeing. This creates a mirror image like color effect to the resulting yarn.




mit

LUMINANCE CONTROLLER AND ORGANIC LIGHT EMITTING DISPLAY DEVICE HAVING THE SAME

A luminance controller according to example embodiments includes a gamma set selector to select a reference gamma set from among first through N-th gamma sets respectively corresponding to first through N-th reference luminances, based on a target luminance of a display panel; an initialization voltage selector to select an initialization voltage corresponding to the reference gamma set, from among first through N-th initialization voltage offsets respectively corresponding to the first through N-th gamma sets; a common voltage selector to select a common voltage corresponding to the reference gamma set from among first through N-th common voltage offsets respectively corresponding to the first through N-th gamma sets; and a determiner to determine a target initialization voltage based on the target luminance and the initialization voltage, and to determine a target common voltage based on the target luminance and the common voltage.




mit

ORGANIC LIGHT-EMITTING DIODE DISPLAY DEVICE AND DRIVING METHOD THEREOF

The present invention discloses an organic light-emitting diode display device and a driving method thereof. The device includes: a plurality of pixels, including a plurality of organic light-emitting diodes and a plurality of drive transistors for supplying drive currents to the organic light-emitting diodes; a data driver, configured to transmit corresponding data signals to the plurality of pixels via a plurality of data lines; and a pre-charge circuit, configured to pre-charge voltage signals reserved in a previous time sequence to an initial voltage, the initial voltage being less than or equal to a minimum voltage of the data signals, wherein before the data driver transmits the corresponding data signals to the plurality of pixels, the pre-charge circuit acts to pre-charge the voltage signals reserved in the previous time sequence by the plurality of pixels to be less than or equal to the minimum voltage of the data signals.




mit

ORGANIC LIGHT-EMITTING DIODES TOUCH DISPLAY PANEL AND ELECTRONIC DEVICE USING SAME

An OLED touch display panel capable of detecting and reacting to touches on the display includes a signal sending element emitting ultrasonic signals, a driving layer configured to provide display driving signals, a light-emitting element configured to receive the display driving signals and emit light, and a signal receiving element configured for receiving reflected ultrasonic signals. The light-emitting element includes a plurality of light-emitting units and a plurality of black matrixes. Every two adjacent light-emitting units are separated from each other by one of the black matrixes. The signal receiving element includes a plurality of thin film transistor units arranged in a matrix. Each thin film transistor unit is formed on one of the black matrixes.




mit

Flow limiter assembly for a fuel system of an internal combustion engine

A flow limiter for a fuel system is provided. The flow limiter includes a self-contained portion that enables testing of the flow limiter prior to assembly into a fuel system. A housing of the flow limiter is arranged to provide reduced or no pressure differential across a wall of the housing, permitting the housing to be reduced in size and thickness and providing improved consistency of operation.




mit

COMMUNICATION DEVICE AND A METHOD THEREIN FOR TRANSMITTING DATA INFORMATION AT FIXED TIME INSTANTS IN A RADIO COMMUNICATIONS NETWORK

A first communication device and method therein for transmitting data information at fixed time instants on a radio channel to a second communication device in a radio communications network. First, the first communication device determines that the radio channel is available for transmitting data information to the second communication device during a time period determined by the first communication device. Then, the first communication device transmits a preamble on the available radio channel after the time period. The first communication device thereafter transmits the data information on the available radio channel to the second communication device at a next fixed time instant following the transmission of the preamble.




mit

APPARATUS AND METHOD FOR TRANSMITTING/RECEIVING DATA IN COMMUNICATION SYSTEM

A data transmission apparatus in a communication system includes a reception unit configured to receive terminal information from a plurality of terminals through a new frequency band for transmission and reception of data between the plurality of terminals and an AP (access point); a determination unit configured to determine access timing of the terminals to the AP by using the terminal information, and generate terminal access information including information on the access timing; and a transmission unit configured to transmit the terminal access information and beacon frames to the terminals, wherein the terminals access the AP and transmit data frames to the AP, at the access timing based on the beacon frames.




mit

METHOD FOR TRANSMITTING AND RECEIVING FRAME IN WIRELESS LOCAL AREA NETWORK SYSTEM AND APPARATUS FOR THE SAME

Disclosed are a method for transmitting and receiving a frame in a wireless local area network (WLAN) system and an apparatus for the same. A method for generating interference/non-interference station lists includes receiving a first frame from a second station, acquiring a receiver address of the first frame from the first frame, and setting, based on whether to receive a second frame that is a response to the first frame from a third station indicated by the receiver address within a preset time from a time when the first frame has been received, the third station as an interference station or a non-interference station. Therefore, the performance of a communication system may be improved.




mit

ELECTROMECHANICAL ACTUATOR COMPRISING A MECHANICAL ROLLER TORQUE LIMITER

An electromechanical actuator comprising a body and an electric motor driving at least one motion transmission element connected to the body via a brake device, a mechanical torque limiter with rollers, and a unidirectional transmission member, the brake device including an electrical activator member so that when the activator member is powered, the unidirectional transmission member is released relative to the body, and when the activator member is not powered, the unidirectional transmission member is secured to the body and opposes pivoting of the transmission element in one direction of rotation up to a maximum transmissible torque defined by the torque limiter.




mit

Power Transmitting Apparatus

A power transmitting apparatus has a clutch member and a pressure member. The cam surfaces of the pressure-contact assist cam face each other. The cam surfaces of the back torque limiter cam face each other. A receiving portion for a clutch spring (10) on the pressure member (5) side has a receiving member (11) separate from the pressure member (5). A first cam surface (C1) and a second cam surface (C2), constituting the back torque limiter cam, are, respectively, formed on the receiving member (11) and the clutch member (4). A third cam surface (C3) and a fourth cam surface (C4), constituting the pressure-contact assist cam, are, respectively, formed on the pressure member (5) and the clutch member (4).




mit

INTEGRATED TORQUE LIMITER/NO-BACK DEVICE

An integrated torque limiter/no-back device for use in an actuator with an input shaft, an output, and a gear reduction. The device includes an input ramp, an output ramp coupled to the gear reduction, a combined ramp disposed between the input ramp and the output ramp, a first plurality of balls arranged between the input ramp and the combined ramp, a second plurality of balls arranged between the combined ramp and the output ramp, a pin, and a brake. The pin extends from the input ramp to the combined ramp and coupled to the input shaft. The combined ramp, the output ramp, and the second plurality of balls therebetween are configured to operate as a torque limiter by causing the combined ramp and the output ramp to separate and the output ramp to engage the brake when the torque from the input shaft exceeds a torque threshold.




mit

Mitigation of radiation induced attenuation

A DTS system resistant to radiation induced attenuation losses during the service life of an installation at both low and high temperatures using matched multi-wavelength distributed temperature sensing automatic calibration technology in combination with designed Pure Silica Core (PSC) optical fibers and an in process photo bleaching method provided by the light sources of the distributed temperature sensing system.




mit

SYSTEM AND METHOD FOR A REDUCED HARMONIC CONTENT TRANSMITTER FOR WIRELESS COMMUNICATION

A system includes a voltage-controlled oscillator (VCO) to generate an output signal based on an input voltage and a multi-stage delay network to receive the output signal from the VCO. Each stage of the delay network produces a phase-shifted output signal. The system includes a multi-stage digital-to-analog converter (DAC) network, where each stage of the DAC network is associated with a corresponding stage of the delay network. Each stage of the DAC network receives the phase-shifted output signal from its corresponding stage of the delay network and generates a weighted output signal based on the received phase-shifted output signal. The DAC network combines the weighted output signal of each stage. A weighting factor for each stage of the DAC network is selected to reduce harmonic content of the combination of weighted output signals.




mit

TRANSMITTER

A transmitter includes: a main pull-up driver suitable for pull-up driving an output node; and an auxiliary pull-up driver suitable for pull-up driving the output node based on a voltage of the output node, wherein the auxiliary pull-up driver compensates for non-linear driving current characteristics of the main pull-up driver.




mit

GAS FIRED RADIANT EMITTER

Gas fired radiant emitter having a premixing chamber for preparing a premix of gas and air; a perforated ceramic plate acting as burner deck; and a pilot burner having a premix gas supply flow tube and two electrodes. The premix gas supply flow tube of the pilot burner extends from the side of the perforated ceramic plate where the premixing chamber is located, into a through hole in the perforated ceramic plate. The premix gas supply flow tube has a gas exit in the through hole in the perforated ceramic plate or at the combustion side of the perforated ceramic plate. The gas fired radiant emitter has features so that in an area of the perforated ceramic plate around where the premix gas supply flow tube extends into a through hole in the perforated ceramic plate, no premix gas flows through the perforated ceramic plate.




mit

METHOD AND SYSTEM FOR STARTING AN INTERMITTENT FLAME-POWERED PILOT COMBUSTION SYSTEM

A flame powered intermittent pilot combustion controller may include a first power source and a second power source separate from the first power source, a thermal electric and/or photoelectric device, an igniter and a controller. The thermal electric and/or photoelectric device may charge the first power source when exposed to a flame. The controller and the igniter may receive power from the first power source when the first power source has sufficient available power, and may receive power from the second power source when the first power source does not have sufficient available power.




mit

ELECTRODYNAMIC COMBUSTION CONTROL WITH CURRENT LIMITING ELECTRICAL ELEMENT

An charge element disposed proximate to a combustion reaction is caused to carry a voltage while also being prevented from arc-discharging or arc-charging to or from the combustion reaction, by a current limiting element in electrical continuity with the charge element.




mit

Boot accessory for limiting foot movement in stirrups

A boot accessory for limiting how far a user can push his/her boot into a stirrup comprises an arch for hugging a front edge of the boot; a first hook disposed on the first end of the arch and a second hook disposed on the second end of the arch. The first hook curves outwardly from the first end of the arch and further a first end of the first hook curves back toward the front edge of the boot. The second hook curves outwardly from the second end of the arch and further a first end of the second hook curves back toward the front edge of the boot. A gap exists between the first end of the first hook and the arch and between the first end of the second hook and the arch, wherein the gaps are for engaging sides of the stirrup.




mit

LIGHT EMITTING DIODE (LED) MODULE FOR LED LUMINAIRE

A light emitting diode (LED) module for a light fixture includes a substrate with an upper surface and a lower surface. Various pressure multiplying pads are integrally connected to the lower surface, and each pressure multiplying pad extends away from the lower surface. LEDs are attached to the upper surface, along with a set of conductive lines so that each conductive line electrically connects a corresponding LED to a power inputs. Each of the pressure multiplying pads may be positioned opposite a corresponding LED. A flexible lens cover may cover the upper surface and the LEDs, while leaving the lower surface and pressure multiplying pads exposed so that the pads can contact a heat sink of the light fixture.




mit

LENS AND LIGHT EMITTING MODULE FOR SURFACE ILLUMINATION

A light emitting module includes a circuit board, a light emitting device mounted on the circuit board, and a lens dispersing light emitted from the light emitting device. The lens includes a lower surface formed with a concave section defining a light incident surface through which light enters the lens, an upper surface through which light exits the lens, and legs coupled to the circuit board and disposed farther outside the lens than an area of the upper surface. The light emitting device is disposed within the concave section of the lens.




mit

LIGHT EMITTING DEVICE

light emitting device includes: a light emitting element including a first electrode and a second electrode; a base equipped with a first conductive member and a second conductive member; a first bonding member electrically connecting the first electrode and the first conductive member, and a second bonding member electrically connecting the second electrode and the second conductive member; and one or more light reflecting members covering at least a part of the first conductive member and the second conductive member. The one or more light reflecting members are disposed in contact with the first bonding member and the second bonding member while being away from the light emitting element.




mit

OPTICAL LENS STRUCTURES FOR LIGHT EMITTING DIODE (LED) ARRAY

A light fixture includes one or more of light emitting diode (LED) modules. Each of the LED modules may include a substrate holding a plurality of LEDs, and a printed circuit board connected to the plurality of LEDs. Each of the LED modules may also include a flexible lens cover including a plurality of lenses, each positioned to be located over one of the LEDs. The flexible lens cover may include a side sealing structure configured to interface with the substrate and seal the lens cover to the substrate.




mit

ORGANIC LAYER DEPOSITION ASSEMBLY, ORGANIC LAYER DEPOSITION DEVICE INCLUDING THE SAME, AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY DEVICE USING THE ORGANIC LAYER DEPOSITION ASSEMBLY

An organic layer deposition assembly for depositing a deposition material on a substrate includes a deposition source configured to spray the deposition material, a deposition source nozzle arranged in one side of the deposition source and including deposition source nozzles arranged in a first direction, a patterning slit sheet arranged to face the deposition source nozzle and having patterning slits in a second direction that crosses the first direction, and a correction sheet arranged between the deposition source nozzle and the patterning slit sheet and configured to block at least a part of the deposition material sprayed from the deposition source.




mit

ARRAY SUBSTRATE OF ORGANIC LIGHT-EMITTING DIODES AND METHOD FOR PACKAGING THE SAME

An array substrate of organic light-emitting diodes and a method for fabricating the same are provided to narrow an edge frame of product device of organic light-emitting diodes, to shorten the package process time, and to improve the substrate utilization and the production efficiency. The array substrate of organic light-emitting diodes includes a plurality of display panels disposed in an array of rows and columns, wherein at least two adjacent display panels are connected through a frame adhesive, and there is no cutting headroom between at least one side of the at least two adjacent display panels.




mit

MULTI-PIECE TORQUE TUBE ASSEMBLY TO MITIGATE VIBRATION

A torque tube for use in a disk brake system in accordance with various embodiments includes a backleg having a reaction plate and a foot extending axially away from the reaction plate. The torque tube also includes a barrel having a tubular structure having an axis and an inner surface configured to receive the foot.




mit

APERTURE CODING FOR A SINGLE APERTURE TRANSMIT RECEIVE SYSTEM

An integrated circuit (IC) of a frequency-modulated continuous wave (FMCW) coded aperture radar (CAR) configured to step through a range of frequencies in each sweep and a method of assembling the FMCW CAR are described. The IC includes an antenna element to transmit and receive at a given time duration, a transmit channel to process a signal for transmission, the transmit channel including a transmit switch to change a state of a transmit phase shifter between two states based on a first code, and a receive channel to process a received signal, the receive channel including a receive switch to change a state of a receive phase shifter between two states based on a second code. The IC also includes a switch controller to control the first code and the second code, wherein the switch controller controls the first code to remain constant within the sweep.




mit

APPARATUS AND METHODS FOR TRANSMITTING WIRELESS SIGNALS

Aspects of the subject disclosure may include, for example, an antenna structure having a feed point for coupling to a dielectric core of a cable that propagates electromagnetic waves without an electrical return path, and a dielectric antenna, substantially or entirely devoid of conductive external surfaces, coupled to the feed point, the dielectric antenna facilitating receipt, at the feed point, the electromagnetic waves for propagating the electromagnetic waves to an aperture of the dielectric antenna for radiating a wireless signal. Other embodiments are disclosed.




mit

PATCH ANTENNA ARRAY FOR TRANSMISSION OF HERMITE-GAUSSIAN AND LAGUERRE GAUSSIAN BEAMS

An antenna array includes a plurality of patch antennas including a plurality of layers. Each of the plurality of layers are separated by a distance and each support a portion of the plurality of patch antennas. A plurality of connectors are each associated with one of the plurality of layers and supply a signal for transmission by the associated layer. A feed network on each of the plurality of layers provides a connection between a connector associated with the layer and the portion of the patch antennas located on the layer. Each layer transmits a signal having a different orthogonal function applied thereto that multiplexes each of the signals having a different orthogonal function applied thereto onto a single transmission beam. A parabolic reflector reflects the single transmission beam from the plurality of layers of the antenna array.




mit

PLASMA EMITTING METHOD AND PLASMA EMITTING DEVICE

Water is flowed inside main body section formed from an insulating material such that a specified space remains inside the main body section. Electrodes and are arranged along the outer walls of the main body section and voltage is applied to the electrodes. Processing gas present inside the main body section is plasmarized and plasma is emitted to the water flowing inside the main body section.




mit

METHOD FOR PREPARING AN OBJECT TO BE TESTED AND METHOD FOR IMPROVING THE UNIFORMITY AND INTENSITY OF AN ELECTRIC FIELD INDUCED IN SAID OBJECT ILLUMINATED BY AN INCIDENT ELECTROMAGNETIC WAVE

A method for preparing an object to be tested, having a given relative permittivity, intended to be illuminated by an incident electromagnetic wave. The method includes: providing a part including a cavity for housing the object and at least one extension element made from a material having a relative permittivity that is preferably equal to that of the object, the extension element at least partially delimiting the cavity and extending to either side of the cavity in a passage direction of the cavity, over a length at least equal, on either side of the cavity, to one third of the length of the cavity in the passage direction, and placing the object in the cavity, such that the object is in contact with the extension element in the passage direction.




mit

POWER SYSTEM FOR SUPPLYING HIGH VOLTAGE TO AN ELECTRON BEAM EMITTER

Power system for supplying high voltage to an electron beam emitter, which is adapted to sterilize a packaging container or a packaging material by electron beam irradiation, the power system comprising a voltage multiplier for generating a high voltage, a first voltage measurement device for measuring an output voltage level of the voltage multiplier and providing a first measured voltage value, and an actuator for modifying the output voltage level of the voltage multiplier based on the first measured voltage value provided by the first voltage measurement device, characterized in that the power system further comprises a second voltage measurement device adapted to independently measure the output voltage level of the voltage multiplier and provide a second measured voltage value.




mit

PROXIMITY SENSING DEVICE AND LIGHT GUIDING METHOD THEREOF

A proximity sensing device includes: a light source, a sensing unit, a light guide unit, and a window. The light source emits light, which is guided by the light guide unit to the window. The emitted light reflected by an object is received by the same window. The light guide unit includes a partial-transmissive-partial-reflective (PTPR) optical element, whereby the light emitted from the light source is reflected by the PTPR optical element, while the light reflected by the object passes through the PTPR optical element. There is only one window required.




mit

METHOD OF FABRICATING AN INTEGRATED CIRCUIT WITH A PATTERN DENSITY-OUTLIER-TREATMENT FOR OPTIMIZED PATTERN DENSITY UNIFORMITY

The present disclosure provides one embodiment of an IC method. First pattern densities (PDs) of a plurality of templates of an IC design layout are received. Then a high PD outlier template and a low PD outlier template from the plurality of templates are identified. The high PD outlier template is split into multiple subsets of template and each subset of template carries a portion of PD of the high PD outlier template. A PD uniformity (PDU) optimization is performed to the low PD outlier template and multiple individual exposure processes are applied by using respective subset of templates.




mit

Systems and arrangements for mitigating environmental damage caused by storm water carried pollution

A pollution mitigation system is disclosed. The system can include a valve forming a passage the valve installable to form an orifice in a storm drain retention chamber that passes storm water into a conduit of a storm water management system. The valve having a stem connected to a closure member that can plug the orifice. The valve can have a spring loaded actuator that can move the closure member into a closed position. The system can also include a node such as a wireless sensor node or a mote that has sensors, a transceiver, an antenna, a microcontroller, memory, an energy source and at least one output to control movement of the closure member via the preloaded actuator. The node can have an output that provides the stimulus to the preloaded actuator to cause the preloaded actuator to move the closure member to a position that obstructs the passage in response to either the sensor or a transmission from a mobile telephone such as a cell phone or a smartphone.





mit

POLYMER, ORGANIC LIGHT-EMITTING DEVICE MATERIAL INCLUDING THE SAME, AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE ORGANIC LIGHT-EMITTING DEVICE MATERIAL

A polymer comprising a first repeating unit represented by Formula 1: wherein, in Formula 1, groups and variables are the same as described in the specification.




mit

COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

A compound represented by Formula 1 and an organic light-emitting device including the same are provided:




mit

ORGANIC LIGHT-EMITTING DIODE DISPLAY DEVICE

Disclosed is a display device having a display panel that includes a plurality of pixels in a display area, each pixel including a first thin film transistor (TFT); a plurality of pads in a non-display area outside the display area that provide operating signals to the plurality of pixels in the display area, each pad including a first signal line running toward the display area and a second signal line running toward an outer edge of the display panel, with each pad disposed between the first and second signal lines; and an extension line crossing one or more of second signal lines of the plurality of pads, two ends of the extension line running toward the outer edge of the display panel, wherein each of the one or more of second signal lines of the plurality of pads includes an active layer of a second TFT.




mit

ORGANIC LIGHT-EMITTING DEVICE

According to one or more embodiments, an organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer may include a first compound represented by one selected from Formulae 1-1 and 1-2, and a second compound represented by Formula 2:




mit

HETEROCYCLIC COMPOUND AND ORGANIC LIGHT EMITTING DEVICE COMPRISING SAME

The present specification provides a hetero-cyclic compound and an organic light emitting device including the hetero-cyclic compound.




mit

ORGANIC LIGHT-EMITTING DEVICE

According to one or more embodiments, an organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer. The organic layer includes a first compound represented by Formula 1 and a second compound represented by one selected from Formulae 2-1 to 2-3:




mit

Compound, Light-Emitting Element, Display Device, Electronic Device, and Lighting Device

A compound includes a benzofuropyrimidine skeleton or a benzothienopyrimidine skeleton, a first substituent, and a second substituent. Each of the first substituent and the second substituent includes a furan skeleton, a thiophene skeleton, or a pyrrole skeleton. The first substituent is bonded to a pyrimidine ring included in the benzofuropyrimidine skeleton or a pyrimidine ring included in the benzothienopyrimidine skeleton. The second substituent is bonded to a benzene ring included in the benzofuropyrimidine skeleton or a benzene ring included in the benzothienopyrimidine skeleton. The light-emitting element includes the compound.




mit

CONDENSED CYCLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

A condensed cyclic compound represented by Formula 1: Ar1-L1-L2-Ar2 Formula 1 wherein in Formula 1, Ar1, Ar2, L1, and L2 are the same as described in the specification.




mit

ORGANIC LIGHT-EMITTING DEVICE

An organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer includes a first compound represented by Formula 1 and a second compound represented by Formula 2, wherein a case where the first compound is 4,4'-bis(N-carbazolyl)-1,1'-biphenyl(CBP) is excluded:




mit

ORGANIC LIGHT-EMITTING DEVICE

An organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer includes a first compound represented by one selected from Formulae 1-1 and 1-2 and a second compound represented by one selected from Formulae 2-1 to 2-3.




mit

COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

A compound is represented by Formula 1 and an organic light-emitting device including the same: wherein Formula 1 is the same as described above.




mit

Light-Emitting Element, Display Device, Electronic Device, and Lighting Device

A light-emitting element with high emission efficiency and high reliability is provided. The light-emitting element includes a light-emitting layer containing a first organic compound, a second organic compound, and a guest material. The first organic compound has a nitrogen-containing six-membered heteroaromatic skeleton. In the light-emitting layer, the weight ratio of an organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the first organic compound is less than or equal to 0.03, or alternatively, the weight ratio of the organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the second organic compound is less than or equal to 0.01.




mit

ORGANIC LIGHT-EMITTING DEVICE

An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an emission layer disposed between the first electrode and the second electrode. An electron transport region is between the second electrode and the emission layer. The electron transport region includes an electron injection layer including a first component including at least one halide of an alkali metal (Group I), a second component including at least one organometallic compound, and a third component including at least one of a lanthanide metal or an alkaline earth metal (Group II).




mit

ORGANIC LIGHT EMITTING DIODE AND ORGANIC LIGHT EMITTING DIODE DISPLAY DEVICE INCLUDING THE SAME

An organic light emitting element includes a first electrode a second electrode that faces the first electrode, an emission layer between the first electrode and the second electrode, the emission layer including quantum dots, and a hole transport layer between the first electrode and the emission layer. The quantum dots include at least one of a Group I-VI compound, a Group II-VI compound, and a Group III-VI compound. The hole transport layer includes at least one of a p-doped Group I-VI compound, a p-doped Group II-VI compound, and a p-doped Group III-VI compound.




mit

ORGANIC LIGHT EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME

An organic light emitting display (OLED) device can include a substrate on which first to third light emitting portions are defined, first electrodes respectively positioned on the first to third light emitting portions, a first stack formed on the first electrodes and including first, second and third light emitting layers corresponding to the first, second and third light emitting portions, respectively, an N-type charge generation layer (CGL) positioned on the first stack, a transition metal oxide layer positioned on the N-type CGL, a second stack positioned on the transition metal oxide layer and including fourth, fifth and sixth light emitting layers corresponding to the first, second and third light emitting portions, respectively, and a second electrode positioned on the second stack.